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RÔLE, PLACE, ET CONTENU D'UN

PREMIER ENSEIGNEMENT DÉDUCTIF DES PROBABILITÉS

par H. Breny

1. Question d'existence

a. Depuis son introduction dans le Rapport sur renseignement de la

géométrie de la Mathematical Association en 1923 [9], la distinction des

stades A (expérimental et intuitif), B (déductif), et C (systématique) a été

étendue à l'enseignement mathématique en général, encore que l'on tende

souvent à confondre partiellement les stades A et B (par l'introduction,
au stade A, de « noyaux déductifs » où les élèves « sont amenés à constater

que, de certaines propositions considérées — au moins provisoirement —
comme acquises on peut déduire d'autres propositions par le

raisonnement » [5]).
Assez curieusement, il semble que certains didacticiens de la

mathématique — s'occupant surtout, il est vrai, de l'enseignement primaire —•

estiment qu'un enseignement déductif de la théorie des probabilités n'est

pas de mise au niveau secondaire, ce qui revient à dire qu'il doit être réservé

aux seuls spécialistes de la mathématique (et peut-être, de la physique)x) ;

leur argument essentiel est qu'en cette matière ce qui compte c'est la
perception d'un certain type de situations non mathématiques (les situations
aléatoires) et de la façon de les mathématiser. Or, c'est précisément parce
que la théorie des probabilités n'est pas un chapitre de mathématique
mais, au sens plénier du mot, une théorie physique 2) qu'un enseignement
déductif est indispensable à une formation équilibrée de tous les futurs
utilisateurs de la mathématique.

x) En dehors de ces spécialités il n'y a virtuellement plus d'enseignement
mathématique déductif au niveau supérieur: la masse d'applications à étudier s'y oppose
efficacement, et y fait de la mathématique un pur outil.

2) Voir toutefois le paragraphe 3 b. ci-dessous.
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b. Les « théories physiques » existent depuis longtemps (dès avant les

« Eléments » d'Euclide, Eudoxe avait construit une « théorie physique »

des mouvements des astres). P. Duhem (lui-même excellent théoricien de

la physique et remarquable historien des sciences) en a analysé la structure,
mettant clairement en évidence leur aspect construit (ce sont des modèles

théoriques) et leur forme hypothético-déductive (voir [2] et [8]) : la réflexion
sur les faits observables disponibles conduit à l'invention d'hypothèses,
celles-ci servent d'axiomes à un édifice logique, dont les conséquences
sont comparées aux observations; si cette comparaison fait apparaître un
désaccord, la théorie est rejetée. K. Popper (notamment dans [11]) a

beaucoup insisté sur la « falsifiabilité » des théories physiques, car il
s'opposait aux logiciens comme Carnap pour qui des considérations de

type probabiliste x) pouvaient fournir un « degré de confirmation » d'une
théorie par l'expérience. La manière de comparer une théorie à l'expérience
a toujours été un point faible de l'analyse épistémologique ; des progrès
sérieux ont été faits dans ce domaine depuis les travaux de Kuhn sur la
«science normale» et les «révolutions scientifiques» ([6], [7], [13]; un
bon état de la question se trouve dans [14], chap. 8 et 9). Ces progrès
n'ont nullement altéré la thèse de Duhem, mais l'ont complétée: une
théorie physique est à la fois une construction conceptuelle et un outil;
elle comprend deux composantes: une structure logico-mathématique et

un ensemble d'applications envisagées (défini, ou plutôt décrit [«en
intention»], par son paradigme, ensemble d'applications particulièrement
réussies et (ou?) d'importance historique particulièrement grande)2. Ces

deux composantes sont essentielles, on ne peut négliger ni l'une ni l'autre.

c. C'est exactement cela qu'est la théorie des probabilités: la théorie

physique des phénomènes fortuits. Et c'est précisément cela que
l'enseignement pré-déductif de la théorie n'est pas en mesure de montrer. Certes,

cet enseignement est indispensable: avant tout essai de théorisation il
faut familiariser les élèves avec les situations aléatoires et les premiers

moyens théoriques de leur analyse; si, comme beaucoup de didacticiens
le pensent, un tel enseignement est possible au niveau primaire, c'est à ce

niveau qu'il faut l'entreprendre; il faut alors le poursuivre — et, sinon,

l'entreprendre — durant le premier cycle du niveau secondaire. Mais, si

*) En un autre sens du mot voir paragraphe 3 b. ci-dessous.
2) Accessoirement, ils ont mis en évidence la thèse de la non-falsifiabilité

(« immunité ») des théories physiques, dont l'observation dans l'histoire est à mettre à

l'actif de Kuhn.
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utile qu'il soit, un tel enseignement laisse échapper presque entièrement

la structure logico-mathématique de la théorie des probabilités: celle-ci

ne peut être saisie que dans un enseignement déductif. La situation, dans ce

cas, est un peu différente de celle de la géométrie. Certes, la géométrie

est aussi, pour une part, une théorie physique (la « théorie physique des

relations spatiales ») ; mais cet aspect est relativement peu important, vu
le caractère extrêmement élémentaire des notions « physiques » mises en

jeu; les «structures» géométriques sont d'ailleurs perçues (et édifiées)

par le jeune enfant bien avant qu'il perçoive l'aléatoire [10]. Un
enseignement de la géométrie qui en resterait au stade A renforcé par quelques

noyaux déductifs ne permettrait pas l'usage plénier de l'outil géométrique
et ne donnerait de la géométrie qu'une idée insuffisante; mais pour la

théorie des probabilités, un tel enseignement, laissé seul, en donnerait une
idée véritablement fausse, parce qu'il n'en ferait pas ressortir l'aspect
hypothético-déductif, qui est pourtant essentiel et fondamental (d'ailleurs,
en géométrie, il est rarissime que l'on recoure à l'observation pour confirmer

ou infirmer a posteriori un modèle théorique).

d. Une autre raison d'introduire un enseignement déductif de la théorie
des probabilités est que c'est sans doute l'unique occasion que l'on ait,
dans le secondaire, de faire connaître aux élèves la structure de théorie
physique, qui est l'une des pierres d'angle — peut-être la plus importante —
de la « culture scientifique » d'aujourd'hui. Cette structure est le moyen
obligé de toute mathématisation d'un domaine réel quelconque. Mais
quand nos élèves ont-ils l'occasion de la voir en action? Pas au cours de

physique, assurément, sauf peut-être pour les éléments de la mécanique.
Au niveau secondaire, la physique se veut — à juste titre — avant tout
empirique, voire expérimentalex) : la construction théorique abstraite
d'un chapitre de physique dépasse les possibilités du niveau secondaire,
à cause de la complexité des phénomènes mis en jeu et des outils
mathématiques de leur analyse (exemple: seuls quelques spécialistes sont réellement

à même d'aborder — par exemple au niveau d'une « sixth form »

anglaise — l'édifice newtonien conduisant déductivement aux lois de

Kepler, qui est pourtant l'exemple le plus élémentaire possible).
L'enseignement déductif de la théorie des probabilités reste en fait le seul où les
élèves puissent vraiment rencontrer la structure de théorie physique.

