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ON THE VALUES AT NEGATIVE INTEGERS

OF THE ZETA-FUNCTION

OF A REAL QUADRATIC FIELD

by Don Zagier1)

§0. Introduction

In this paper we will be interested in the numbers l,k (b), where K is a

real quadratic field and b a negative odd integer. It has been known for
some time [3] that these numbers are rational; indeed, this is true for K
any totally real number field [5], [9]. They are interesting on the one hand
because they generalize Bernoulli numbers (the special case K Q) and

on the other because they reflect properties of the arithmetic of K. For
example, there is a conjecture of Bass, Birch and Tate relating ÇK (~~ 1) 1°

the "deviation from the Hasse principle" of K order of Ker (K2K
-> fi wiïh K 93 running over the completions of K). The value of
CK (b), and in particular the problem of estimating its denominator, is

related to formulas for the "Euler characteristic" of certain arithmetic

groups (see for instance [6]).
Our main object is to give an account of Siegel's formula for ÇK (1 ~2m)

for general K, to describe the form it takes when K is quadratic, and prove
it in this special case by direct analytic methods. We have tried to keep
prerequisites to a minimum by reviewing the main facts about zeta functions
of fields (in §1) and the arithmetic of quadratic fields (in §2). We give an
exposition of Siegel's theorem and proof in Section 1.

When K is a quadratic field, it is very easy to obtain elementary formulas
for (K(l-2m) directly, using the decomposition ÇK(s) Ç(s)L(s, x)-
These formulas are discussed in §2. In the simplest case, namely m 1

1) This paper was written while the author was at the Forschungsinstitut für Mathematik

der Eidgenössischen Technischen Hochschule Zürich and the Sonderforschungsbereich
Theoretische Mathematik, Bonn.



— 56 —

and K — Q (<Jp) with p 1 (mod 4) a prime number, the formula in
question reads

In §3 we return to the Siegel formula and specialize it to the case of real

quadratic fields. Because the arithmetic of quadratic fields is completely
known and very simple (the different is a principal ideal ; the splitting of a

rational prime p depends only on the value +1, 0, -1 of x(p))> we can

completely evaluate the terms of this formula, arriving at a formula for
CK(I—2m) not involving any notions of algebraic number theory. For
instance, in the case above (m 1, discriminant of K a prime p), the
formula is

where the sum is over all ways of writing p — b2 + 4ac with a, b and c

positive integers. We also discuss bounds for the denominator of ÇK (1 ~2m)
(the importance of which was mentioned above) and give tables for m < 6,

discriminant of K < 50.

The elementary character of the right-hand sides of (1) and (2) suggests
the problem of proving their equality directly, by reasoning involving only
finite sums. This is probably impossible: it is not even easy to see a priori
why the sum in (2) must be divisible by 5 if p is a prime different from 5.

However, it is possible to study the sum (2) by the methods of analytic
number theory. To do this, we observe that the right-hand side of (2) is

the coefficient of e2nipz in the Fourier expansion of a function which is (up
to a factor) the product of a theta-function and an Eisenstein series. This
function transforms in a known way under the action of the modular

group, and therefore one can describe its asymptotic behaviour as z tends

towards any rational point on the real axis. This is precisely the sort of
problem for which the Hardy-Littlewood circle method was designed.
When we apply it, we obtain a "singular series" which approximates (2)
and which, on the other hand, can be explicitly summed to yield (1). However,

we do not obtain a proof of (2) : there is a built-in error in the circle

method in this situation, and we cannot show that the singular series really
I sums to the expression in (2), but only that the error is of smaller order
I than the main term (roughly the square root) as p oo. Indeed, in working

(1)

(2)



out the analogous formula for ÇK (1 ""2m), where m > 3, we find that there

really is a difference of this order between the Fourier coefficient we are

trying to evaluate and the value of the singular series. The calculation of
the singular series is carried out in Section 4.

Finally, in §5 we give conjectures concerning the Fourier coefficients of
a certain modular form of weight 4m related to the value of ÇK (1 ~~2m).

In this section, we will state the formula of Siegel for the value of ÇK (b)

where K is a totally real algebraic number field and b a negative odd integer.
We will also give a brief description of the proof.

