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s G e
while for K = Q (/13)
(k(—1)

[12—22+3244%>—52—62 =72 —82 4+ 92 + 102 —11% +127]

=—24>< 13

! 18
== (18)
For a more complete discussion of the formulas treated in this sec-

tion, see Siegel [8].

§3. THE SIEGEL FORMULA FOR QUADRATIC FIELDS

In this section we shall exploit the simple arithmetic of quadratic fields
to evaluate in elementary form the various terms entering into Siegel’s
formula, thus arriving at an expression for {y (1 —2m) which is elementary
in the sense that it involves only rational integers and not algebraic numbers
or ideals.

We have to evaluate sX (2m), and to do so we must first know how to
compute o, (W) for any ideal A.

LEMMA. Let U be any ideal of the ring of integers O of a quadratic field

K. Let D be the discriminant of K and y (j) = <D> the associated charac-
ter (as in §2). Then, for any r > 0, !

g, (N = j%{ 1 (D" e, (N[j?), ¢ (1)

where N = N (W) is the norm of W, the function o, on the right-hand

side is the arithmetic function of 1(12), and the sum is over all positive

integers j dividing W (i.e. v/[je O for every ve U; clearly this implies
7* | N, so equation (1) makes sense).

Proof : It is very easy to check that both sides of (1) are multiplicative
functions, i.e. o, (AB) = o, (N) o, (B) for relatively prime ideals W and B,
and similarly for the expression on the right-hand side of (1). It therefore
suffices to take U to be a power P™ of a prime ideal P. Write N (P) = p*
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where p is a rational prime and i = 1 or 2. Then we can evaluate the left-
hand side of (1):

o, (A = 0,.(P") = N (B)
BIPp™

Y N®Y = Y P = (™). 2)
n=0 n=0

To evaluate the right-hand side of (1), we must distinguish three cases,
according to the value of y (p).

Case 1. y(p) =1, (p) = PP’ (P’ = conjugate of P). Then N ()
= N(P)" = p™. Clearly j| A=j= 1, for j can only be a power of p
(since j| N (2) and cannot be divisible by p (because P’ | p, P’y ). Hence
the sum in (1) has only one term o, (N) = o, (p™), in agreement with (2).

Case 2. y(p) =0, (p) = P2 Again j can only be a power of p, and
since x (p) = 0, the only term in (1) that does not vanish is the term j = 1,
namely o, (N). Since N = N (P)" = p™and i = 1, this again agrees with (2).

Case 3.y (p) = —1, (p) = P. Now A= P™ = (p™), so j can take on
the values 1, p, p?, ..., p™, with x (p") = (—=1)". Here i = 2 and N = N (P)"
= p?™ so we must prove

72, (P") = 20 (=" p" o, (") (3)

This is just an exercise in summing geometric series.

The lemma enables us to calculate the generalized sums-of-powers
functions ¢, (A) in terms of the ordinary function o, (m). It remains to see
what ideals U occur in Siegel’s formula. Recall that

S,; (2m) = Z Oam—1 ((V) b) s (4)
5%
tr(v)=lI
and that B
b = (/D) (5)

for a quadratic field. Furthermore, the ring of integers of X is

@z{x_ﬂ_@
2

x,yeZ, x* = y*D (mod 4)} . (6)

We can now describe explicitly the v occurring in the sum (4). Write such
avasa+ f/D with « and f rational. Then
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ved~? @‘v\/ﬁe@, (7)
v>0®cx>]ﬁ[\/5, (8)
tr() =1 < a =12, 9)

From (6), (7) and (9) we then get § = b/2D, where b is a rational integer
satisfying
b? = I’D (mod 4) (10)
and (because of (8)) also
b* < I’D. (11)

Then (v) ¢ is the principal ideal
— b 1
()b = (v /D) = (5 + 5 ﬁ) . (12)

An integer j can divide this only if j | b andj[ land (b/j)* = (I/j)* D (mod 4),
so by the lemma

()= ¥ x(j)fa,<
b b
2D (mod 4)

Z/ZD __b/2
— (13)

b'2=1

We now substitute this into (4), where the summation in (4) is now to be
taken over all integers b satisfying (10) and (11), and obtain finally

st(2m) = 3 1 (NP ez (()*D), (14)

in

where the arithmetic function e, (#) is defined by

n—x>
@ = 3 o (") (15
x2=n (mod 4) 4 ‘
[x|=+n
(r =0,1,2,..;n a positive integer, not a perfect square). Then (15) is a
finite sum (empty, if » = 2 or 3 (mod 4)), and so is (14), so that we have
completely evaluated s% (2m) in elementary terms. Then Siegel’s theorem

states

(x(1=2m) = 4 2 b, (4m) s (2m), (16)
1=1

with r = [m/3] and the coefficients b, (4m) computable rational numbers
tabulated on p. 60 for 1 <</ < 10.
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Using the values of b, (4m) and equation (14), we can write out the
first few cases to illustrate (16): m = 1. Here r = 1, by (4) = 1/240, and
so (16) reduces to |