3) Là où elle reste livresque, elle prend un faux air de discipline déductive, sans base
expérimentale réelle: c'est la pire des solutions; mais ce point n'est pas de la compétence
des didacticiens de la mathématique.
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2. L'époque convenable

Les considérations du paragraphe précédent répondent aussi à la
question « quand se place le premier enseignement déductif de la théorie
des probabilités? » Il est clair en effet qu'il doit se situer au niveau secondaire.

Il est non moins clair qu'il est d'un degré d'abstraction tel que seuls

des élèves déjà formés peuvent l'aborder. Il faut donc le placer aux environs
des classes 11 et 12 de l'enseignement général (élèves de 16 à 18 ans).

Il y aurait pourtant intérêt à le placer plus tôt: en effet, si ses premières
notions font l'objet d'un enseignement au stade A dès l'école primaire
(ou les toutes premières années du secondaire), il faut alors s'attendre

que les enseignants des branches utilisatrices (notamment la biologie)
s'en serviront librement avec les élèves de 13-14 ans et plus; il va donc se

former, de ce fait, un « tas » passablement informe de notions et
d'applications, tas qu'il importe d'organiser et de rationaliser sans trop attendre.

Une solution possible est de commencer, dès la classe de 15-16 ans,

une systématisation de la statistique descriptive en termes tels que son
transfert à la théorie des probabilités soit immédiat et cohérent: ceci

nécessite l'introduction — qui, à ce niveau, ne peut être que bénéfique —
de définitions et de méthodes « intrinsèques » ; le seul problème que cela

pose est d'ordre didactique: un tel enseignement a pour but de préparer
l'avenir, et on peut donc craindre qu'il ne soit que faiblement motivé,
puisque les seules applications possibles à ce moment-là ont déjà été

rencontrées sous une forme plus élémentaire.

3. Esquisse d'un contenu

a. Le contenu du premier enseignement déductif des probabilités est

déterminé par son but: faire connaître aux élèves la structure de théorie

physique de la théorie des probabilités, en mettant l'accent à la fois sur les

situations envisagées (situations aléatoires) et sur les moyens formels

(hypothético-déductifs) mis en œuvre pour les analyser. Il faut donc remarquer

que si cet enseignement était uniquement formel, s'il sacrifiait « les

situations » à leur analyse mathématique, il manquerait totalement son

but. C'est là, peut-être, la raison de l'opposition que certains marquent
à son égard: s'ils confondent « déductif » avec « purement formel », cette

opposition se comprend; et peut-être y a-t-il en effet des exemples de cette
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confusion. Il convient donc de tout faire pour l'éviter; mais cela n'entraîne

pas que l'on renonce à tout enseignement déductif — bien au contraire

b. Le cadre formel de la théorie physique des phénomènes fortuits est,

pour virtuellement tous les auteurs, un cadre ensembliste: une situation

aléatoire est décrite par Y ensemble des résultats possibles; les parties de

cet ensemble sont les événements; la probabilité est une fonction à valeurs

réelles, définie sur un certain ensemble d'événements.

Cette façon de faire a pourtant été critiquée (voir p. ex. [4]): l'appareil
ensembliste ne serait rien de plus qu'une feuille de vigne, mise en avant

au premier chapitre pour se conformer à une mode, mais oubliée ensuite,
dès que l'on aborde sérieusement des problèmes réels, au profit d'une vue
« classique » reposant sur les notions primitives de « probabilité d'un
énoncé » et de « variable aléatoire ». Cette critique est bien difficile à

comprendre. Il faut, avons-nous dit, partir de la notion même de situation
aléatoire; or, qu'est-ce qui caractérise une telle situation? C'est qu'une
constellation bien déterminée, fixe, de conditions de réalisation a, non pas

une, mais plusieurs conséquences possibles; il est donc clair que l'ensemble
des conséquences possibles, £2, est un élément tout indiqué de la mathé-
matisation de la situation. (Bien entendu, si on part brutalement d'un
ensemble Q sans référence à une situation aléatoire, on retombe dans le

défaut, signalé ci-dessus, d'un enseignement purement formel.) D'autre
part, on peut, à propos d'une situation aléatoire donnée, envisager toute
une série de circonstances dont on peut dire, pour toute réalisation de

cette situation, si elles ont lieu ou non: ce sont les événements liés à cette
situation. Il est contre-indiqué d'appuyer fortement sur le fait qu'un
événement se décrit par une proposition; en effet, la théorie des probabilités

comme théorie physique des phénomènes fortuits n'est qu'une des

interprétations possibles de la structure formelle générale de « calcul des

probabilités» (voir [11], chap. 8); d'autres interprétations possibles ont
comme base un ensemble de propositions [interprétation personnaliste,
où la probabilité est un degré de croyance (de Finetti, Savage); interprétation

logiciste, où la probabilité (conditionnelle) est une inférence partielle
(Ramsey, Keynes)]. Ces diverses interprétations sont nettement distinctes,
la distinction entre elles va beaucoup plus loin qu'une « réinterprétation
du langage des événements en un langage de propositions (à savoir, quant à

l'occurrence d'événements)»; en fait, leur confusion a été la plaie de la
théorie pendant de nombreuses décennies, elle n'est même pas entièrement
éliminée à l'heure actuelle et est, par exemple, à la base de la controverse



très aiguë qui oppose, en matière de physique quantique, les tenants et
les adversaires de l'interprétation «de Copenhague» (voir p. ex. [11]

chap. 9 et [1] parag. 2.4 et chap. 5). Il est donc essentiel d'éviter toute
confusion entre ces diverses interpétations possibles; mais si, dans l'exposé
de la théorie physique des phénomènes fortuits, on définit un événement

par une proposition, ou si — pire encore — on prend comme domaine de

la fonction « probabilité » un ensemble de propositions, on rend cette
confusion presque inévitable. Tout au contraire, la définition d'un
événement comme partie de l'ensemble des possibles ne prête à aucune
confusion; bien entendu, il importe, ici aussi, de bien montrer (par l'analyse
d'exemples déjà étudiés d'un point de vue intuitif) le lien entre la situation
et son modèle mathématique; on peut être raisonnablement assuré que les

