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ROLE, PLACE, ET CONTENU D’UN

PREMIER ENSEIGNEMENT DEDUCTIF DES PROBABILITES

par H. BRENY

1. QUESTION D’EXISTENCE

a. Depuis son introduction dans le Rapport sur [’enseignement de la
géométrie de la Mathematical Association en 1923 [9], la distinction des
stades 4 (expérimental et intuitif), B (déductif), et C (systématique) a €té
étendue a I’enseignement mathématique en général, encore que ’on tende
souvent a confondre partiellement les stades 4 et B (par l'introduction,
au stade A4, de « noyaux déductifs » ou les éléves « sont amenés a constater
que, de certaines propositions considérées — au moins provisoirement —
comme acquises on peut déduire d’autres propositions par le raison-
nement » [5]).

Assez curieusement, il semble que certains didacticiens de la mathé-
matique — s’occupant surtout, il est vrai, de I’enseignement primaire —
estiment qu’un enseignement déductif de la théorie des probabilités n’est
pas de mise au niveau secondaire, ce qui revient a dire qu’il doit étre réservé
aux seuls spécialistes de la mathématique (et peut-€tre, de la physique) 1);
leur argument essentiel est qu’en cette matiére ce qui compte c’est la per-
ception d’un certain type de situations non mathématiques (les situations
aléatoires) et de la fagon de les mathématiser. Or, c’est précisément parce
que la théorie des probabilités n’est pas un chapitre de mathématique
mais, au sens plénier du mot, une théorie physique 2) qu'un enseignement
déductif est indispensable a une formation équilibrée de tous les futurs
utilisateurs de la mathématique.

1) En dehors de ces spécialités il n’y a virtuellement plus d’enseignement mathé-
matique déductif au niveau supérieur: la masse d’applications & étudier s’y oppose
efficacement, et y fait de la mathématique un pur outil,

%) Voir toutefois le paragraphe 3 b. ci-dessous.

L’Enseignement mathém., t. XXII, fasc. 1-2. 7




— 98 —

b. Les « théories physiques » existent depuis longtemps (dés avant les
« Eléments » d’Euclide, Eudoxe avait construit une « théorie physique »
des mouvements des astres). P. Duhem (lui-méme excellent théoricien de
la physique et remarquable historien des sciences) en a analysé la structure,
mettant clairement en évidence leur aspect construit (ce sont des modéles
théoriques) et leur forme hypothético-déductive (voir [2] et [8]): la réflexion
sur les faits observables disponibles conduit a I’invention d’hypothéses,
celles-ci servent d’axiomes a un édifice logique, dont les conséquences
sont comparées aux observations; si cette comparaison fait apparaitre un
désaccord, la théorie est rejetée. K. Popper (notamment dans [I1]) a
beaucoup insisté sur la « falsifiabilité » des théories physiques, car il
s’opposait aux logiciens comme Carnap pour qui des considérations de
type probabiliste ') pouvaient fournir un « degré de confirmation » d’une
théorie par I'expérience. La maniére de comparer une théorie a I’expérience
a toujours €té un point faible de I’analyse épistémologique; des progres
sérieux ont été faits dans ce domaine depuis les travaux de Kuhn sur la
« science normale » et les « révolutions scientifiques » ([6], [7], [13]; un
bon état de la question se trouve dans [14], chap. 8 et 9). Ces progrés
n’ont nullement altéré la thése de Duhem, mais 'ont complétée: une
théorie physique est a la fois une construction conceptuelle et un outil;
elle comprend deux composantes: une structure logico-mathématique et
un ensemble d’applications envisagées (défini, ou plutdét décrit [«en
intention»], par son paradigme, ensemble d’applications particuliérement
réussies et (ou?) d’importance historique particuliérement grande) 2. Ces
deux composantes sont essentielles, on ne peut négliger ni 'une ni 'autre.

c. Cest exactement cela qu’est la théorie des probabilités: la théorie
 physique des phénomeénes fortuits. Et c’est précisément cela que I’ensei-
gnement pré-déductif de la théorie n’est pas en mesure de montrer. Certes,
cet enseignement est indispensable: avant tout essai de théorisation il
faut familiariser les éléves avec les situations aléatoires et les premiers
moyens théoriques de leur analyse; si, comme beaucoup de didacticiens
le pensent, un tel enseignement est possible au niveau primaire, c’est a ce
niveau qu’il faut I’entreprendre; il faut alors le poursuivre — et, sinon,
Ientreprendre — durant le premier cycle du niveau secondaire. Mais, si

1) En un autre sens du mot! voir paragraphe 3 b. ci-dessous.

2) Accessoirement, ils ont mis en évidence la these de la non-falsifiabilité
(« immunité ») des théories physiques, dont I’observation dans I’histoire est & mettre a
Pactif de Kuhn.
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utile qu’il soit, un tel enseignement laisse échapper presque entirement
la structure logico-mathématique de la théorie des probabilités: celle-ci
ne peut étre saisie que dans un enseignement déductif. La situation, dans ce
cas, est un peu différente de celle de la géométrie. Certes, la geometrie
est aussi, pour une part, une théorie physique (la « théorie phyéique des
relations spatiales »); mais cet aspect est relativement peu important, vu
le caractére extrémement élémentaire des notions « physiques » mises en
jeu; les « structures» géométriques sont d’ailleurs percues (et édifi€es)
par le jeune enfant bien avant qu’il percoive l’aléatoire [10]. Un ensei-
gnement de la géométrie qui en resterait au stade 4 renforcé par quelques
noyaux déductifs ne permettrait pas I'usage plénier de 'outil géométrique
et ne donnerait de la géométrie qu'une idée insuffisante; mais pour la
théorie des probabilités, un tel enseignement, laissé seul, en donnerait une
idée véritablement fausse, parce qu’il n’en ferait pas ressortir ’aspect
hypothético-déductif, qui est pourtant essentiel et fondamental (d’ailleurs,
en géométrie, il est rarissime que 1’on recoure a I’observation pour confirmer
ou infirmer a posteriori un modele théorique).

d. Une autre raison d’introduire un enseignement déductif de la théorie
des probabilités est que c’est sans doute I'unique occasion que 'on ait,
dans le secondaire, de faire connaitre aux éléves la structure de théorie
physique, qui est 'une des pierres d’angle — peut-étre la plus importante —
de la «culture scientifique » d’aujourd’hui. Cette structure est le moyen
obligé de toute mathématisation d’'un domaine réel quelconque. Mais
quand nos €leéves ont-ils ’occasion de la voir en action? Pas au cours de
physique, assurément, sauf peut-étre pour les éléments de la mécanique.
Au niveau secondaire, la physique se veut — a juste titre — avant tout
empirique, voire expérimentale!): la construction théorique abstraite
d’un chapitre de physique dépasse les possibilités du niveau secondaire,
a cause de la complexité des phénoménes mis en jeu et des outils mathé-
matiques de leur analyse (exemple: seuls quelques spécialistes sont réelle-
ment & méme d’aborder — par exemple au niveau d’une « sixth form »
anglaise — I’édifice newtonien conduisant déductivement aux lois de
Kepler, qui est pourtant I’exemple le plus élémentaire possible). L’ensei-
gnement déductif de la théorie des probabilités reste en fait le seul ou les
¢léves puissent vraiment rencontrer la structure de théorie physique.

