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Define an integer j (m) for m = 1, 2, ... by

j(m) = G.C.D.{n""2(n*"—1),neZ}. (40)
Thus
j() = 24,j(2) = 240, (3) = 504, (4) = 480, ... -

Then it is easy to check that, for K a quadratic field, w,, (K) = j (m)

(independent of K!) unless K is one of the finitely many fields Q (\/ p) with
p a prime such that (p—1) | 4m, (p—1))2m, in which case w, (K)
p°*1j(m), where p® is the largest power of p dividing m. This is interesting
because the numbers j (m) occur in topology: it is known (now that the
Adams conjecture has been proved) that j (m) is precisely the order of the
group J (S*™). This may be just a coincidence, of course, but could conceiv-
ably reflect some deeper connection between the values of zeta-functions
and topological K-theory (the conjectured connection between these values
and algebraic K-theory was mentioned in the introduction).

§4. THE CIRCLE METHOD AND THE NUMBERS €,,,_; (1)

In §3 we defined

M= Y o ( “kz) , (1)

k2=n (mod 4) 4
k| =V
where r and n are positive integers and, for b a positive integer, o, (b) is
defined as the sum of the r-th powers of the positive divisors of b. Since (1)
was only needed for n not a perfect square, we are still at liberty to define
g, (0); we set
1 B,y

1
GAD)Z:EC(—r)=:—'Er_+1'

(2)

This defines o, (b) for b = 0, 1, 2, ...; we extend the definition to all real b
by setting ¢, (b)) = 0if b < 0 or b ¢ Z. Then (1) can be rewritten

e = Y a,(""k). 3)

k=—w 4

We were led to consider these numbers by Siegel’s theorem, which, for
real quadratic fields K, expresses the value of {x (2m) or ( (1—2m) in

terms of the numbers e,,_; (n) with K = Q(\/ 1;). In this section we
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follow a different course, and study the numbers (3) directly by the tech-
niques of analytic number theory—specifically, by means of the Hardy-
Littlewood circle method. This will lead to the following formula for

erm—1 (n):

THEOREM 1. Let m and n be positive integers, n not a perfect square.
If n=2 or 3(mod4) then e,,_,(n) =0. If n =0 or 1(mod4),
write

n = fD (4)
with
D = discriminant of K, K = Q (/). (5)
Then
_CK(l——2m) . o
€rm-1(n) = m T3n(f) +0(n ) s (6)

where y is the character associated to K (cf. §2) and T%,, (f) is the multi-
plicative function given by

T5,(f) = ety MO 2@ 7
tif alt a
B zl:f'u(a) 2(@)a*" " 04y (f]a) (8)

(u (@) denotes the Mobius function).

Note that the first term in (6) really is of bigger order than the error
term, since one easily checks that 7%, (f) > ¢ f*™ ' and (x(1—2m)
> ¢, D*™"1/2 with constants ¢, c, > 0, and hence the first term is
> ¢ n2m-— 1/2.

Before turning to the proof of this theorem by means of the Hardy-
Littlewood method, we consider its relationship to the results discussed in
Sections 1 and 3. We saw in §1 that the Hecke-Fisenstein series G5, (2) of

K has the Fourier expansion

G3m(2) ~ ag + a1q + ayq® + ... (q=€>") 9
with
ag = {x(2m), (10)
| 2
a, = kst (2m) =k, Y x(Nj*" " eam-1 (]—2 D): (11)
it

where k, = Qn)*" D~?"+1/2 | 2m—1)!2. Since G5, (z) is a modular
form of weight 4m, the form G5, (2) — ay G4, (2) | 2L (4m) is a cusp form
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of weight 4m, where G, (z) is the ordinary Eisenstein series (we have used
1(20)). But a very well-known theorem of Hecke asserts that the n-th
Fourier coefficient of a cusp form of weight 2k is O (n*). Therefore (using
1 (21) for the Fourier coefficients of G,,,)

1w, 24mtigem

K —_ S 2m
s1(2m) = k20 (4m) (4m_1)!04m—1(l) + 0(°™)

2m—1)"1*{x (2m)

= (4m—1)1 {(4m) Pam-1 () + 0 ()
1-2

where in the last line we have used the functional equations of {x and (.
Substituting (11) and inverting gives

eam—1(f?D) = Zlf u(a) y(aya* =" s, (2m) (12)
CK (1 —2m) Im—1
= % (1~4m)(%,u(a)x(a)a Oam—1 (@)
+0(f*m, (13)

and this is essentially the same as (6)—indeed with a better error term
0 (n™) rather than 0 (n™*1/4),