We begin by reviewing the main properties of the zeta-function of a

field. Let K be an algebraic number field of degree n, and (9 the ring of
integers in K. For any non-zero ideal 31 of (9, the norm N (31) is defined as

the number of elements in the quotient (9/31. For m 1, 2, let i (m)
denote the number of ideals of (9 with norm m. This number is finite for
each m and has polynomial growth as m oo, and so the series

Tm=1 / (m) m~s makes sense and is convergent if s is a complex number
with sufficiently large real part. The function it defines can be extended

meromorphically to the whole ^-plane, and the function obtained is
denoted Ck Thus we have the two representations.

provided that Re (s) is large enough. The sum in (1) is to be taken over all
non-zero ideals of (9, and the product in (2) (Euler product) over all prime
ideals. The function obtained by analytic continuation has a simple pole
at s 1 and is holomorphic everywhere else.

Moreover, the function £K satisfies a functional equation relating £K (s)
and Ck (1 ~s)- In the case of a totally real field K (i.e. K Q (a) where a
satisfies a polynomial of degree n with n real roots), this takes the form

§1. Siegel's Formula

(1)

n (i-ivopr1)-*, (2)

F (s) F (3)
where

(4)
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(Here D is the discriminant of K.) In particular, we have

C*(-2m) 0, (5)

Ck(1-2m) {(-l)m(2rn-l)!/22m-17i2m}"D2m-1/2Cx(2rn)
(m 1, 2, (6)

It is thus equivalent to give the values of ÇK(s) s 2 ,4, 6, or at
s -1, -3, -5, ...; we shall prefer writing our formula for the latter
values since, as it turns out, they are always rational numbers. For instance,
if K Q is the field of rational numbers, then w=l,D=l,0 Z, and
the only ideals are (r) with r 1, 2, so

o° 1

Ck (s) Cq (s) Ç (s) H —s(7)

r 1 r

is the ordinary Riemann zeta-function ; in this case (6) says

— l)m (2m — 1)
£ (1 —2m) C(2m) (8)

-B2J2m(9)

where is the z-th Bernoulli number (B0 1, -1/2, R2 1/6,

0, i?4 —1/30, and is always rational.
We now proceed to describe Siegel's formula. We first need some

preliminary notation. Recall the definition of the different b of K : b is the
inverse of the fractional ideal

b"1 {xeK\tr(xy)eZ(yye(9)} (10)

(here tr (z) z(1) + + z(n) denotes the trace of zeK). The ideal b is

integral, and its norm is related to the discriminant D of K by.

D N (b) (11)

Next, for r 0, 1, 2,... we define

ar(n)=Y,dr (n 1,2,3,...) (12)
d\n

to be the sum of the r-th powers of the positive divisors of n. (This is standard

notation.) We generalize this definition to number fields by setting

1) I ^(®)r <= G an ideal). (13)
93 |3t
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Here the sum is over all ideals 23 of &which divide (i.e. contain) 21. If
K Q, & <=> Z, 21 ~ (n),thisagrees with (12).

Finally, for /, m1, 2, we define

sf(2m) £ «Tz/n-l ((»&)• (14)
veb~ 1

v 0

tr (v) —I

The sum extends over all totally positive (i.e. all conjugates positive)

elements of the fractional ideal (10) with given trace / (there are only

finitely many such elements). Such a v need not be integral, but the product
of the principal ideal (v) with the different b will be an integral ideal, and

therefore a2m-1 (00 b) is defined.

We can now state Siegel's formula.

Theorem (Siegel [9]). Let m 1,2,... be a natural number, K a

totally real algebraic number field, n [AT :Q], and h 2mn. Then

Ck (1 —2m) 2" j] 00 s*î (2m) (15)
i=i

The numbers r > 1 and b1 (h), br {h) e Q depend only on h. In par-
ticular,

r dimc9JÎ;j, (16)

where is the space of modular forms of weight h; thus by a well-known

formula
f [Ä/12] if h 2 (mod 12),
{ [ft/12] + 1 if ft fl 2 (mod 12),

where [x] denotes the greatest integer < x.

(We have given a table of the coefficients bt (ft) on page 60, if for no
other reason than to emphasize that they really only depend on the integer
ft and not on the field. The values for ft even, 4 < ft < 24, were taken from
Siegel [9] ; the values for 4 | ft <40 were calculated on the System 370 computer

at Bonn.)

Proof of theorem (sketch): Recall that one can define a modular form
of weight 2m by the Eisenstein series

Gln'{z) JL (18)

(A,/O*(0,0)
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Table 1.