,]). La ou elle reste livresqge, elle prend un faux air de discipline déductive, sans base
exper;menjca}e réelle: C’est la pire des solutions; mais ce point n’est pas de la competence
des didacticiens de la mathématique.
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2. L’EPOQUE CONVENABLE

Les considérations du paragraphe précédent répondent aussi a la
question « quand se place le premier enseignement déductif de la théorie
des probabilités? » Il est clair en effet qu’il doit se situer au niveau secon-
daire. Il est non moins clair qu’il est d’'un degré d’abstraction tel que seuls
des ¢léves déja formés peuvent I’aborder. Il faut donc le placer aux environs
des classes 11 et 12 de I’enseignement général (éléves de 16 a 18 ans).
Il y aurait pourtant intérét a le placer plus tét: en effet, si ses premieres
notions font I’objet d’un enseignement au stade A dés I’école primaire
(ou les toutes premiéres années du secondaire), il faut alors s’attendre
que les enseignants des branches utilisatrices (notamment la biologie)
s’en serviront librement avec les éléves de 13-14 ans et plus; il va donc se
former, de ce fait, un « tas » passablement informe de notions et d’appli-
cations, tas qu’il importe d’organiser et de rationaliser sans trop attendre.

Une solution possible est de commencer, dés la classe de 15-16 ans,
une systématisation de la statistique descriptive en termes tels que son
transfert a la théorie des probabilités soit immédiat et cohérent: ceci
nécessite I'introduction — qui, a ce niveau, ne peut étre que bénéfique —
de définitions et de méthodes « intrinséques »; le seul probléme que cela
pose est d’ordre didactique: un tel enseignement a pour but de préparer
I’avenir, et on peut donc craindre qu’il ne soit que faiblement motivé,
puisque les seules applications possibles d ce moment-la ont déja été ren-
contrées sous une forme plus élémentaire.

3. ESQUISSE D’UN CONTENU

a. Le contenu du premier enseignement déductif des probabilités est
déterminé par son but: faire connaitre aux €léves la structure de théorie
physique de la théorie des probabilités, en mettant I’accent a la fois sur les
situations envisagées (situations aléatoires) et sur les moyens formels
(hypothético-déductifs) mis en ceuvre pour les analyser. Il faut donc remar-
quer que si cet enseignement était uniquement formel, s’il sacrifiait « les
situations » & leur analyse mathématique, il manquerait totalement son
but. Clest 1a, peut-étre, la raison de ’opposition que certains marquent
a son égard: s’ils confondent « déductif » avec « purement formel », cette
opposition se comprend; et peut-étre y a-t-il en effet des exemples de cette

s o
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confusion. Il convient donc de tout faire pour I’éviter; mais cela n’entraine
pas que I’on renonce & tout enseignement déductif — bien au contraire !

b. Le cadre formel de la théorie physique des phénomeénes fortuits est,
pour virtuellement tous les auteurs, un cadre ensembliste: une situation
aléatoire est décrite par 'ensemble des résultats possibles; les parties de
cet ensemble sont les événements; la probabilité est une fonction a valeurs
réelles, définie sur un certain ensemble d’événements.

Cette fagon de faire a pourtant été critiquée (voir p. ex. [4]): I'apparell
ensembliste ne serait rien de plus qu’une feuille de vigne, mise en avant
au premier chapitre pour se conformer a une mode, mais oubli€e ensuite,
dés que 'on aborde sérieusement des probléemes réels, au profit d’'une vue
« classique » reposant sur les notions primitives de « probabilité d’un
énoncé » et de « variable aléatoire ». Cette critique est bien difficile a
comprendre. Il faut, avons-nous dit, partir de la notion méme de situation
aléatoire; or, qu’est-ce qui caractérise une telle situation? C’est qu’une
constellation bien déterminée, fixe, de conditions de réalisation a, non pas
une, mais plusieurs conséquences possibles; il est donc clair que 'ensemble
des conséquences possibles, 2, est un €lément tout indiqué de la mathé-
matisation de la situation. (Bien entendu, si on part brutalement d’un
ensemble Q sans référence a une situation aléatoire, on retombe dans le
défaut, signalé ci-dessus, d’un enseignement purement formel.) D’autre
part, on peut, a propos d’une situation aléatoire donnée, envisager toute
une série de circonstances dont on peut dire, pour toute réalisation de
cette situation, si elles ont lieu ou non: ce sont les événements 1iés a cette
situation. Il est contre-indiqué d’appuyer fortement sur le fait qu’un
événement se décrit par une proposition; en effet, la théorie des proba-
bilités comme théorie physique des phénomeénes fortuits n’est qu’une des
interprétations possibles de la structure formelle générale de « calcul des
probabilités » (voir [11], chap. 8); d’autres interprétations possibles ont
comme base un ensemble de propositions [interprétation personnaliste,
ou la probabilité est un degré de croyance (de Finetti, Savage); interpré-
tation logiciste, ou la probabilité (conditionnelle) est une inférence partielle
(Ramsey, Keynes)]. Ces diverses interprétations sont nettement distinctes,
la distinction entre elles va beaucoup plus loin qu’une « réinterprétation
du langage des événements en un langage de propositions (2 savoir, quant &
Poccurrence d’événements) »; en fait, leur confusion a été la plaie de la
théorie pendant de nombreuses décennies, elle n’est méme pas entierement
éliminée a I’heure actuelle et est, par exemple, & la base de la controverse
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trés aigué qui oppose, en matiére de physique quantique, les tenants et
les adversaires de l'interprétation « de Copenhague » (voir p. ex. [11]
chap. 9 et [1] parag. 2.4 et chap. 5). Il est donc essentiel d’éviter toute
confusion entre ces diverses interpétations possibles; mais si, dans ’exposé
de la théorie physique des phénomeénes fortuits, on définit un événement
par une proposition, ou si — pire encore — on prend comme domaine de
la fonction « probabilité » un ensemble de propositions, on rend cette
confusion presque inévitable. Tout au contraire, la définition d’'un évé-
nement comme partie de I’ensemble des possibles ne préte a aucune
confusion; bien entendu, il importe, ici aussi, de bien montrer (par ’analyse
d’exemples déja étudiés d’un point de vue intuitif) le lien entre la situation
et son modele mathématique; on peut €tre raisonnablement assuré que les
¢leves ont pergu ce lien s’ils comprennent I’énoncé, véritablement fonda-
mental, que voici:

dans toute réalisation d’un  phénomeéne fortuit § [dont I’ensemble
des possibles est Q2] un événement (partie de ) se produit

si et seulement si

le résultat réalisé de § est un élément de cette partie de Q.

[Si, dans ces conditions, certains éléves s’imaginent que, p. ex., ’événement
impossible (¢p) est I’absence de toute réalisation, la faute n’en incombe pas
a la théorie mais a ’enseignant; « c’est un bien mauvais artisan, qui rejette
la faute sur son outil ».]

Les termes réalisation, résultat réalisé sont tout entiers du co6té de la
situation; un enseignement formaliste, qui n’envisagerait pas de fagon
franche et explicite la situation aléatoire sous-jacente a tout probleme
probabiliste, serait dans I’impossibilité d’utiliser ces termes, et donc dans
Pimpossibilité de faire clairement comprendre la notion d’événement.
Notons que la notion intuitive d’événement est passablement vague, et
n’acquiert un sens précis que par sa définition mathématique (état de chose
qui n’est pas sans rappeler les rapports entre « vitesse» et « dérivée »:
la notion intuitive de vitesse ne prend un sens précis que par la définition
de la dérivée; inversement, I'interprétation d’une dérivée comme une vitesse
n’est possible que par référence & une situation concréte d’un type bien
déterminé; seulement, ’analyse mathématique n’est pas la « théorie phy-
sique » du mouvement local!).

Toutefois, la définition d’un événement comme « partie de Q2 » peut
dépasser son but: il peut arriver qu’un événement (défini comme partie
de Q) soit d’une complication telle que son occurrence (ou sa non-occur-
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rence) ne soit pas observable, dans la situation envisagée. C’est pourquoi
il faut bien mettre en évidence que

la description mathématique d’une situation aléatoire comprend non
seulement ’ensemble Q des résultats possibles mais encore ‘I’ensemble
7 des événements dont I'occurrence est observable (du moins en prin-
cipe) dans cette situation.

Il n’est pas nécessaire d’insister fortement sur ce dernier point dans un
premier enseignement déductif (d’autant moins que des exemples €élémen-
taires ne sont pas aisés a trouver); il faut pourtant faire voir que ’ensemble
des événements d’occurrence observable est stable pour les opérations
ensemblistes N, U, et . Faut-il aller au dela et introduire la notion de
tribu? Ce serait 1a sans doute un excés de formalisme. Pourtant, certains
exemples élémentaires que 'on traite volontiers au stade A4 introduisent
tout naturellement des événements infinis; supposons par exemple que 'on
¢tudie le jeu suivant:

pile ou face jusqu’a la premiére apparition soit de PPF soit de PFP;

ce jeu serait représenté (voir par exemple [12]) par le diagramme suivant:

/////ap ﬁ;? >PPF
AN

PE——>PFP

Fig. 1

L’événement (manifestement observable)

X: «entre la premicre occurrence de I’état PP et la fin du jeu il y a
exactement trois parties »

est un événement infini, car les boucles (S) et (S, P, PF, S) peuvent étre
parcourues un nombre quelconque de fois:

X = {(S,P, PP, PP, PP, PPF), (S, P, PF, S,P,PP,PP, PP, PPF),
(S,P,PF,S, P, PF, S, P, PP, PP, PP, PPF), ... }

Il ne faut donc pas éviter systématiquement ce type d’événements.
Mais, dans un premier enseignement déductif, il suffit trés largement de
considérer de temps & autre une suite décroissante d’événements (et de
faire appel au troisiéme axiome de Kolmogorov; voir parag. d. ci-dessous).
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c. Bien entendu, c’est la notion méme de probabilité qui est le nceud
essentiel d’un premier enseignement déductif. A ce propos plus encore que
pour les points précédents, il faut redire qu’un enseignement déductif
de la théorie physique des phénomenes fortuits ne peut négliger ni la situa-
tion, ni la formalisation mathématique; présenter la probabilité simple-
ment comme une mesure sur un ensemble de parties, c’est négliger la situa-
tion; faire de la probabilité un élément de description d’une « variable
aléatoire » considérée comme notion premicre, c’est faire bon marché de la
construction hypothético-déductive; plaquer une fonction additive sur un
ensemble d’événements n’est pas analyser une situation.

Sans doute n’y a-t-il plus, a I’heure actuelle, aucun partisan de la « défi-
nition » par le rapport des nombres de cas favorables et de cas possibles.
Par contre, la plupart des exposés déductifs a I'usage des débutants font
abondamment usage, lorsqu’ils abordent la «définition» de la probabilité,
de la notion de fréquence. C’est la, a n’en pas douter, une conséquence
d’un désir louable de ne pas faire fi de la situation sous-jacente; mais c’est
une fagcon déplorable de présenter les choses. Il semble bien, que pour la
plupart des auteurs, le message — pourtant si clair — de K. Popper a été
perdu: la fréquence n’a aucun role & jouer dans la définition de la probabilité;
un phénomeéne fortuit pourrait étre totalement dépourvu de structure
répétitive, la notion de probabilité s’y appliquerait quand méme, sans la
moindre restriction, alors qu’aucune fréquence ne serait en jeu. Si I’ensei-
gnement intuitif (le stade 4) des probabilités a €été bien fait, il a mis les
éléves en présence de ce fait fondamental: dans toute situation aléatoire,
chaque événement est doué d’une tendance plus ou moins forte a se pro-
duire.

