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TABLE 6
The “Hecke-Eisenstein lattice” for m <5
(In the table, Q = E, (z), R = E4 (z). The data for m = 3,4, 5 is con-
jectural only.)
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AFTERWORD

The original version of this paper was written three years ago. To
bring it up to date, we must comment on two developments which have
occurred in the intervening time.

| 1. The conjecture of Serre quoted at the end of Section 3 is now (almost)
. a theorem. In the original paper [6], Serre proved the partial result that,

|
!
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for any totally real field X and positive integer n, [[ w,, (K) (g (1 —2m)
m=1

is an integer (the product occurs when one calculates the “Euler charac-
teristic” of the discrete group Sp,, 0, ¢ = ring of integers of K). For the
case of abelian totally real fields (and thus in particular the case of quadratic
fields), the conjecture is much easier, since it can be reduced to the evalu-
ation of L-series, and it was proved independently by several people (e.g.
J. Fresnel, “Valeurs des fonctions zéta aux entiers negatifs”, Séminaire de
Théorie de Nombres, 1970-1971, Bordeaux). In [7], Serre obtained better
bounds than 3 (25), still by using Siegel’s idea, but studying in more detail
the p-adic behaviour of the coefficients s (2m) of the Hecke-Eisenstein
series. Finally, Deligne, using p-adic modular forms in several variables
and a strengthened version of Mumford’s results on compactifications of
modular schemes (of which the details have apparently not yet been checked
completely), proved Serre’s conjecture for arbitrary totally real fields
modulo the question of the irreducibility of a certain p-adic representation,
and this question was resolved affirmatively by K. Ribet.

Related to the question of the denominator of (x (1 —2m) is the question
of its exact fractional part (resolved for K = Q by the theorem of von
Staudt). In connection with his work on the Hilbert modular group
(L ’Enseignement Mathématigue (3-4) 19 (1973) 183-283). Hirzebruch
found formulas for the fractional part of {x (—1), K a real quadratic field,
in terms of the class numbers of certain imaginary quadratic fields. This
formula has been generalized to arbitrary totally real fields by Brown (“Euler
characteristics of discrete groups and G-spaces”, Inv. Math. 27 (1974), 229-
264), using the methods of [6], and by Vignéras-Guého (“Partie fractionnaire
de (g (—1)”, C. R. Acad. Sciences, Paris (10) 279 (1974), 359-361, “Nombres
de classes d’un ordre d’Eichler et valeur au point —1 de la fonction zéta
d’un corps quadratique réel”, /’Ens. Math., 21 (1975) 69-105) using a

formula of Eichler for class numbers of orders in totally definite quaternion
fields.

2. The aim of Section 4, namely to explain without the use of modular
forms in two variables Siegel’s formula for {y (1 —2m), can now be achieved
in another way, both simpler and more enlightening than the application
of the circle method outlined in §4. In that section, we observed that the

number
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is the coefficient of e™"* in the Fourier expansion of a function F,, (z)
(eq. 4 (23)) which is up to a factor the product of the ordinary theta series
0 (z) and the Eisenstein series G,,, (2z). The function F, (2z) (at least if

: , 1 .
m > 1) is a modular form of weight 2m + B for I'y (4) in the sense of

Shimura’s paper “Modular functions of half integral weight”, (Modular
Functions of One Variable 1, Lecture Notes 320, Springer Verlag, Berlin/
Heidelberg/New York 1973, pp. 57-74). In this paper, Shimura discusses
how to set up for such forms a theory of Hecke operators with many of the
usual properties but with the essential difference that there are now Hecke
operators T, only for n a perfect square. He also shows that the two Eisen-

: : : 1 : :
stein series of weight 2m + B for I'y (4) have n-th Fourier coefficients

related to CQ(V;) (1—2m). In fact, one can check that there is a linear
combination of these two Eisenstein series whose n-th Fourier coefficient
is precisely the number

I 0 if n=2or3(mod4),

| (p (1 —2m . _ S
€rm—1 (1) = “k ) T4, (f) if n = f?*D, D = discriminant

20 (1 —4r _
- (=) of K =Q(J/n), 1 =®

which arose in our §4 as the sum of the singular series for e,,,_; (n). The
identities of Siegel expressing é,,,_; (n) as a linear combination of

m
eZm—-l(n) s elm—l(4n) s 82771—1(9”) 5 wuamy eZm——l(rzn) (7' = li_S—] + 1>

2ninz

can now be interpreted as saying that the modular form )’ &,,_, (1) e
n=0

1 : :
of weight 2m + > can be expressed as a linear combination of the function

F, (2z) and its images under the Hecke operators Ty, Ts, ..., T,a. These
ideas have been worked out by Cohen in three papers,

CoHEN, H. Sommes de carrés, fonctions L et formes modulaires. C. R.
Acad. Sci. Paris (A) 277 (1973), 827-830.

— Variations sur un théme de Siegel et Hecke. To appear in Acta Arithm.
30 (1979).

— Sums involving the values at negative integers of L-functions of
quadratic characters. Math. Annalen 217 (1975), 271-285,




B o St

e PR

95

especially the last, in which he studies an arithmetic function H (r, N)

which is related to our function by
20 (1 —4m) _
H(@2m,n) = €rm—1().
(2m, n) 7 (1—2m) 2m—1(1) )
However, despite these new approaches to Siegel’s formula, I have
retained Section 4 because the calculations of the Gauss sums y, (n) and of
the Dirichlet series Y 7. (n) ¢~ (Theorems 2 and 3 of §4) are often useful

to have (for example, the calculation of the Fourier coefficients of the

Eisenstein series of weight 2m + > of which is not carried out in detail in

Shimura’s paper, depends on them) and also because the application of the
circle method in the context of forms of half-integral weight seemed novel.
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