The Siegel coefficients bt (h)

h biih) b2 (h) bs (h) *4 (Ä)

4
1

240

6
i

8
|

-1
504

1

480

10 -1
264

12 -1 1

8190 196560

14 2
16 -1 1

680 146880
1

18 -22 -1
359Ï 86184

20 -19 1

Î650 39600

i

22
i

-4 -1
207 14904

24
-1087 1 1

291200 1092000 52416000

28
-2529 -1 1

259840 81200 15590400

32
837 -9 1

43520 54400 2611200

36
-274486 -899 1 1

29895075 28787850 86363550 6218175600

40
-602849 -1773 -1 1

39067875 14206500 7441500 1250172000
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(ze $ upper half-plane, i.e. zeC and Im(z) > 0). Since G2m (z) has

period 1, it has a Fourier expansion as a power series in

G2m(z)~ a0 +atq + a2q2 +(19)

valid as z -* ico(i.e. q -> 0). Then clearly

u0 Z F"2"" 2C(2 m),(20)

ßeZ

and an easy calculation gives

a„2 0-2».-x(") (« 1,2,...). (21)
(2m — 1)

In an entirely analogous way, for the field K one can construct a modular

form of weight 2m in n variables zu ...,z„e§ (the Hecke-Eisenstein series)

and calculate its Fourier coefficients. By setting zt z, we

obtain a modular form G§m (z) in one variable, of weight 2mn /?, with a

known Fourier expansion, namely

G2Km(z) - a0 + a1 q + a2 + (22)
with

a0 CK(2m), (23)

at { (27i02m/(2m - 1)\yD~2m+1/2 sf (2m) (/ 1,2,...). (24)

On the other hand, since the space 93^ of modular forms of weight h has

finite dimension r, there must be a linear relation among the first r + 1

coefficients in the Fourier expansion of any such form, i.e. there must exist

numbers ch>0, ch U ch r depending only on h such that

/eaKft, f~ a0+ arq + a2q2 +
=> c,h0a0 + ch>la1 + + cKrar 0 (25)

Siegel then shows that ch 0 is non-zero for all h, so we can set

biQ1) ~~ ch,ilch,o ~F 1 — r) (26)

to obtain from (25) the relation
r

«0 Z (27)
1= 1

expressing the constant term of a modular form of given weight as a linear
combination of finitely many of the other coefficients of its Fourier
expansion. Substituting (23) and (24) into (27) gives



Ck(2m) { (2ni)2mj(2m— 1) !}"£)""2m +1/2 £ bt (A) (2m), (28)

which in view of the functional equation (6) is equivalent to the assertion

of the theorem.
Since the numbers ar (21) and hence s* (2m) are clearly (rational) integers,

we deduce from (15) not only that ÇK (1 ~2m) is rational, but also that its
denominator is bounded by a number depending only on A, i.e. only on the
number 1 — 2m and the degree of the field K.

We now juggle the terms in the Siegel formula somewhat to rewrite it
in a suggestive form. If we substitute the definitions (14) and (13) into
equation (15) and invert the order of summation, we obtain

Ck(1 —2m) 2» £ A, (A) I I JVC®)2"1-1
1 1 veb~1 331 (v)b

0
tr (v) =1

» X (29)
33

where the sum is over all non-zero integral ideals 23 and the "weight"
w (93) is defined by

w (23) 2"£ (30)
ve33b~1

v>0

The sum in (30) is always finite and is empty for all but finitely many ideals
23 (because bL (A) 0 for / > r) so the sum (29) is in fact finite. Equation
(29) is a rather amusing formulation of Siegel's theorem, for if we had just
mechanically substituted s I — 2m into (1) without regard for convergence,

we would have obtained

(1-2m) £ (31)
33

which is of course nonsense, but then equation (29) tells us that it is all

right after all, ifwe just insert "fudge factors" w (23) to weight the summands :

thus one really can evaluate ÇK (I-2m) by adding up (2m- l)-th powers of
norms of ideals.

In this connection, it is perhaps worthwhile to observe that the weights

w (23) are not unique. Indeed, given A, we can choose any r' > r and find
coefficients b[ (A), ...,b'r, (A) expressing the constant term of any form

/ e 99th in terms of the next r' coefficients (such collections b' will form an
affine space of dimension r' - r). Then Siegel's theorem is valid with the
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b\ in place of the bl9 and similarly using the b\ in (30) would give other

weights making (29) hold.