[La langue commune dispose, pour signifier cette tendance, des mots « chance »
et « risque », mais ceux-ci ne sont pas neutres: « chance » est presque toujours
utilisé lorsqu’il s’agit de conséquences favorables, « risque » toujours pour des
conséquences défavorables; la construction de la théorie nécessite I’emploi d’un
mot neutre, et c’est pour satisfaire a cette nécessit¢ que Popper a emprunté au
vocabulaire des sciences sociales le terme (excellent) de « propension »; mais
« tendance a se produire » fait parfaitement I’affaire, et est moins ésotérique.]

Une fraction notable du temps consacré a un premier enseignement
déductif des probabilités doit €tre employé a faire ressortir cette notion
de « tendance & se produire » de I’analyse des exemples déja vus par les
éleves et des mots de la langue commune qui y sont utilisés.

Ce point est sans doute celui ol un premier enseignement déductif
(stade B) bien fait aurait le plus d’influence sur I’enseignement intuitif
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qui le prépare (stade A4); les maitres chargés de I’enseignement au stade A4
ont fort souvent en vue un enseignement ultérieur essentiellement fréquen-
tiste, et se laissent ainsi entrainer dans cette direction; alors que ’on attend
d’eux, tout au contraire, que leur introduction aux situations al€atoires
fasse clairement percevoir la variabilité (d’une réalisation a 'autre) des
résultats réalisés, et les diverses tendances a ’occurrence des événements
considérés. Cette variabilité et cette diversité des tendances ne peuvent
se constater empiriquement que si on dispose de plusieurs réalisations
d’une méme situation aléatoire: il est évident qu’une réalisation unique
ne fournit qu’un seul résultat! Cest la le vrai rdle de la répétition. D’autre
part, il existe de nombreuses situations élémentaires ou des considérations
de symétrie suggérent I’hypothése?!) que certains événements (formant
une partition de Q) ont chacun la méme propension, et donc la méme
probabilité; il est évidemment tout indiqué de déduire les conséquences
de cette hypothese et de se demander ensuite si on a des raisons empiriques
de la croire justifiée; la répétition intervient ici aussi: car si ’hypothese
de symétrie est réalisée, on constate empiriquement que les événements
équivalents ont des fréquences a peu prés égales; c’est par ce biais que
s’installe peu a peu, a posteriori, 'idée que, dans des conditions convenables,
la fréquence réalisée d’un événement est une estimation empirique de sa
probabilité¢. Cette idée reste d’ailleurs purement intuitive, aussi longtemps
que I’on n’a pas déduit des axiomes de la théorie une « loi des grands nom-
bres » (par exemple celle de Bernoulli). Quand une telle loi a été déduite,
elle permet d’avancer d’un pas de plus, et de constater que, pour une seule
réalisation d’une situation aléatoire suffisamment répétitive, la fréquence
moyenne d’une suite d’événements de méme probabilité est aussi une esti-
mation empirique de cette probabilité. En résumé: les notions fondamentales
sont celles de variabilité anarchique des résultats réalisés, de tendance plus
ou moins forte a "occurrence, et de mesure (additive) de cette tendance
(au sens ou on dit «mesure des grandeurs»; voir d. ci-dessous); I’observa-
tion des fréquences n’a qu'un réle (important certes mais) subordonné.

d. Une fois acquise la notion intuitive de propension (tendance a
Poccurrence) et le fait qu’elle est susceptible de plus ou de moins, il s’indique
d’essayer de la mesurer. Un premier enseignement déductif doit rappeler
que la mesure quantitative précise (de grandeurs d’abord intuitivement
percues comme susceptibles de plus ou de moins) repose toujours sur
deux définitions, celle de I’additivité et celle de I'unité de mesure (un excel-

1) Voir paragraphe 6 ci-dessous.
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lent exemple est la mesure des débits de courants électriques, qui s’ajoutent
en paralléle, ou des tensions électriques, qui s’ajoutent en série). Cela
conduit tout droit aux deux premiers axiomes de Kolmogorov, sous une
forme équivalente (en moins formel, peut-étre) a

Pr: 9 -R": A Prd
K1) w{A,B} =7 ; [AnB=¢] =[Pr(A4uB) = Pr 4 + PrB]
K2) PrQ = A

et aux conséquences qui en découlent immédiatement (telles que Pr ¢ = 0,
monotonie, additivité finie, relation et inégalités de Boole, etc). Le troisiéme
axiome:

K3) w{A ...4, ...} T ; (A 24, 2...04;2...& N 4;=¢)
1
= limPr4, =0

parait tellement évident que la plus grosse difficulté a son sujet est de per-
suader les €leves qu’il doit €tre énoncé; il est d’ailleurs impossible de trou-
ver un exemple contraire qui soit a la fois élémentaire et intéressant; mais
il faut le mentionner car, dans la suite, on est amené a s’en servir 1. [Si le
maitre, pour son usage personnel, se contente d’un exemple élémentaire
mais non intéressant, qu’il prenne pour Q ’ensemble N, avec J et P définis
par
vX cN; [Xe T < (X est fini) V([ X est fini)]

ND=Z< :

(i+2)({G+3)
=1-P(X) si X est fini.

Si on prend alors 4, = N\{0,1,...,n}, la suite (nl> A4,) ne satisfait pas
au troisitme axiome de Kolmogorov.] Par contre, on peut trouver des
exemples, non dépourvus d’intérét, de 'usage d’une suite infinie d’événe-
ments. Ainsi, dans le jeu « pile ou face jusqu’a la premiére occurrence de
PPF ou de PFP» (parag. 3b. ci-dessus), on constate que 1’événement

ieX> si X est fini

X = «le jeu se prolonge indéfiniment »
n’est pas vide [il contient notamment 1’élément
S,P,PF,S,P,PF,S,P,PF,S,P,PF,... (ad inf)];

bien entendu, les éléves sont absolument persuadés que cet événement
ne peut pas se produire; on renforce donc leur confiance dans la mathéma-

1) Voir paragraphe 5 e. ci-dessous.