Nevertheless, there is some point to proving Theorem 1 by the circle
method. First of all, it provides a direct proof of the relationship between
the arithmetic function e,,_, (1) and the value at s = 2m of the zeta-

function of Q (\/ ;). Secondly, the evaluation of the “singular series”—
which yields the first term of eq. (6)—involves an evaluation of certain
Gauss sums and of a Dirichlet series with such Gauss sums as coefficients

which are of interest in their own right. Namely, we will prove the following
two theorems.

THEOREM 2. For positive integers a and c, let

c

1) = 14
(a,c) jar2 (E)lf a is odd, ¢ even, (14)

a

( a
j(1=e)/2 <—> if ¢ isodd, a even,

0 otherwise,
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|

z where( ) (q odd) is the Legendre-Jacobi symbol and i*? = e™*/*, Thus
; q

A(a,c) is O if a and c have a common factor or are both odd, and is an
8th root of umity otherwise; furthermore, 7y (a,c) is periodic in a with
period 2c. We define a Gauss sum 7y, (n) by

v, (n) = jﬁ Z A(a, c) e mirale (15)

Then A, (n) is given as follows :
If ¢ is odd, write ¢ = ld* with | square-free. Then

[ 0 if dyn,

n 2 16
Ve (n) = 5 (—)<n/;>zfd|n (16)
t](d)

If c is even, write ¢ = 2" ¢, with ¢, odd, r > 1. Then

Ye(n) = Q,(n)y, (n), (17)
where
[2r/2 (—1)m—Di4 if r iseven,
=2""?m,
= 1 (mod 4),
0, (m) =1 5 _ o (18)

22 (=pm==DI2 i f y isodd,
n=22"1m,

L 0 otherwise .

THEOREM 3. Let n be a non-zero integer and define a Dirichlet series
E, (s) by

1 &y 1 & v.(n)
O350 YL oy 4

c
¢ odd c even

1
(ie. E,(s)= 2 a,m * with a, = 5 (Ym(") + 72m(M)  for m odd,

ay == Vam(n) for m even. Clearly |y, (n) | < 2¢'/?, so the series in (19)

converge for Re s > %; in fact, y,(n) = 0(1) as ¢ = oo by Theorem 2,
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so they even converge for Res > 1). Let K = Q (\/ ;), D = discriminant
of K, x = character of K, L (s,y) = L-series of y (if n is a perfect
square, y (m) =1 for all m and L(s,x) = ((s)). Then

E,(s) =0 if n=2o0r3 (mod4), . (20)
while, if n = 0 or 1 (mod 4), then
L(s, x) p(@x(a)  L(s,x) T5(S)

E, (s) = Y (21)

((2s) o2y & ta®  ((2s) fETLC
acl| f

where n = f? D.

As corollaries to Theorem 3, we see that E, (s) has a meromorphic
continuation to the whole s-plane, and that E, (s) possesses an Euler
product whose p-factor is 1 + y (p) p~* if p¥n and is a polynomial in p~*
in any case.

We will now show how the Dirichlet series (19) arises in connection
with the numbers e,,,_ ; (n), deferring to the end of the section the proofs
of the two theorems on Gauss sums just enunciated.

Let G,,, (z) be the Eisenstein series of weight 2m, defined in 1 (18),
and 0 (z) the theta series

6(z) = Y ™ (ze9), (22)
k=-—o0
where $ is the upper half-plane {z € C | Im z > 0}.
We define
(=D"2m—=1)!
Fm (Z) = 22m+1 7_52,,1 G2m(22) 6 (Z) (265) d (23)

Clearly F, (z+2) = F,, (2), so F, (z) has a Fourier expansion. From (22)
and the Fourier expansion of G,, (egs. 1(19)-1(21)), together with
eq. (3) and the functional equation of { (s), we obtain

2m _2m
2°" ¢ -

- 1" —1)! ®
Fm (Z) — (( ) (2m 1) ! C(zrn) + Z O'2m_1 (a> e4niaz>
% :.V: em’k2z
k=—o

0
— Z B e (Z) e4m’az Z en:ikzz
a=0 k

= ) eyp—yq (n)e™™. (24)
n=0
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Thus the numbers e,,,_; (n) are precisely the Fourier coefficients of F), (2).