(- = KO =ga®. (D
Thus for K = Q(\/S) we find
1 1 512 5—(—1)
k(=D = _6691 (5) = 60{ <—4_#> T 04 <__(I—)“>}
= 20, (1)/60 = 1/30, (18)

in agreement with 2 (17), and similarly for K = Q (\/1_?;)

(1) = e (1) = ?2(){” (13;12> + oy (”13;32\)}

\

I

2
=B+ = 1/6, (19)

in agreement with 2 (18) (but notice how many fewer terms!). m = 2.
Here again r = 1, and the formula is just as simple:

(- 1
CK(—3)=§651(4) T2_063(D)' (20)

Thus with K = Q (\/13) we find

2
(e (—=3) = Wﬁ(33+13+13) 2(9) (21)

m = 3. Here r = 2 and the formula is more complicated:

Il

{x(=3) (52 (6) =24 57 (6))

196560

1
= 29140 {es(4D) + 32 x(2)es (D) — 24 e5 (D)} . (22)

Here for K = Q (\/1_3) we get

Lk (=35) = (e5(52) — 56es(13))/49140
= (05 (13) + 205 (12) + 205 (9) + 205 (4)
— 11205 (3) — 11205 (1))/49140
= 980370/49140 = 3631/182. (23)
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TABLE 2.

The Siegel formulas for quadratic fields

D |
K=0Q (\/]3) , = discriminant, y(m) = (—) )
m
e,(n) = > a.
b24ac=n

a,c>0

60k (—1) = e; (D)

120 (—3) = e3(D)

49140 ¢ (—5) = e5(4D) + [32%(2) + 24] es (D)
36720(x (—=7) = e;(4D) + [128 % (2) — 216] e; (D)
9900 {x (—9) = ey (4D) + [512%(2) — 456] ey (D)

13104000 {x (—11) = e,, (9D) + 48e,, (4D) + [177147 % (3)
+ 98304 x(2) — 195660] ey, (D)

3897600 (x (—13) = e,5(9D) — 192¢,5(4D) + [1594323 4 (3)
— 1572864 3 (2) — 1517407 e,5 (D)

652800 ¢ (—15) = e,5(9D) — 432e,5(4D) + [14348907 y (3)
— 14155776 1 (2) — 50220] e, 5 (D)

1554543900 ¢ (—17) = e,7(16D) + 72e,,(9D) + [131072 x(2)
— 1941847 e, (4D) + [17179869184 y (4) + 9298091736 x(3)
— 25452085248 3 (2) — 57093088] e, (D) ~

312543000 (¢ (—19) = e,o (16D) — 168e,o (9D) + [524288 1 (2) ‘
— 156024] e, (4D) + [274877906944 3 (4) — 195259926456 y (3)
— 81801510912 y(2) — 19291168] e,o (D) |

42124500 ¢4 (—21) = e,y (16D) — 408 e,, (9D) + [2097152 1 (2)
— 60264] e,, (4D) + [4398046511104 y (4) — 4267824106824 y (3)
— 126382768128 % (2) — 3953248] e,, (D)
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In Table 2 we write out in full the formula for {x (1—2m) (1 < m < 6)
in terms of the arithmetical functions e, (n). In Table 3 we give the values
of {x (1—2m) for 1 <<m < 6 and K a quadratic field with discriminant at
most 50. Since it is more convenient to tabulate integers, we in fact give
the values of

Zym-1 = t(m){xg(1-2m), (24)

where ¢ (m) is the bound implied by (16) for the denominator of { (1 —2m),
namely

t(m) = L.C.M. {denom 4b, (4m), 1 <[ <r}. (25)

Because the question of the denominator of (j (1 —2m) is important
(namely, a prime p divides this denominator whenever the p-adic analogue
of {x (s) has a pole at s = 1 — 2m), it is worthwhile to try to sharpen (25).
To do this, we use the result of §2, namely

2m
(K(l—zrn) = (B2m/47nz) Z BrDr——lﬁZm—r(D)z (26)
r=0
where B, is the r-th Bernoulli number and
D
fr(D) = Xt ()" 27
J=
Set
a(m)y=_[] p. (28)
3<=p=2m+1
P prime

For 0 <r << 2m, 2a(m) B, is an integer, by von Staudt’s theorem, and
1
since B, (D) = 0 (mod 4), 54 (m) B, D"~ B, _, (D) is an integer for r > 1.