A T

— 107 —

tisation adoptée en démontrant que Pr X = 0 (on suppose que Pr a été
défini comme dans les exemples du stade A: on adjoint le nombre %2 a
chaque fléche, et on multiplie les nombres relatifs a toutes les fléches par-
courues). [Cette démonstration n’est possible qu’a I'aide des p\r‘obabilités
conditionnelles, mais rien n’interdit de les utiliser avant d’en avoir fait
un exposé déductif.] Si 4, est 'événement « le jeu dure au moins 7 parties »,
il est clair (puisque chaque état peut conduire a un état final en trois coups
au plus) que

Pr(l s [4) > 50 Pr(da|4) < s (1)
d’autre part, et bien évidemment,

Pr(A,.s | (A) =0 [card, ;5 =4,] (2)
donc

Pr(A,:s) < (g-> Pr(d).
Or \

Pr(4,) =1
et donc

Pr(A,) <7/8, Pr(4d;) <(7/8)*,..., Pr(dsy) < (7/8); (3)
alors

vkeNg;, X <Ay =

=>vkeNy; PrX <(7/8 =PrX =0, c.q.f.d. (4)

e. A cOté de la notion (fondamentale) de probabilité, celle de condi-
tionnement (et, en conséquence, celle de probabilité conditionnelle) est
d’une importance extréme. Mais on a ici un exemple particuliérement
frappant de la nécessité de prendre en considération a la fois la situation
et le formalisme mathématique. La définition purement formelle

Pr(AnB)
PrB

ne sert strictement a rien; ce qu’il faut faire, c’est reprendre dans les exemples
vus par les éléves toutes les situations ou on a été¢ amené (le plus souvent
de fagon tout implicite) & contracter le phénoméne fortuit  a I'un de ses
événements, disons A, obtenant ainsi le phénomeéne contracté U ; a rappeler
ensuite qu'une probabilité n’est autre que la mesure d’une propension,
avec la propension de I’événement certain comme unité de mesure; dis-

Pr(A|B) =
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tinguant alors (pour un temps seulement) les fonctions-propabilité pour
&, Prg, et pour A, Pry, rappelant en outre la notion de rapport de deux
grandeurs et ce qui se passe quand on change d’unité de mesure, on a

_ propension de X

vV X c A4; Pry X (6a)

propension de A

propension de X 1

propension de Q propension de A (6b)

propension de 2

Prg, X
= . (6¢)
Pro A
Cette formulation est la seule véritablement utilisée, mais elle est dissimulée

par la notation usuelle,
Pr(Y |4) pour Pry (Y n A),

qu’il faut évidemment se résigner a adopter. [Pr (.| 4) étant la fonction-
probabilité de A, il est immédiatement évident que c’est une probabilité!]

La catégorisation d’un phénomene fortuit doit €tre bien distinguée
de sa contraction: il s’agit, cette fois, de réduire non pas Q, mais J. Dans
un premier enseignement déductif, cette réduction de J est définie par
une partition finie ou dénombrablement infinie: on ne considére plus comme
observables les événements de 7, mais seulement ceux de

o ={A,..,A,} [ou: ..., A4,..}]

et leurs unions (il y a donc bien réduction de 7). C’est une étape indis-
pensable dans la définition de I'indépendance. Mais, ici encore, la considé-
ration simultanée de la situation et du formalisme est indispensable. En
effet, le point de départ est celui-ci: si les partitions &/ et % décrivent
deux catégorisations du phénomeéne fortuit &, ces phénoménes réduits
(notons-les A et B) s’influencent-ils I'un I'autre, ou non? (C’est 1a une
question qui n’aurait méme aucun sens Sl On ne se référait pas explicitement
a la situation elle-méme.) La réponse s’exprime en termes de probabilités
conditionnelles:

A n’influence pas B si et seulement si
vAiesd, yB,eB; Pr(B,|4) = Pr(By

(et ce en vertu de la signification, pour la situation, des probabilités condi-
tionnelles en question). On tire alors aisément de 1a ’exposé élémentaire

usuel.
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[Notons qu’il n’est pas question, au départ, d’événements indépendants,
mais de phénoménes (réduits) indépendants; les « événements » indépen-
dants correspondent en fait aux partitions du type { 4, (4 }; en termes
de situation: le phénoméne 2 est §F réduit au point qu’on n’observe plus
rien que ’occurrence ou la non-occurrence de 4; il en est de méme pour
B, et on exprime que A et B sont sans interaction mutuelle].

Il est clair que, ainsi référées a la situation sous-jacente, les notions de
probabilité conditionnelle et d’indépendance sont autrement riches de
sens que les simples définitions formelles

Pr(AnB)

Pr(AnB) =PrA.PrB.
PrB

K

Pr(4|B) =

C’est cette richesse qui permet leur utilisation; s’en tenir a un exposé
formel, et s’attendre néanmoins que les éléves seront & méme de I’appliquer,
c’est se fier & une pure et simple régression du stade B au stade A4: il vaudrait
certes mieux, dans ce cas, supprimer le stade B.

4. ETUDE D’UN EXEMPLE

a. Revenons a I’exemple du paragraphe 3.b; le phénoméne fortuit &
considéré est donc le suivant:

une suite de parties de « pile ou face » poursuivie jusqu’a la premiére

apparition soit de PPF soit de PFP.

Voila une situation aléatoire qu’il s’agit de mathématiser en faisant
apparaitre, successivement, I’ensemble des possibles, 2, I’ensemble des
événements a considérer, J, et la fonction-probabilité.

b. L’ensemble des possibles peut étre « décrit» en extension, sous
la forme

Q = { PPF,FPPF,PPPF,FFPPF, FPPPF, PPPPF, PFFPPF , ...
PFP,FPFP,FFPFP, FFFPFP, PFFPFP , ... }

mais cette maniére est bien peu « déductive »!; il peut aussi étre décrit
en compréhension:

ensemble des « mots » formés des seules lettres P et F et terminés 2

la premiére apparition soit de la séquence PPF soit de la
séquence PFP

et des suites formées des seules lettres P et F et qui ne
contiennent aucune séquence PPF ou PFP.




— 110 —

A ces descriptions, correctes mais peu intéressantes, on préférera sans doute
une représentation géométrique. La plus immédiate est I’arbre qui corres-
pond a la description en extension signalée ci-dessus:

N =~ / T T — —
grFpP = — R
~— —
— —
—
Fig. 2

Cette représentation est, elle aussi, fort compliquée. On trouvera peut-
étre convenable de la simplifier en tenant compte du degré de réalisation
des états finals, de sorte que le systéme ne peut €tre que dans les états
S, P, PP, PF, PPF, PFP; on a ainsi la représentation géométrique que
voici:

PFP
PPF

PF

PP

P

S

époques O 1 2 3 4 5
parties 1 2 3 4 5

li
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Au stade A4, on habitue volontiers les éléves a simplifier davantage
encore, en faisant abstraction des époques auquelles les états sont atteints:
on a ainsi la représentation de la figure 1.