élèves ont perçu ce lien s'ils comprennent l'énoncé, véritablement
fondamental, que voici :

dans toute réalisation d'un phénomène fortuit $ [dont l'ensemble
des possibles est f2] un événement (partie de Q) se produit
si et seulement si

le résultat réalisé de g est un élément de cette partie de Q.

[Si, dans ces conditions, certains élèves s'imaginent que, p. ex., l'événement

impossible (4>) est l'absence de toute réalisation, la faute n'en incombe pas
à la théorie mais à l'enseignant; « c'est un bien mauvais artisan, qui rejette
la faute sur son outil ».]

Les termes réalisation, résultat réalisé sont tout entiers du côté de la

situation; un enseignement formaliste, qui n'envisagerait pas de façon
franche et explicite la situation aléatoire sous-jacente à tout problème
probabiliste, serait dans l'impossibilité d'utiliser ces termes, et donc dans

l'impossibilité de faire clairement comprendre la notion d'événement.

Notons que la notion intuitive d'événement est passablement vague, et

n'acquiert un sens précis que par sa définition mathématique (état de chose

qui n'est pas sans rappeler les rapports entre « vitesse » et « dérivée » :

la notion intuitive de vitesse ne prend un sens précis que par la définition
de la dérivée; inversement, l'interprétation d'une dérivée comme une vitesse

n'est possible que par référence à une situation concrète d'un type bien

déterminé; seulement, l'analyse mathématique n'est pas la «théorie
physique » du mouvement local!).

Toutefois, la définition d'un événement comme « partie de Q » peut
dépasser son but: il peut arriver qu'un événement (défini comme partie
de Q) soit d'une complication telle que son occurrence (ou sa non-occur-
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rence) ne soit pas observable, dans la situation envisagée. C'est pourquoi
il faut bien mettre en évidence que

la description mathématique d'une situation aléatoire comprend non
seulement l'ensemble Q des résultats possibles mais encore l'ensemble

0~ des événements dont l'occurrence est observable (du moins en principe)

dans cette situation.

Il n'est pas nécessaire d'insister fortement sur ce dernier point dans un
premier enseignement déductif (d'autant moins que des exemples élémentaires

ne sont pas aisés à trouver) ; il faut pourtant faire voir que l'ensemble
des événements d'occurrence observable est stable pour les opérations
ensemblistes n, u, et C- Faut-il aller au delà et introduire la notion de

tribu? Ce serait là sans doute un excès de formalisme. Pourtant, certains

exemples élémentaires que l'on traite volontiers au stade A introduisent
tout naturellement des événements infinis ; supposons par exemple que l'on
étudie le jeu suivant:

pile ou face jusqu'à la première apparition soit de PPF soit de PFP;

ce jeu serait représenté (voir par exemple [12]) par le diagramme suivant:

L'événement (manifestement observable)

X: « entre la première occurrence de l'état PP et la fin du jeu il y a
exactement trois parties »

est un événement infini, car les boucles (S) et (S, P, PFS) peuvent être
parcourues un nombre quelconque de fois :

X {(S,P,PP, PP, PP, PPF), (S, P, PF, S, P, PP, PP, PP, PPF)
(S, P, PF, S, P, PF, S, P, PP, PP, PP, PPF) }

Il ne faut donc pas éviter systématiquement ce type d'événements.
Mais, dans un premier enseignement déductif, il suffit très largement de
considérer de temps à autre une suite décroissante d'événements (et de
faire appel au troisième axiome de Kolmogorov; voir parag. d. ci-dessous).

Fig. l
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c. Bien entendu, c'est la notion même de probabilité qui est le nœud
essentiel d'un premier enseignement déductif. A ce propos plus encore que

pour les points précédents, il faut redire qu'un enseignement déductif
de la théorie physique des phénomènes fortuits ne peut négliger ni la situation,

ni la formalisation mathématique; présenter la probabilité simplement

comme une mesure sur un ensemble de parties, c'est négliger la situation;

faire de la probabilité un élément de description d'une «variable
aléatoire » considérée comme notion première, c'est faire bon marché de la
construction hypothético-déductive ; plaquer une fonction additive sur un
ensemble d'événements n'est pas analyser une situation.

Sans doute n'y a-t-il plus, à l'heure actuelle, aucun partisan de la «

définition » par le rapport des nombres de cas favorables et de cas possibles.
Par contre, la plupart des exposés déductifs à l'usage des débutants font
abondamment usage, lorsqu'ils abordent la «définition» de la probabilité,
de la notion de fréquence. C'est là, à n'en pas douter, une conséquence
d'un désir louable de ne pas faire fi de la situation sous-jacente; mais c'est

une façon déplorable de présenter les choses. Il semble bien, que pour la

plupart des auteurs, le message — pourtant si clair — de K. Popper a été

perdu: la fréquence n'a aucun rôle à jouer dans la définition de la probabilité;
un phénomène fortuit pourrait être totalement dépourvu de structure
répétitive, la notion de probabilité s'y appliquerait quand même, sans la
moindre restriction, alors qu'aucune fréquence ne serait en jeu. Si

l'enseignement intuitif (le stade A) des probabilités a été bien fait, il a mis les

élèves en présence de ce fait fondamental: dans toute situation aléatoire,

chaque événement est doué d'une tendance plus ou moins forte à se

produire.