There remains the term r = 0 of (26). If D is divisible by an odd prime p
but D # p, then (writing D = pD’, with p ¥ D’)

D

fon®) = T 1,008 YT () (mod p. @9

j=1
Jj=k (mod p)

and the inner sum is O for D’ > 1. One also checks easily that f,,, (D) is
always even, is divisible by 8 if D = 0 (mod 4) and is divisible by 16 if
D = 0 (mod 8). Therefore f,,, (D)/D is an even integer, unless D = p is
a prime (= 1 (mod 4)). In that case,

p—1 p—1 '
Pou(P) = 2 (5) = ) kD2 = 0(mod p)  (30)
p

k=1 k=1
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1s divisible

if2m+p

is not divisible by p — 1. Finally, if 2m + ©

by p — 1, then (p—1) | 4m and hence p = 4m + 1 or p <2m + 1. There-
fore a(m) B,,, (D)/D is an even integer here also, except in the one case
D = 4m + 1 = prime. Thus, if we set

s(m) = a(m)-denom (B,,/2m?) "¢, , (31)

(32)

m

dm + 1 if 4m + 1 is prime,
¢ 1 otherwise,

then s (m) {x (1—2m) will be an integer for all quadratic fields K, and
indeed (s (m)/e,,) (x (1—=2m) will be an integer for all fields except

Q (V/ 4m ﬁ). We have tabulated the two bounds ¢ (m) and s(m) for
1 <m <17 in Table 4, putting the factor ¢, of s (m) in brackets because
it only occurs in the denominator of (i (1—2m) for a single exceptional
field K. It will be seen that in general neither of s (m), ¢ (m) divides the other,
so that

u(m) = G.C.D.{s(m),t(m)} (33)

gives a better bound than is provided by either the Siegel or the elementary
method alone. From the table of values of u (m) one sees that, for instance,

31Z;, 20|Zy (34)
and that

50Z, if D#5, 13|Zs if D #£13, 17|Z, if D #17. (35)

All of these congruences can be verified in Table 3. Indeed, Table 3 suggests
that (34) can be improved to

31Zs, 91Z,, 3|Z,, 400|Z, (36)
and that, as well as the congruences (35), one has
5/Zs, 25|Zy if D #5. (37)
All of these are special cases of the following
CONJECTURE ([6], p. 164). For any totally real K,
w,(K){(x(1-2m)eZ, (38)
where the integer w,, (K) is defined as

G.C.D. { (NBY (NP>"—1),i > m, P a prime ideal}. (39)
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Define an integer j (m) for m = 1, 2, ... by

j(m) = G.C.D.{n""2(n*"—1),neZ}. (40)
Thus
j() = 24,j(2) = 240, (3) = 504, (4) = 480, ... -

Then it is easy to check that, for K a quadratic field, w,, (K) = j (m)

(independent of K!) unless K is one of the finitely many fields Q (\/ p) with
p a prime such that (p—1) | 4m, (p—1))2m, in which case w, (K)
p°*1j(m), where p® is the largest power of p dividing m. This is interesting
because the numbers j (m) occur in topology: it is known (now that the
Adams conjecture has been proved) that j (m) is precisely the order of the
group J (S*™). This may be just a coincidence, of course, but could conceiv-
ably reflect some deeper connection between the values of zeta-functions
and topological K-theory (the conjectured connection between these values
and algebraic K-theory was mentioned in the introduction).

§4. THE CIRCLE METHOD AND THE NUMBERS €,,,_; (1)

In §3 we defined

M= Y o ( “kz) , (1)

k2=n (mod 4) 4
k| =V
where r and n are positive integers and, for b a positive integer, o, (b) is
defined as the sum of the r-th powers of the positive divisors of b. Since (1)
was only needed for n not a perfect square, we are still at liberty to define
g, (0); we set
1 B,y

1
GAD)Z:EC(—r)=:—'Er_+1'

(2)

This defines o, (b) for b = 0, 1, 2, ...; we extend the definition to all real b
by setting ¢, (b)) = 0if b < 0 or b ¢ Z. Then (1) can be rewritten

e = Y a,(""k). 3)

k=—w 4

We were led to consider these numbers by Siegel’s theorem, which, for
real quadratic fields K, expresses the value of {x (2m) or ( (1—2m) in

terms of the numbers e,,_; (n) with K = Q(\/ 1;). In this section we
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