Il semble que, comme représentation de €, les trois ﬁgure\s. 2), (3),
et (1) sont également acceptables, et que, par raison de simplicité, (1)
est meilleure que (3) et (3) meilleure que (2). C’est 1a une grave et dangereuse
illusion, comme on le verra en d. ci-dessous.

c. L’ensemble J  des événements observables n’a pas besoin d’étre
décrit en détail: il suffit de remarquer qu’il contient tous les « débuts »,
c’est-a-dire tous les ensembles d’éléments de Q qui ont une partie initiale
donnée; par exemple,

deb (FFFPFP) [qui est un singleton de Q]

deb (FFPFFF) [qui contient une infinité de singletons de £, par
exemple FFPFFFPPF et FFPFFFPFP)

deb (FFPPPP) [qui contient les singletons FFPPPPF, FFPPPPPF,
FFPPPPPPF, FFPPPP ... PPF, etc.]

ainsi que leurs complémentaires, unions, et intersections.

d. En ce qui concerne la probabilité définie sur un tel ensemble de
possibles, il est trés important qu’un premier enseignement déductif fasse
clairement ressortir les points suivants:

1) il'y a beaucoup de définitions de Pr qui sont mathématiquement possibles

2) chacune d’elles peut s’obtenir en plagant sur chaque branche de I’arbre
(fig. 2) un nombre compris entre 0 et 1 et définissant la probabilité
d’un début (singleton ou non) comme produit des nombres portés par
les branches qui le constituent; ainsi on pourrait avoir:

~ 0 .
~
=~ - ’\] 0,5 - 2)‘*
~ . =~
~ >~
. °
~~0,8
~
S
e
0,7=pp 0.5=pryp 04=pwrpyr  0.8=p(rpr)F
Pr deb (FPFF) = 0,7%0,5%0,4%0,8 = 0,112
Fig. 4

(les deux branches issues d’'un méme point doivent porter des nombres
dont la somme est 1: c’est une conséquence de K1)
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3) le choix de 'une de ces probabilités n’est possible que par une analyse
de la situation elle-méme, et plusieurs choix différents sont manifes-
tement possibles, méme en s’en tenant aux situations simples.

Montrer que le procédé multiplicatif mentionné en 2) donne bien une
probabilité peut étre I'occasion d’un commentaire éclairant sur la portée
d’une axiomatique: pour qu’une application de  dans R* soit une proba-
bilité, il suffit qu’elle satisfasse aux axiomes K1, K2, et K3 du paragraphe 3d.
ci-dessus; or, on a

PrQ = Pr[deb(P) udeb(F)] = Prdeb(P) + Prdeb(F) =1
et aussi (quels que soient x, y, ..., u):

[deb(x,y,...,u,P)udeb(x,y,....,u, F)] = deb(x,y, ..., u)
[deb(x,y,...,u, P) ndeb(x,y,...,u,F)] = ¢

Prdeb(x, y,...,u, P) + Prdeb(x, y,...,u, F)

= D« ® p(x)y X oo X p(x,y,...)u X p(x,y,...,u)P
+ Dx X p(x)y A vew & p(x,y,...)u x p(x,y ..... u)F
= Px X Pixyy X oov X Dixyoyu = Prdeb(x,y,...,u). (7)

Quant a I’axiome K3, il n’est pas facile de démontrer qu’il est vérifié; le
conflit ainsi mis a jour entre ’'intuition d’un procédé (multiplicatif) auquel
les éléves sont accoutumés et ’apparente évidence de K3 est, lui aussi,
trés instructif. D’autre part, montrer que le procédé multiplicatif définit
toutes les probabilités possibles résulte de la théorie des probabilités com-
posées; par exemple
Prdeb (x, y, z) = Prdeb(x).Pr[deb(x,y)]|deb(x)].
Pr[deb(x, y, z) | deb (x) ndeb (x, y)]
= Prdeb(x) .Pr[deb(x, y) |deb (x)] .
. Pr[deb(x,y, z) |deb (x, )]
[ car deb (x, y, z) =deb(x,y) =deb(x)].
Des situations concrétes correspondant a ces diverses possibilités devraient
étre montrées aux éléves dés le stade A. Il semble bien qu’a ’heure actuelle
on 'oublie fréquemment. Cela est dit a la vogue, parmi les didacticiens,
des problémes ou I’ensemble des possibles prend la forme d’un arbre que

I’on peut condenser en un graphe fléché et bouclé (comme celui de la
fig. 1); or, cette condensation n’est possible que pour certains choix de la

- S ——
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probabilité (schémas a transitions markoviennes stationnaires); les graphes
ainsi condensés sont donc inaptes a représenter Pensemble des possibles,
puisque celui-ci est logiquement antérieur & la définition de la probabilité
(preuve: le domaine de Pr est une partie de 2Q). Il y a 1a une situation
qu’il importe de corriger au stade B, avec l’espoir que la correction se
propagera au stade A.

5. VARIABLES ALEATOIRES

a. Depuis que la réforme de ’enseignement mathématique au niveau
secondaire a amené a sa place (I'une des toutes premicres) la notion de
fonction, il n’est vraiment pas difficile de faire voir aux éléves, dés le
stade 4, que de nombreux éléments intéressants d’une situation aléatoire
quelconque sont des applications de I’ensemble des possibles () dans
I’ensemble des réels (R). Au stade B, une révision de ces exemples conduit
a la définition explicite.

b. Le terme « variable aléatoire » a été critiqué comme impropre, et
il est bien vrai qu’une application de © dans R n’a rien de variable ni
d’aléatoire. Si on estime que cette critique est justifiée, rien n’empéche de
changer de terme, et de dire par exemple « aléa numérique réel ». Mais
on peut estimer aussi que cette critique vient de mathématiciens « purs »,
qui ont privilégié le formalisme et oublié la situation; en effet, d’un point
de vue concret, ce qui est en jeu est bel et bien une grandeur qui, d une
réalisation a [’autrel), peut prendre diverses valeurs — c’est donc bien
une variable — et ce de fagon anarchique — c’est donc bien une variable
aléatoire. 11 y a la une querelle qui n’a ni importance ni intérét.

c. Il est beaucoup plus important, au stade B, de faire ressortir ce qui
suit: pour un élément aléatoire X a valeurs réelles, il est de la plus haute
importance que, pour tout intervalle I, I’événement «la valeur réalisée
de X appartient a I » soit observable; autrement dit (en notant £ I’ensemble
des intervalles de R), I’application

X: Q->R:o|- x(w)

ne mérite le nom de « variable aléatoire » que si elle satisfait 4 la condition
-1
vIe S x I EF,
[={o\x () eI]

D) Nous avons déja dit, plusieurs fois, que la notion méme de réalisation est étrangere
au formalisme probabiliste.