[La langue commune dispose, pour signifier cette tendance, des mots « chance »

et « risque », mais ceux-ci ne sont pas neutres : « chance » est presque toujours
utilisé lorsqu'il s'agit de conséquences favorables, « risque » toujours pour des

conséquences défavorables; la construction de la théorie nécessite l'emploi d'un
mot neutre, et c'est pour satisfaire à cette nécessité que Popper a emprunté au
vocabulaire des sciences sociales le terme (excellent) de « propension » ; mais
« tendance à se produire » fait parfaitement l'affaire, et est moins ésotérique.]

Une fraction notable du temps consacré à un premier enseignement
déductif des probabilités doit être employé à faire ressortir cette notion
de « tendance à se produire » de l'analyse des exemples déjà vus par les

élèves et des mots de la langue commune qui y sont utilisés.

Ce point est sans doute celui où un premier enseignement déductif
(stade B) bien fait aurait le plus d'influence sur l'enseignement intuitif
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qui le prépare (stade A); les maîtres chargés de l'enseignement au stade A

ont fort souvent en vue un enseignement ultérieur essentiellement fréquen-

tiste, et se laissent ainsi entraîner dans cette direction; alors que l'on attend

d'eux, tout au contraire, que leur introduction aux situations aléatoires

fasse clairement percevoir la variabilité (d'une réalisation à l'autre) des

résultats réalisés, et les diverses tendances à l'occurrence des événements

considérés. Cette variabilité et cette diversité des tendances ne peuvent

se constater empiriquement que si on dispose de plusieurs réalisations

d'une même situation aléatoire: il est évident qu'une réalisation unique

ne fournit qu'un seul résultat C'est là le vrai rôle de la répétition. D'autre

part, il existe de nombreuses situations élémentaires où des considérations
de symétrie suggèrent l'hypothèsex) que certains événements (formant
une partition de Q) ont chacun la même propension, et donc la même

probabilité; il est évidemment tout indiqué de déduire les conséquences
de cette hypothèse et de se demander ensuite si on a des raisons empiriques
de la croire justifiée; la répétition intervient ici aussi: car si l'hypothèse
de symétrie est réalisée, on constate empiriquement que les événements

équivalents ont des fréquences à peu près égales; c'est par ce biais que
s'installe peu à peu, a posteriori, l'idée que, dans des conditions convenables,
la fréquence réalisée d'un événement est une estimation empirique de sa

probabilité. Cette idée reste d'ailleurs purement intuitive, aussi longtemps

que l'on n'a pas déduit des axiomes de la théorie une « loi des grands nombres

» (par exemple celle de Bernoulli). Quand une telle loi a été déduite,
elle permet d'avancer d'un pas de plus, et de constater que, pour une seule

réalisation d'une situation aléatoire suffisamment répétitive, la fréquence

moyenne d'une suite d'événements de même probabilité est aussi une
estimation empirique de cette probabilité. En résumé: les notions fondamentales
sont celles de variabilité anarchique des résultats réalisés, de tendance plus
ou moins forte à l'occurrence, et de mesure (additive) de cette tendance
(au sens où on dit «mesure des grandeurs»; voir d. ci-dessous); l'observation

des fréquences n'a qu'un rôle (important certes mais) subordonné.

d. Une fois acquise la notion intuitive de propension (tendance à

l'occurrence) et le fait qu'elle est susceptible de plus ou de moins, il s'indique
d'essayer de la mesurer. Un premier enseignement déductif doit rappeler
que la mesure quantitative précise (de grandeurs d'abord intuitivement
perçues comme susceptibles de plus ou de moins) repose toujours sur
deux définitions, celle de l'additivité et celle de l'unité de mesure (un excel-

x) Voir paragraphe 6 ci-dessous.
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lent exemple est la mesure des débits de courants électriques, qui s'ajoutent
en parallèle, ou des tensions électriques, qui s'ajoutent en série). Cela
conduit tout droit aux deux premiers axiomes de Kolmogorov, sous une
forme équivalente (en moins formel, peut-être) à

Pr : 2T -» R+ : A h> Pr A

Kl) \/{Â,B } cz F ; =>[Pr(Au£) Pr A + PrB]
K2) Pr Q A

et aux conséquences qui en découlent immédiatement (telles que Pr 0 0,

monotonie, additivité finie, relation et inégalités de Boole, etc). Le troisième
axiome :

00

K3) v{ Au•••>A„, }c F ; (At =>A2 =>... Ä =>...& n At <j))
1

=> lim Pr An 0

paraît tellement évident que la plus grosse difficulté à son sujet est de
persuader les élèves qu'il doit être énoncé; il est d'ailleurs impossible de trouver

un exemple contraire qui soit à la fois élémentaire et intéressant; mais

il faut le mentionner car, dans la suite, on est amené à s'en servir1. [Si le

maître, pour son usage personnel, se contente d'un exemple élémentaire
mais non intéressant, qu'il prenne pour Q l'ensemble N, avec 2T et P définis

par

\/I c N ; [lG«f^(I est fini) V (C X est fini)]

p (X) Y
1 iex] si X est fini

\0'+2) (z+3) | ;
1 - P(CX) si CX est fini.

Si on prend alors An « N\{ 0, 1, n } la suite (n K An) ne satisfait pas

au troisième axiome de Kolmogorov.] Par contre, on peut trouver des

exemples, non dépourvus d'intérêt, de l'usage d'une suite infinie d'événements.

Ainsi, dans le jeu « pile ou face jusqu'à la première occurrence de

PPF ou de PFP» (parag. 3b. ci-dessus), on constate que l'événement

X « le jeu se prolonge indéfiniment »

n'est pas vide [il contient notamment l'élément

S, P, PF, S, P, PP, S, P, PP, S, P, PP,... (ad inf)] ;

bien entendu, les élèves sont absolument persuadés que cet événement

ne peut pas se produire; on renforce donc leur confiance dans la mathéma-

x) Voir paragraphe 5 e. ci-dessous.
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tisation adoptée en démontrant que Pr X 0 (on suppose que Pr a été

défini comme dans les exemples du stade A: on adjoint le nombre Vi à

chaque flèche, et on multiplie les nombres relatifs à toutes les flèches

parcourues). [Cette démonstration n'est possible qu'à l'aide des probabilités

conditionnelles, mais rien n'interdit de les utiliser avant d'en avoir fait

un exposé déductif.] Si An est l'événement « le jeu dure au moins n parties »,

il est clair (puisque chaque état peut conduire à un état final en trois coups

au plus) que

Pr(C^„+3 K) >1. Pr04„ +3K)<^;
d'autre part, et bien évidemment,

Pr (^4„ + 3 I C A„) 0 [cari„t3 ci„] (2)