By Cauchy’s theorem, therefore,
2 ~ie

J e ™ F, (2)dz (25)

ie

N =

€rm—1 (n) =

for anv e > 0.

The idea of the Hardy-Littlewood method is to replace the integrand
in the neighbourhood of each rational point of the interval [0, 2] by an
elementary function, integrate this function, and then sum up the contri-
butions obtained in this way from all rational points; this sum, the so-called
“singular series,” should then be an approximation to the integral. To
apply this to (25), we first use the transformation laws of the theta and
Eisenstein series under modular transformations to obtain

; (ﬁ +f>‘> = J(a,0) ()2 + 0 (y e mI4R) (26)
c

Gam (ﬁ +iy> = 2(=1)"L@2m) (cy) 2" + 0(y~2me” ™) (27)
C

: a, : .
as y —» 0 with Re (y) > 0, where — is a rational number in lowest terms.
£

Therefore
a 2m-1"! (c, 2)*™ . e
Fm (; +ly> —W (2 ) 2 +1/2 ’ (a C) Y : e
+ O(J,,-Zm—l/z e—rz/4c-y) (28)

as 3 — 0, where ¢ and ¢ are relatively prime and (c, 2) is the greatest
common divisor of ¢ and 2. To obtain the contribution from the rational
point a/c to the singular series, therefore, we replace F,, by the first member
of (28) and integrate over y. Since

_1_ I + & e—nin(iy+a/c) y—2m—1/2 dy
2 —Iioo + &

= p2mE1/2 2m=1/2 g rinale| (D 1 1)2) (29)

(this is just the standard integral representation for 1/I" (s)), we obtain as
the contribution from a/c

(C, 2)2m

-1/2
C(m)nzm Y c2m+1/2

X(a,c) e mrale (30)

with
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/

8] —
2 (2m—1)!
2" T (2m +1/2)

C(m) = {(2m). (3D

a , :
Summing this over all rational points — € [0, 2), we obtain the following
c y

formula for the singular series:

(C 2)2m

ym—1(n) = C(m) n?mo 1 Z Ve (1) (32)

c=1

=2C(m)yn*""Y2E (2m), (33)

where E, (s) is the Dirichlet series of Theorem 3.
We wish to estimate the difference between e,,,_; (n) and &,,,-, ().
To do this, we define a function having the same behaviour in the neighbour-

a
hood of each rational point — as that described by the leading term of (28):
¢

_ 2m—1)!
Fm (Z) - 24m m 2m C(2m)

z 2m—-1/2 2 Aa, c)

c= lc a=—

© (¢, 2% & (z——a/c> stz -,

The series is convergent for z € §, and

Fo(2) = F,(2) = 0(y™2m1/2 = nl4c) (35)

| a _
for z = - + iy, y — 0. On the other hand, F, (z) is evidently periodic

with period 2, and one easily finds (using the Cauchy integral for the
Fourier coefficients and the contour integral (29)) that its Fourier expansion
is

F(2) = i s (n) € (36)

with &,,,_{ (n) given by (32). The analysis given by Hardy [2] now permits
us to deduce from (35) that

Crm-1(n) — &1 (n) = O(nm+1/4) (37)

as n —» o0. We will not reproduce this analysis here, since our main interest
1s not in a rigorous proof of (6) with error term (in any case, as pointed out

L’Enseignement mathém., t. XXII, fasc. 1-2. A
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above, this error term is not best possible) but in the evaluation of the
singular series obtained in the Hardy-Littlewood approach. To see that
(37) and (6) are the same, we use equation (33) and Theorem 3 to get

L(2m, y) y 4 (a) x (a)

é'2m—-1 (sz) = 2C(m)f4m—1D2m_1/2 C(4m) C4m—1 a2m
ac|f

_ {x (1 —=2m)
C20(1—4m)

T%m (f) 2 (38)

where in the last line we have used (7) and the functional equations of {
and (g.
It remains to prove Theorems 2 and 3.