L’Enseignement mathém., t. XXII, fasc. 1-2. R
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Dés lors, la définition de la fonction de répartition de x ne recéle plus

aucun mystere:
-1

F.: R>R:al-»Pr(x]— o0;4a]).

d. Les spécialistes contemporains de la théorie mathématique des
probabilités manifestent une désaffection trés nette vis-a-vis de la fonction
de répartition, et lui substituent volontiers la «loi de probabilité ».
Celle-ci est, somme toute, aisée a définir; d’une part,

-1

Z={AcR|{xAdeT }

et d’autre part,
-1

L.: Z->R: A|>Pr(x A).

Mais néanmoins, cette tendance ne doit pas affecter le premier ensei-
gnement déductif de la théorie; d’une part, parce que la loi de probabilité
ne peut, a ce stade, jouer aucun réle '); d’autre part, parce que la fonction
de répartition joue un rdle essentiel et irremplagable: celui d’une des-
cription géométrique des propriétés de la variable aléatoire.

e. Un enseignement déductif des probabilités se doit de justifier son
titre en démontrant, en toute rigueur et en toute généralité, non seulement
que toute fonction de répartition (F) est croissante (c’est facile) mais encore
qu’elle jouit des propriétés

lim F=0 Iim F =1
- — w0 - 4+ o0
-1

vaeR; Pr(x]—ooja]) = sup{F (1)t <a},
ce qui nécessite I'intervention de ’axiome K3.

f. On peut estimer qu’un premier enseignement déductif doit s’en
tenir aux variables aléatoires 2 nombre fini de valeurs (encore que cette
opinion soit sujette a de trés sérieuses objections; par exemple, la situation
décrite par la figure 1 met en jeu des variables aléatoires a une infinité
de valeurs). Mais il serait déplorable que les définitions et énoncés ren-
contrés dans cet enseignement soient applicables au seul cas fini. Bien au
contraire, pour que ce premier enseignement déductif ne soit pas un

1) Pour les mathématiciens professionnels, elle permet la considération de I’énoncé,
en effet essentiel (ol g est une fonction de R vers R)

IQ (gox)dPr = J-Rgde.
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obstacle 2 un développement ultérieur, il faut que les définitions soient
parfaitement générales et que les énoncés soient aussi généraux que
possible, quitte & ne les démontrer que pour le seul cas fini. En ce qui
concerne les variables aléatoires et leurs valeurs typiques, on y arrive en
exploitant les propriétés géométriques de la fonction de répartition;
par exemple, on prend comme définition de la moyenne p de X la relation
géométrique (égalité d’aires)

~ + o0

u

\ F@)dt = \ [1—-F(2)]dt, (8a)
e — 0 e 1L

tandis que I’écart-moyen ¥ et la variance ¢ sont définis par les expressions

géométriques (sommes de deux aires)

V=V F(t)dt + w[l——F(t)]dt | (8b)

L %

O e

O_2 n »t
i & dt\ F(s)ds +

— 0

i dt R . [1—F(s)]ds. (8¢)

M 't

ey

[L’aspect géométrique (en termes d’aires) des expressions (8) est particulie-
rement important: il s’agit de faire « voir » la signification des parametres
i, V, o; un traitement analytique basé sur les formules (8) est, a ce niveau,
entiérement a rejeter (bien qu’il soit parfaitement correct).]

11 est alors possible de démontrer en toute généralité que V est la moyenne
de la variable aléatoire | X — pu |; par contre, démontrer que c¢* est la
moyenne de la variable aléatoire (¥ — p)? n’est possible, avec ces moyens,
que pour le cas des variables aléatoires dont ’ensemble des valeurs est
soit fini soit inclus dans N.

De cette fagcon, un premier enseignement déductif atteint parfaitement
son but: il met en place et il organise les notions intuitives acquises au
stade antérieur, sans rendre plus difficile, mais au contraire en préparant,
Ienseignement plus théorique qui, pour certains éléves, lui fera suite.

6. INTRODUCTION A LA STATISTIQUE

a. S’ convient, ou non, d’introduire a la fin de ’enseignement secon-
daire un premier enseignement systématique de la statistique inférentielle
est une question controversée; il y a des arguments en sa faveur (p. ex., que
dans D’enseignement supérieur ces éléments sont souvent utilisés avant
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d’étre systématiquement envisagés), il y a aussi de puissants arguments
contre (c’est une théorie trop délicate et trop abstraite pour des éléves de
cette classe d’age; on ne peut valablement I’exposer qu’a partir d’exemples
réels, et ceux-ci sont trop complexes; on risque de « former » de pseudo-
spécialistes). La question restera, ici, non décidée.

b. Mais on ne peut absolument pas échapper a la question, plus géné-
rale: «dans quelle mesure tel ou tel modele mathématique d’une situation
donnée est-il une représentation adéquate de cette situation?». Puisque
le premier enseignement déductif des probabilités doit tenir compte a la
fois de la situation et du formalisme, il ne suffit pas que I’examen attentif
de la situation ait suggéré des hypothéses, et que I’emploi judicieux du
formalisme en ait déduit des conséquences; il faut que I’analyse se termine
par un retour a la situation, et la comparaison des conséquences déduites
aux résultats observables.

c. De ce point de vue, les situations hautement symétriques jouent un
role d’'une grande importance. La tendance actuelle est, au stade A4, de ne
pas s’en tenir a ces situations-la, mais de familiariser les €léves avec des
situations plus compliquées: c’est une tendance fort heureuse; mais néan-
moins, c’est a partir des situations hautement symétriques que se fait le
premier examen du mode de comparaison de la théorie a I’expérience.
Voici par exemple la situation aléatoire composée de quatre tirages successifs
d’une méme urne U (37, 3R) ). L’ensemble des possibles, Q, se compose
des 16 « mots » formés de 4 lettres V" ou R, et on a I = ZQ [on va
employer des notations du type

(*x*y) = {(abcd)eﬂgb =x&d =y}].