donc

Pr04,1+3) <Q.PrG4„).
Or

PrO^) 1

et donc

Pr (A4)< 7/8 PrG47)<(7/8)2,..., Pr(^3(t+1) <(7/8)* ; (3)

alors

\/ke N0 ; X c A3k+l =>

=>\/keN0 ; Pr X < (7/8)k => PrX - 0 c.q.f.d. (4)

e. A côté de la notion (fondamentale) de probabilité, celle de

conditionnement (et, en conséquence, celle de probabilité conditionnelle) est

d'une importance extrême. Mais on a ici un exemple particulièrement
frappant de la nécessité de prendre en considération à la fois la situation
et le formalisme mathématique. La définition purement formelle

Pr (AnB)
Pr (A B) — iv 1 7

Pr jB

ne sert strictement à rien ; ce qu'il faut faire, c'est reprendre dans les exemples

vus par les élèves toutes les situations où on a été amené (le plus souvent
de façon tout implicite) à contracter le phénomène fortuit 3r à l'un de ses

événements, disons A, obtenant ainsi le phénomène contracté 21; à rappeler
ensuite qu'une probabilité n'est autre que la mesure d'une propension,
avec la propension de l'événement certain comme unité de mesure; dis-
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tinguant alors (pour un temps seulement) les fonctions-propabilité pour
3r, Pr^, et pour 91, Pr^, rappelant en outre la notion de rapport de deux
grandeurs et ce qui se passe quand on change d'unité de mesure, on a

_ propension de X
V X c A ; : —- (6a)

propension de A

propension de X 1

propension de Q propension de A (6b)

propension de Ü

PrgX
PrsA

(6c)

Cette formulation est la seule véritablement utilisée, mais elle est dissimulée

par la notation usuelle,

Pr(Y\A) pour Prn(YnA),
qu'il faut évidemment se résigner à adopter. [Pr | A) étant la fonction-
probabilité de 91, il est immédiatement évident que c'est une probabilité !]

La catégorisation d'un phénomène fortuit doit être bien distinguée
de sa contraction: il s'agit, cette fois, de réduire non pas Q, mais ZT. Dans
un premier enseignement déductif, cette réduction de 3T est définie par
une partition finie ou dénombrablement infinie : on ne considère plus comme
observables les événements de mais seulement ceux de

sé{Au An}[ou: }]
et leurs unions (il y a donc bien réduction de 3~). C'est une étape
indispensable dans la définition de l'indépendance. Mais, ici encore, la considération

simultanée de la situation et du formalisme est indispensable. En
effet, le point de départ est celui-ci: si les partitions sé et M décrivent
deux catégorisations du phénomène fortuit $, ces phénomènes réduits

(notons-les 31 et 93) s'influencent-ils l'un l'autre, ou non? (C'est là une
question qui n'aurait même aucun sens si on ne se référait pas explicitement
à la situation elle-même.) La réponse s'exprime en termes de probabilités
conditionnelles :

A n'influence pas B si et seulement si

\jA^sé, \/Bke âS ;Pr (Bk\A^ Pr

(et ce en vertu de la signification, pour la situation, des probabilités
conditionnelles en question). On tire alors aisément de là l'exposé élémentaire
usuel.
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[Notons qu'il n'est pas question, au départ, à'événements indépendants,

mais de phénomènes (réduits) indépendants ; les « événements » indépendants

correspondent en fait aux partitions du type { A, }; en termes

de situation: le phénomène 21 est 5 réduit au point qu'on n'obs.erve plus

rien que l'occurrence ou la non-occurrence de A; il en est de même pour
23, et on exprime que 21 et 23 sont sans interaction mutuelle].

Il est clair que, ainsi référées à la situation sous-jacente, les notions de

probabilité conditionnelle et d'indépendance sont autrement riches de

sens que les simples définitions formelles

PrU|B) Pr(^rßB) ' Pr(AnB) Pr A .FtB

C'est cette richesse qui permet leur utilisation; s'en tenir à un exposé

formel, et s'attendre néanmoins que les élèves seront à même de l'appliquer,
c'est se fier à une pure et simple régression du stade B au stade A : il vaudrait
certes mieux, dans ce cas, supprimer le stade B.

4. Étude d'un exemple

a. Revenons à l'exemple du paragraphe 3.b; le phénomène fortuit g
considéré est donc le suivant:

une suite de parties de « pile ou face » poursuivie jusqu'à la première
apparition soit de PPF soit de PFP.

Voilà une situation aléatoire qu'il s'agit de mathématiser en faisant
apparaître, successivement, l'ensemble des possibles, Q, l'ensemble des

événements à considérer, ?T, et la fonction-probabilité.

b. L'ensemble des possibles peut être « décrit » en extension, sous
la forme

Q { PPF, FPPF, PPPF, FFPPF, FPPPF, PPPPF, PFFPPF
PFP, FPFP, FFPFP, FFFPFP, PFFPFP }

mais cette manière est bien peu « déductive »! ; il peut aussi être décrit
en compréhension:

ensemble des « mots » formés des seules lettres P et F et terminés à

la première apparition soit de la séquence PPF soit de la
séquence PFP

et des suites formées des seules lettres P et F et qui ne
contiennent aucune séquence PPF ou PFP.
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A ces descriptions, correctes mais peu intéressantes, on préférera sans doute
une représentation géométrique. La plus immédiate est l'arbre qui correspond

à la description en extension signalée ci-dessus:

Bpf p

etc

Fig. 2

Cette représentation est, elle aussi, fort compliquée. On trouvera peut-
être convenable de la simplifier en tenant compte du degré de réalisation
des états finals, de sorte que le système ne peut être que dans les états

S, P, PP, PF, PPF, PFP; on a ainsi la représentation géométrique que
voici :

PFP

PPF

PF

PP

P

S

époques 0

parties

etc

3

Fig. 3
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Au stade A, on habitue volontiers les élèves à simplifier davantage

encore, en faisant abstraction des époques auquelles les états sont atteints :

on a ainsi la représentation de la figure 1.