Proof of Theorem 2: We first suppose ¢ is odd. Then the standard
Gauss sum

(b .
T, (I’l) — Z (_C_> eZmnb/c (39)
b=1 ‘
is related to y, (1) by
2c 1—c a
’))c (n) — Z c—1/2i 2 (__) e—rcina/c
a=1

c
a even

-2
= ¢~ 1/2 j-a)f2 <—> 7, (n), (40)
c

as one sees by setting a = 2b. If ¢ is square-free, then the value of (39) is
well known to be

(z) Je ife=1 (mod 4),
T.(n) = 1 (41)
(f> i/e if c=3 (mod 4),
C
or N
ezl /_2n
t,(n) =i 2 <———> cl/? (c square-free) (42)
C

Therefore y,. (n) = (E) if ¢ is square-free, in agreement with (16) (since in
¢

this case d = 1, I = ¢). Now let ¢ = Id* with [ square-free. Then
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O-e-|0

0 if (b,d)>1

b
= ('[) Z ,ll,(_]) s
Jlb

Jjld

where u () is the Mdbius function, so

< [b :
Z ,LL(]) Z <7> eZmnb/c
b=1

Jld }
Jlb

i\ <M /I o
po(EQe @

k
where we have written b = jk. Since <7> only depends on k (mod /), the

7. (n)

inner sum in (43) equals
0 if—y
if—4n,
: r ! 2rin(r+ml)j/c jl
@ - (44)
r=1

m=1 c njl\ .. c
—1l—]if=|n.
| Jl c jl

Write ¢ for dJj, so% = dt. Then, substituting (44) into (43), we find that
J

t.(n) = 0if d ¥ n, while if d | n

B d\ [d]t n
7, (n) = t% I <?) <l> dt T, <dt>

dt|n

Since / is square-free, we can now use (42) to get

= (e 3 ).

t| (d, ;)
. . . 1/2 _2 .( _1 /2 .
The factor preceding the sum 1is precisely ¢ —— i /2 " since

c
¢ = Id* = I(mod 8), so combining (45) and (40) yields precisely equation
(16).
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Now suppose that ¢ is even, ¢ = 2" ¢, (r > 1, ¢; odd). For a odd, we

have
r a—1)/2
o= ()-[()77N). e
a a Cy Cq

where we have used the law of quadratic reciprocity. The factor in square

brackets has period 8 and the factor (—Ci) has period ¢, so
Cq
Ala+8cy,¢) = A(a,c). (47)

It follows easily that y, (7) is O unless e”®™"<1/¢ equals 1, i.e. unless 2"~ 2
divides n (this condition is empty if r = 1). Write

n =272y (48)
with v an integer. Then
ar=2 8l _
v, (n) = 7 Y. A(a,c)e et (49)
& odd
Now write
a = ke + 8jy (50)
where
8y =1 (mod ¢,) (51)

(e.g. ¥y = (1—¢?)/8). Then a = j(mod c,) and a = k (mod 8), so a runs
over all odd residue classes (mod 8c¢;) when j runs over the values 1, 2, ..., ¢4
and k over the values 1, 3, 5, 7. Therefore (46) and (49) give

2r—2 c1 ] o
v, (n) — _ (> e-—21uvy‘1/c1
Je J-; €1

8 N/ —1 k—1)/2 .
% Z ik/2 (E) <_E___> e-—-mvclk/4 . (52)
k=1 1

k odd

The first sum is 7., (—vy), and by virtue of (51), (48) and (40).

61—1

_ r - 2 r 2
ro, (= 1)) = (—;2) (—2-) (1) = /o, (a)" (). (53)

The second sum in (52) is

. -1 .
i1/2 e-—mv01/4 + (_l)r ( i3/2 e—3mvc1/4
Cq
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+ (_1)ri5/2 g~ Smiver/4 4 (_:l) j112 o= Tnivel/4
Cq

. -1 .
= j1/2 g~ mivel/4 (1 _ (__l)r+v) <1 -I—i(—l)r (___) e——mvc]/Z) )
c

1
Putting this all into (52), we obtain

a2\ &
Y, (n) = 9 2 . (__) i2 e—mvc1/4(1_ (_1)r+v)

€1
X (1+ (=D ity (n). (54)
Clearly this is O if » = v (mod 2), while if v = r — 1 (mod 2) we obtain
2\ c,(v—1
ve(m) = 27 () el z—%—lv (n). (55)
€y

If r is even, therefore, v must be odd, and then the cosine in (55) is O if
v = 3 (mod 4) and (— D™ Y/* if y = 1 (mod 4). Thus for r even, v, (n)
is 0 unless n = 2"~ 2 m with m = 1 (mod 4) and is then 2% (—1)(m~ 1/
X 7., (m). If ris odd, then v is even, say v = 2m, and then the cosine in (55)
= (= 1)"tm=DI2(2/c))] ﬁ Thus for r odd, y,(n) is 0 unless n=2""1m
and is then 20"~ V/2 (—1ym»=D/2y . This proves equation (18).