L’examen attentif des 6 billes de 'urne montre qu’elles sont toutes sphé-
riques, qu’elles ont toutes le méme diameétre et la méme masse, que leurs
états de surface sont indiscernables. Ceci suggere avec force que V et R
jouent des rdles interchangeables, et donc que P'application Pr doit €tre
invariante vis-a-vis de I’échange de V et R. Cette hypothése de symétrie
entraine donc que

[ 1
Pr (V***) = Pr (R**¥), [= 53 car V*¥*  R*¥** = Q:I
1
Pr(*V**) = Pr(*R**) = 1/2, et ainsi de suite.

1) C’est-a-dire contenant 3 billes Vertes et 3 billes Rouges.
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D’autre part, on mélange avec soin les billes de I'urne entre les essais
successifs; ceci suggére avec force [’hypothése d’absence d’interaction
mutuelle entre essais successifs, traduite formellement par

les partitions { Riik ik } , { * Rk Kk } , { ok Rk K } ,
2 { #**R, ***} sont indépendantes.

Les hypothéses H, et H, prises ensemble conduisent a la conclusion

v(a,b,c,d)eQ; Pr{(abcd) } = %
C’est 1a un exemple simple d’analyse probabiliste d’une situation donnée.
Mais il est indispensable de ne pas en rester 1a, et de se demander si, empi-
riquement, les hypothéses H, et H, se justifient. Or, si on procede a un
grand nombre de réalisations de la situation, et si on observe les fréquences
fi de (V**%), ..., fu de (***}), on constate empiriquement que

1
f1 Nfz Nf3 "’f4 NE-

Cette constatation confirme empiriquement I’hypothése H;. De méme,
on peut observer des fréquences relatives [p. ex. la fréquence relative de
f211 (VV**) par rapport a (V***)] et constater qu’elles sont approximative-
ment égales: ceci confirme empiriquement I’hypothése H,.

Cela étant, si I’on considére ensuite 4 essais successifs avec une urne
(2V, 4R) bien mélangée, il est tout naturel de considérer, par analogie
avec le cas précédent, [’hypothese

, 1
Hi: Pr(V*ee) = Pr(*V*¥) = Pr(* V%) = Pr(**+7) = 2.

Si on considére un grand nombre de réalisations de cette situation, I’hypo-
thése H, est empiriquement confirmée par la constatation que

1
f1 Nfz Nfs ~f4 "“3‘.

Il en est de méme dans beaucoup de cas. On en vient ainsi & disposer d’une
théorie ') dont le noyau structurel est constitué par Paxiomatique de

1) « Disposer d’une théorie » est, épistémologiquement parlant, un concept relative-
ment cc_)mphqué; on trouve des explications raisonnablement complétes, sinon toujours
fort claires, dans [14], pp. 189-194.
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Kolmogorov et ses conséquences (y compris les lois des grands nombres),
qui peut €tre spécialisée en divers modéles par I’adjonction de contraintes
supplémentaires (p. ex. des conditions de symétrie), dont les applications
envisagées sont les situations ol est en jeu un mécanisme aléatoire formé
d’un ensemble fini d’¢léments interchangeables, et dont le paradigme
comprend les jeux de hasard classiques (dés, cartes), les schémas d’urnes,
et la théorie chromosomique de I’hérédité.

d. Toutes les situations étudiées au stade A relévent de cette théorie
(voir p. ex. [3]). Il incombe a I’enseignement déductif du stade B de mettre
trés clairement en évidence le double rble des situations concrétes dans ce
développement:

au départ, I’analyse de la situation suggere des hypothéses relatives
a la fonction Pr;

a larrivée, 'examen de la situation révele des éléments empiriques
¢troitement paralleéles aux éléments théoriques qui résultent de ces hypo-
theses.

En outre, les lois des grands nombres accentuent ce parallélisme, et
permettent d’étendre la théorie a des situations aléatoires douées d’une
structure répétitive propre, pour lesquelles il n’est plus nécessaire de
considérer de multiples réalisations d’une méme situation.

[Incidemment, on note que, pour beaucoup d’auteurs, des réalisations
multiples (en nombre n) d’une situation aléatoire S doivent €tre consi-
dérées comme formant ume réalisation d’une situation « d’ordre supé-
rieur » & : si la situation S est représentée par (Q, 7, Pr) alors & a comme
ensemble de possibles le produit de #» exemplaires de Q, et comme proba-
bilité le produit de #» mesures Pr, compte tenu, disent-ils, de I'indépendance
des réalisations successives de S. Une telle position est inadmissible, pour
plusieurs raisons:

a. s’il en était ainsi, on ne disposerait jamais que-d’une seule réalisation
(de &), et le caractére aléatoire de la situation ne serait pas empiriquement
observable;

b. lorsqu’un physicien, un chimiste, un biologiste répéte une expé-
rience, personne ne songe a lui contester le droit de considérer que c’est
bien la méme expérience qui est ainsi faite plusieurs fois; nul ne songe a
lui opposer I’aphorisme d’Héraclite, « tout change, on ne se baigne pas
deux fois dans le méme fleuve »; pourquoi devrait-on contester ce droit
aux seuls probabilistes?
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c. quiconque prend vraiment au sérieux l’aphorisme d’Héraclite ne
peut qu’abandonner tout dessein scientifique; la science n’est possible
que dans un univers de « natures » suffisamment stables; mais un méca-
nisme aléatoire est une « nature stable » exactement au méme titre qu’un
mécanisme physique, chimique, ou biologique; si je dispose d’une urne
U (2V, 4R) et que j’en extraie (avec remise) 20 billes, c’est 1a un mécanisme
stable, avec des propriétés constantes, que ’on peut « réaliser » a diverses
reprises sans pour cela devoir craindre que chaque réalisation modifie le
meécanisme. |

Pourquoi les études du stade A4 sont-elles, le plus souvent, si étrangement
indifférentes au rdle a posteriori de ’observation empirique, sinon parce
que D’enseignement déductif qui les suit oublie lui aussi ce role? Il y a la
une situation malsaine, a laquelle on croit remédier en imposant a la
majorité des éléves un enseignement de statistique. Ce remeéde — difficile
a administrer et peut-€tre dangereux — n’est nullement nécessaire: il
suffit — mais il faut — que le premier enseignement déductif de la théorie
des probabilités la traite exactement comme il convient a une théorie
physique: chacun de ses mode¢les part d’une situation, et y retourne; ce
retour, et [ui seul, permet de discriminer entre divers modéles possibles;
en ce sens, les débuts de la statistique inférentielle font partie intégrante
de cet enseignement, mais c’est pour la seule et unique raison qu’ils font
partie intégrante de la théorie elle-méme.
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