Il semble que, comme représentation de Q, les trois figures (2), (3),
et (1) sont également acceptables, et que, par raison de simplicité, (1)

est meilleure que (3) et (3) meilleure que (2). C'est là une grave et dangereuse

illusion, comme on le verra en d. ci-dessous.

c. L'ensemble PT des événements observables n'a pas besoin d'être
décrit en détail : il suffit de remarquer qu'il contient tous les « débuts »,
c'est-à-dire tous les ensembles d'éléments de Q qui ont une partie initiale
donnée ; par exemple,

deb (.FFFPFP) [qui est un singleton de £2]

deb (FFPFFF) [qui contient une infinité de singletons de Q, par
exemple FFPFFFPPF et FFPFFFPFP]

deb (FFPPPP) [qui contient les singletons FFPPPPF, FFPPPPPF,
FFPPPPPPF, FFPPPP PPF, etc.]

ainsi que leurs complémentaires, unions, et intersections.

d. En ce qui concerne la probabilité définie sur un tel ensemble de

possibles, il est très important qu'un premier enseignement déductif fasse
clairement ressortir les points suivants :

1) il y a beaucoup de définitions de Pr qui sont mathématiquement possibles

2) chacune d'elles peut s'obtenir en plaçant sur chaque branche de l'arbre
(fig. 2) un nombre compris entre 0 et 1 et définissant la probabilité
d'un début (singleton ou non) comme produit des nombres portés par
les branches qui le constituent; ainsi on pourrait avoir:

PF 0,5 P(F)p 0,4~P(fp)F 0,8—y?(FFF)F
Pr deb (FPFF) 0,7x0,5x0,4x0,8 0,112

Fig. 4

(les deux branches issues d'un même point doivent porter des nombres
dont la somme est 1 : c'est une conséquence de Kl)
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3) le choix de l'une de ces probabilités n'est possible que par une analyse
de la situation elle-même, et plusieurs choix différents sont manifestement

possibles, même en s'en tenant aux situations simples.

Montrer que le procédé multiplicatif mentionné en 2) donne bien une
probabilité peut être l'occasion d'un commentaire éclairant sur la portée
d'une axiomatique: pour qu'une application de dans R+ soit une probabilité,

il suffit qu'elle satisfasse aux axiomes Kl, K2, et K3 du paragraphe 3d.

ci-dessus; or, on a

Pr£2 Pr [deb (P) udeb(F)] Prdeb(P) + Prdeb(F) 1

et aussi (quels que soient x, y, u):

[deb (x, y, u, P) u deb (x, y, u, F)] deb (x, y, n)

[deb (x, y, u, P) n deb (x, y, u, F)] <j)

Pr deb (x, y, u, P) + Pr deb (x, y, u, F)

Px X P (x)y X ••• X P (x,y X P (x,y ,...,u)P

+ Px X P(x)y X ••• X P{x,y,...)u X P(x,yF
Px x P^)y x ••• x P(x,y= Pr deb (x, y, (7)

Quant à l'axiome K3, il n'est pas facile de démontrer qu'il est vérifié; le

conflit ainsi mis à jour entre l'intuition d'un procédé (multiplicatif) auquel
les élèves sont accoutumés et l'apparente évidence de K3 est, lui aussi,
très instructif. D'autre part, montrer que le procédé multiplicatif définit
toutes les probabilités possibles résulte de la théorie des probabilités
composées; par exemple

Pr deb (x, y, z) Pr deb (x) Pr [deb (x, y) j deb (x)]
Pr [deb (x, y, z) | deb (x) n deb (x, y)]

Pr deb (x) Pr [deb (x, y) | deb (x)]

Pr [deb (x, y, z) | deb (x., y)]

[car deb (x, y, z) c deb (x, y) c: deb (x)]

Des situations concrètes correspondant à ces diverses possibilités devraient
être montrées aux élèves dès le stade A. Il semble bien qu'à l'heure actuelle

on l'oublie fréquemment. Cela est dû à la vogue, parmi les didacticiens,
des problèmes où l'ensemble des possibles prend la forme d'un arbre que
l'on peut condenser en un graphe fléché et bouclé (comme celui de la

fig. 1); or, cette condensation n'est possible que pour certains choix de la
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probabilité (schémas à transitions markoviennes stationnaires) ; les graphes

ainsi condensés sont donc inaptes à représenter l'ensemble des possibles,

puisque celui-ci est logiquement antérieur à la définition de la probabilité
(preuve: le domaine de Pr est une partie de £?Q). Il y a là une situation

qu'il importe de corriger au stade B, avec l'espoir que la correction se

propagera au stade A.

5. Variables aléatoires

a. Depuis que la réforme de l'enseignement mathématique au niveau
secondaire a amené à sa place (l'une des toutes premières) la notion de

fonction, il n'est vraiment pas difficile de faire voir aux élèves, dès le

stade A, que de nombreux éléments intéressants d'une situation aléatoire

quelconque sont des applications de l'ensemble des possibles (£2) dans

l'ensemble des réels (R). Au stade B, une révision de ces exemples conduit
à la définition explicite.

b. Le terme « variable aléatoire » a été critiqué comme impropre, et

il est bien vrai qu'une application de Q dans R n'a rien de variable ni
d'aléatoire. Si on estime que cette critique est justifiée, rien n'empêche de

changer de terme, et de dire par exemple « aléa numérique réel ». Mais
on peut estimer aussi que cette critique vient de mathématiciens « purs »,

qui ont privilégié le formalisme et oublié la situation; en effet, d'un point
de vue concret, ce qui est en jeu est bel et bien une grandeur qui, d'une
réalisation à l'autre 1), peut prendre diverses valeurs — c'est donc bien
une variable — et ce de façon anarchique — c'est donc bien une variable
aléatoire. Il y a là une querelle qui n'a ni importance ni intérêt.

c. Il est beaucoup plus important, au stade B, de faire ressortir ce qui
suit: pour un élément aléatoire * à valeurs réelles, il est de la plus haute
importance que, pour tout intervalle I, l'événement «la valeur réalisée
de * appartient à I» soit observable; autrement dit (en notant J l'ensemble
des intervalles de R), l'application

x : Q - R : cd |-> x(co)

ne mérite le nom de « variable aléatoire » que si elle satisfait à la condition
-î

V J e x I e dT.
[= {CO1) X O) 6 I]

x) Nous avons déjà dit, plusieurs fois, que la notion même de réalisation est étrangère
au formalisme probabiliste.