Proof of Theorem 3. According to eq. (17), we can write

E,(s) = E"(s)R,(5), (56)
with
odd s v v Y
E;(s) = ), " (57)
Sodd
and
112 0m
RO =343 Loy 9

We first evaluate (57). Substituting (16) gives

o0
odd Va2 (1)
En (S) = Z Z b;s 2s
din =1 I'd
d odd l odd
I square-free

d n/t*

d odd t] (d’ d I square-free




!
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Now let r* be the largest odd square dividing n, and write n = Nr2. Then
t I r, and N and D differ by an even power of 2, so for any odd /

n/t? r/t\* (D\  [r[t\?
) =) (5) =) 2o,
[ l l [

. rjt\* . .
where y is the character of K = Q (\/;). Also T is 1 or 0 depending
whether / is or is not relatively prime to r/t. Therefore (59) can be rewritten

d
Exii(s) = Y, d7* ) <;> [1A+x®pr™, (60)
d gé’é t| <d, g) P/l’zt—r
where the final product extends over primes p not dividing the even integer

2r/t. Let u

r
—, e = — then
t t

o ;- uie -5
Ex(s) = ) n*t Y S5 T A+x®p™
ulr Zloﬁtéz e py2u

1 (1 + X@) S U= (A2 )

p ulp T p|Nu2 plu
P*2
x(p)> ( 1 ) ue 2 (p

= 1+ s ]-_[ 1— s Z s— H 1 - s

p1;12< p 5;1\; p2 ulr r2 ! plu p

1 _ p-2s s .

_ A AC) (61)

pl;[z l—x(p

We now evaluate the factor (58) of E, (s) corresponding to the prime 2.
Comparing (61) and (20), (21), we see that it remains to prove

f 0 if n=2,3 (mod4),

— —2s '
Ri(s) =y 12 20U=29) TX(20) if = f2D, (62
1—y(2)2°° °

where in the latter case we have set f = 2%r, r odd.
The first line of (62) follows immediately from (18), since we see that

n=23mod4)=0,m=—-1,0.(n) =0(F>1). (63)

We thus suppose n = j2 D, f = 2%r, r odd. We distinguish two cases,
according to the parity of D:
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Case 1. D = 0 (mod 4), x (2) = 0. Then either D = 84 with d odd or
D = 4d with d = 3 (mod 4). In either case, we deduce easily from (18)
that Q, (n) = 0 if r is even or if r is odd and greater than 2¢ + 3, that Q, (n)

= 20" D/2 if r is odd and less than 2¢g + 3, and that Q,, .3 (n) = —20%1
Therefore
1 2q+1 2(r 1)/2 2q+1
R,(s) = [1 + Z =T Z(qﬂ)s]
rodd

1
= o [1+1+x%+x*+... +x2—x%"?]

= (1=x*/2) (1 +x*+... +x°9
= (1=2729)279@7 D (1 42271 4 4213571
= (1-272) 2717 T5(29),

in agreement with (62); in this calculation we have set x = 275%% for
convenience.

Case 2. D = 1 (mod 4), y (2) = (—1)?~ /4 Tn this case, equation (18)
tells us that Q,(n) = 20" Y/2 if r is odd and 1 <r <2¢ + 1, that

Q,4+2 (m) =271 % (2), and that Q, (n) = 0 for all other values of r. There-
fore

1 F 2q+1 2(r 1)/2 2q+1 x(2)
R, (s) = 1+ Z H(r=1)s + 7 (2q+1)s :I

r=1

r odd

|

-

1+£ij|l:1+ +. 44X 2q___)(x+x 4+ .. +x2q 1)]

2 V2

—q(Zs«l){ Xz( )} [1+225—1+”.+2q(23—1)

T+1+x2+x* 4. +x2 + 4 (2) \/5x24+1]

II
N1 N

_ x(2) 22s—1+22(2s—1)+_”+2q(2s~1))]
23
—25
= 274(2s—1) 1 - T* (24
- =@

This proves (62) in this case also, and completes the evaluation of E, (s).
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