L'Enseignement mathém., t. XXII, fasc. 1-2. _o
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Dès lors, la définition de la fonction de répartition de x ne recèle plus
aucun mystère :

-1
Fx : R -> R : a ]-> Pr x ] — oo ; a]).

d. Les spécialistes contemporains de la théorie mathématique des

probabilités manifestent une désaffection très nette vis-à-vis de la fonction
de répartition, et lui substituent volontiers la « loi de probabilité ».

Celle-ci est, somme toute, aisée à définir; d'une part,

-î
X { A c R | x A 6 F }

et d'autre part,
-î

Lx : #-->R: A|->Pr(* A).

Mais néanmoins, cette tendance ne doit pas affecter le premier
enseignement déductif de la théorie; d'une part, parce que la loi de probabilité
ne peut, à ce stade, jouer aucun rôle 1); d'autre part, parce que la fonction
de répartition joue un rôle essentiel et irremplaçable: celui d'une
description géométrique des propriétés de la variable aléatoire.

e. Un enseignement déductif des probabilités se doit de justifier son
titre en démontrant, en toute rigueur et en toute généralité, non seulement

que toute fonction de répartition (F) est croissante (c'est facile) mais encore

qu'elle jouit des propriétés

lim F — 0 lim F — 1

-* — CO -* + 00

-1
yae R ; Pr * ] — oo; a[) sup{ F (t) j f < a },

ce qui nécessite l'intervention de l'axiome K3.

f. On peut estimer qu'un premier enseignement déductif doit s'en

tenir aux variables aléatoires à nombre fini de valeurs (encore que cette

opinion soit sujette à de très sérieuses objections; par exemple, la situation
décrite par la figure 1 met en jeu des variables aléatoires à une infinité
de valeurs). Mais il serait déplorable que les définitions et énoncés

rencontrés dans cet enseignement soient applicables au seul cas fini. Bien au

contraire, pour que ce premier enseignement déductif ne soit pas un

1) Pour les mathématiciens professionnels, elle permet la considération de l'énoncé,
en effet essentiel (où g est une fonction de R vers R)

° x) dPr jR ^ dlx
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obstacle à un développement ultérieur, il faut que les définitions soient

parfaitement générales et que les énoncés soient aussi généraux que

possible, quitte à ne les démontrer que pour le seul cas fini. En ce qui

concerne les variables aléatoires et leurs valeurs typiques, on y arrive en

exploitant les propriétés géométriques de la fonction de répartition ;

par exemple, on prend comme définition de la moyenne n de x la relation

géométrique (égalité d'aires)

,»p r» + oo

\ F(t)dt=\ [1-J?(0]df, (8a)
J - 00 «.' P

tandis que l'écart-moyen V et la variance a2 sont définis par les expressions

géométriques (sommes de deux aires)

» H •» + 30

v=\ f(f)dt+\ [1 -F(0] dt (8
J - 00 « p

2 c p f*t r» + oo ^» + oo

V dA F (s) ds + \ dt \ [1 — F (s)] ds. (8c)
2 J-00 J-00 ép Jf

[L'aspect géométrique (en termes d'aires) des expressions (8) est particulièrement

important: il s'agit de faire « voir » la signification des paramètres

fi, V, a; un traitement analytique basé sur les formules (8) est, à ce niveau,
entièrement à rejeter (bien qu'il soit parfaitement correct).]
Il est alors possible de démontrer en toute généralité que V est la moyenne
de la variable aléatoire | x — ^ | ; par contre, démontrer que g2 est la

moyenne de la variable aléatoire (x — jF)2 n'est possible, avec ces moyens,
que pour le cas des variables aléatoires dont l'ensemble des valeurs est

soit fini soit inclus dans N.
De cette façon, un premier enseignement déductif atteint parfaitement

son but: il met en place et il organise les notions intuitives acquises au
stade antérieur, sans rendre plus difficile, mais au contraire en préparant,
l'enseignement plus théorique qui, pour certains élèves, lui fera suite.

6. Introduction a la statistique

a. S'il convient, ou non, d'introduire à la fin de l'enseignement secondaire

un premier enseignement systématique de la statistique inférentielle
est une question controversée; il y a des arguments en sa faveur (p. ex., que
dans l'enseignement supérieur ces éléments sont souvent utilisés avant
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d'être systématiquement envisagés), il y a aussi de puissants arguments
contre (c'est une théorie trop délicate et trop abstraite pour des élèves de

cette classe d'âge; on ne peut valablement l'exposer qu'à partir d'exemples
réels, et ceux-ci sont trop complexes ; on risque de « former » de

pseudospécialistes). La question restera, ici, non décidée.

b. Mais on ne peut absolument pas échapper à la question, plus générale:

«dans quelle mesure tel ou tel modèle mathématique d'une situation
donnée est-il une représentation adéquate de cette situation?». Puisque
le premier enseignement déductif des probabilités doit tenir compte à la
fois de la situation et du formalisme, il ne suffit pas que l'examen attentif
de la situation ait suggéré des hypothèses, et que l'emploi judicieux du
formalisme en ait déduit des conséquences; il faut que l'analyse se termine

par un retour à la situation, et la comparaison des conséquences déduites

aux résultats observables.

c. De ce point de vue, les situations hautement symétriques jouent un
rôle d'une grande importance. La tendance actuelle est, au stade A, de ne

pas s'en tenir à ces situations-là, mais de familiariser les élèves avec des

situations plus compliquées: c'est une tendance fort heureuse; mais
néanmoins, c'est à partir des situations hautement symétriques que se fait le

premier examen du mode de comparaison de la théorie à l'expérience.
Voici par exemple la situation aléatoire composée de quatre tirages successifs

d'une même urne U (3F, 3R)1). L'ensemble des possibles, Q, se compose
des 16 «mots» formés de 4 lettres V ou P, et on a 2T [on va
employer des notations du type

L'examen attentif des 6 billes de l'urne montre qu'elles sont toutes sphé-

riques, qu'elles ont toutes le même diamètre et la même masse, que leurs

états de surface sont indiscernables. Ceci suggère avec force que V et R

jouent des rôles interchangeables, et donc que l'application Pr doit être

invariante vis-à-vis de l'échange de V et R. Cette hypothèse de symétrie
entraîne donc que

(*x*y) {(abed) eQ^b x Scd =}>}].

H1

Pf (*F**) Pr (*jR**) 1/2 et ainsi de suite.

2) C'est-à-dire contenant 3 billes Vertes et 3 billes Rouges.
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D'autre part, on mélange avec soin les billes de l'urne entre les essais

successifs; ceci suggère avec force l'hypothèse d'absence d'interaction

mutuelle entre essais successifs, traduite formellement par

f les partitions { 7?***, V*** } { *7?**, *V** } { **7?*, **V* }
2 | { | sont indépendantes.

Les hypothèses H1 et H2 prises ensemble conduisent à la conclusion

V(a9b, c, d) e Q ; Pr { (a b c d) } —
16

C'est là un exemple simple d'analyse probabiliste d'une situation donnée.

Mais il est indispensable de ne pas en rester là, et de se demander si,

empiriquement, les hypothèses H1 et H2 se justifient. Or, si on procède à un
grand nombre de réalisations de la situation, et si on observe les fréquences

/j de (F***), ...,/4 de (***F), on constate empiriquement que

fi~fi~h~
2

•

Cette constatation confirme empiriquement l'hypothèse H1. De même,

on peut observer des fréquences relatives [p. ex. la fréquence relative de

f2|i (LF**) par rapport à (F***)] et constater qu'elles sont approximativement

égales: ceci confirme empiriquement l'hypothèse H2.
Cela étant, si l'on considère ensuite 4 essais successifs avec une urne

(2F, 47?) bien mélangée, il est tout naturel de considérer, par analogie
avec le cas précédent, l 'hypothèse

H[ \ Pr(]/***) pr(*j/**) pr(**p*) pr(***p) i
Si on considère un grand nombre de réalisations de cette situation, l'hypothèse

Hl est empiriquement confirmée par la constatation que

fi ~ h ~ -•

Il en est de même dans beaucoup de cas. On en vient ainsi à disposer d'une
théorie1) dont le noyau structurel est constitué par l'axiomatique de

x) « Disposer d'une théorie » est, épistémologiquement parlant, un concept relativement

compliqué; on trouve des explications raisonnablement complètes, sinon toujours
fort claires, dans [14], pp. 189-194.



— 118 —

Kolmogorov et ses conséquences (y compris les lois des grands nombres),
qui peut être spécialisée en divers modèles par l'adjonction de contraintes
supplémentaires (p. ex. des conditions de symétrie), dont les applications
envisagées sont les situations où est en jeu un mécanisme aléatoire formé
d'un ensemble fini d'éléments interchangeables, et dont le paradigme
comprend les jeux de hasard classiques (dés, cartes), les schémas d'urnes,
et la théorie chromosomique de l'hérédité.

d. Toutes les situations étudiées au stade A relèvent de cette théorie

(voir p. ex. [3]). Il incombe à l'enseignement déductif du stade B de mettre
très clairement en évidence le double rôle des situations concrètes dans ce

développement :

au départ, l'analyse de la situation suggère des hypothèses relatives
à la fonction Pr;

à l'arrivée, l'examen de la situation révèle des éléments empiriques
étroitement parallèles aux éléments théoriques qui résultent de ces

hypothèses.

En outre, les lois des grands nombres accentuent ce parallélisme, et

permettent d'étendre la théorie à des situations aléatoires douées d'une
structure répétitive propre, pour lesquelles il n'est plus nécessaire de

considérer de multiples réalisations d'une même situation.
[Incidemment, on note que, pour beaucoup d'auteurs, des réalisations

multiples (en nombre n) d'une situation aléatoire S doivent être
considérées comme formant une réalisation d'une situation « d'ordre supérieur

» SP : si la situation S est représentée par (,Q, ST, Pr) alors SP a comme
ensemble de possibles le produit de n exemplaires de û, et comme probabilité

le produit de n mesures Pr, compte tenu, disent-ils, de l'indépendance
des réalisations successives de S. Une telle position est inadmissible, pour
plusieurs raisons :

a. s'il en était ainsi, on ne disposerait jamais que d'une seule réalisation

(de SP), et le caractère aléatoire de la situation ne serait pas empiriquement
observable ;

b. lorsqu'un physicien, un chimiste, un biologiste répète une
expérience, personne ne songe à lui contester le droit de considérer que c'est

bien la même expérience qui est ainsi faite plusieurs fois; nul ne songe à

lui opposer l'aphorisme d'Héraclite, « tout change, on ne se baigne pas
deux fois dans le même fleuve » ; pourquoi devrait-on contester ce droit
aux seuls probabilistes?
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c. quiconque prend vraiment au sérieux l'aphorisme d'Héraclite ne

peut qu'abandonner tout dessein scientifique; la science n'est possible

que dans un univers de «natures» suffisamment stables; mais un mécanisme

aléatoire est une « nature stable » exactement au même titre qu'un
mécanisme physique, chimique, ou biologique; si je dispose d'une urne
U (2 F, 4R) et que j'en extraie (avec remise) 20 billes, c'est là un mécanisme

stable, avec des propriétés constantes, que l'on peut « réaliser » à diverses

reprises sans pour cela devoir craindre que chaque réalisation modifie le

mécanisme.]

Pourquoi les études du stade A sont-elles, le plus souvent, si étrangement
indifférentes au rôle a posteriori de l'observation empirique, sinon parce
que l'enseignement déductif qui les suit oublie lui aussi ce rôle? Il y a là
une situation malsaine, à laquelle on croit remédier en imposant à la
majorité des élèves un enseignement de statistique. Ce remède — difficile
à administrer et peut-être dangereux — n'est nullement nécessaire: il
suffit — mais il faut — que le premier enseignement déductif de la théorie
des probabilités la traite exactement comme il convient à une théorie
physique: chacun de ses modèles part d'une situation, et y retourne; ce

retour, et lui seul, permet de discriminer entre divers modèles possibles;
en ce sens, les débuts de la statistique inférentielle font partie intégrante
de cet enseignement, mais c'est pour la seule et unique raison qu'ils font
partie intégrante de la théorie elle-même.
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