Finally, for completeness' sake we should mention that Siegel gave a

I somewhat more general formula than the one stated. If A denotes any
t' ideal class of the field K, then restricting the ideals A in the sum (1) to
['! ideals in the class A gives rise to another meromorphic function, denoted

y Ç (s, A). This function also takes on rational values at negative odd integers,
and Siegel's formula for these rational numbers is identical to (15) except

f that one must modify the definition of ar (31) by only allowing those ideal
divisors 33 in (13) that lie in the class A. In the formulation of Siegel's

: result just given, this can be simply stated

j Ç (1 — 2m, A) X (32)

with the same weights w (33) as before.

§2. Zeta-functions of Quadratic Fields

We now specialize to quadratic fields. A totally real quadratic field can
be written uniquely as Q (d1/2) with d > la square-free integer. Then it
is easy to check that

D à if d l(mod4), (1)

D 4d if d 2 or 3 (mod 4),
and

& (y/D), (2)

i.e. the different is a principal ideal. The decomposition of rational primes
in the ring of integers &is described in terms of the primitive character
x (mod D) defined by

X« (2) (3)

(here x is completely multiplicative, and given on primes by: 0 if
; p\D;{orpJf2D,x(p)is±1 according as D is or is not a quadratic residue

1 (mod p);for p 2 and Ddodd,* (2) (-1 )W~*)/4) as follows: if
; p 2,3, 5, is a rational prime, then the ideal (p) 0 decomposes into

prime ideals according to the value of x (p) —
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X(p) 1 =>(p) M2, ^ iV(^.) p, (4a)

X(p)0=>(p) ^32, tf($)=p, (4b)

*(p) -1 =>(p) TO) p2. (4c)

Substituting this into the Euler product 1 (2) gives (for Re sufficiently
large)

C/t(s) n 7
SÏÎ<p S)"s

n
1 1

n
1

rr 1—
11 1 _ r»-s 1 — n_s 11 1 rt~s 11 1 _ r»~2s

x(p) — 1 1 7> 1 P x(p)=0 1 I1 f
n —1 7—V 1 -p~s1 -x(p)p~s

Us) L(s,x), (5)

where £ (s) is defined in 1 (7) and

Tt ^ V rx\L(s,x) £ —y- (6)
» 1 W

is the L-series associated to the character x- Again, (6) is convergent only
for Re (s) large enough, but the function L (s, x) it defines can be extended

to the whole i'-plane (and (5) is then true everywhere). L (s, x) is holo-
morphic everywhere.

Since we know the values of C (2m) (equation 1 (9)), we only need

calculate L (2m, x)• But x (n) is periodic with period D and satisfies

x(n) X (~n)> so we have

oo 2 D — 1

L(2m,x)= E X(n)n'2m - £ x(a) (a, (7)
n 1 a— 1

where
00

(p (a, D; 2m) n~2m. (8)
n= — oo

« a (mod D)

This last sum can be evaluated in terms of elementary functions :

qo( a,D;2m)I rD+a)~2m D~2mfm (9)

where
rez \P.

1

reZ +*)2
fn,(X) I Z 172 m
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- 1 d2-1 " 1

2j
(2m - 1) dx2m 1

_0o r + x

-n d2m~1
cot TLX (10)

(2m — 1) dx2m_1

Thus
2

f1 (x) 7T2 (CSC2 7ZX) /2(x) — 7l4 (CSC4 71X — CSC2 7TX) (11)

This gives a finite and elementary expression for L (2m, x)> It can be

simplified yet further by observing that fm ^ is periodic in a with period D,

and therefore has a finite Fourier expansion as a sum I yne27tlna/D. The

coefficients yn are easy to compute and are rational. If we then put all this

into (7), we finally obtain the formula

_ i)m_1 22m_1 n2m D fi\L(2m,x) —~Z XU) B2,„
n > (12)

(2m — 1) V Di \DJ
where Br (x) denotes the r-th Bernoulli polynomial :

if)ß,-sxs. (13)
5 0 \Sj

If we substitute (12) and 1 (9) into equation (5) and apply the functional
equation 1 (6), we obtain finally

u (i ~ 2m) èD2m'1 hx (j) • (i4)

That is, for quadratic fields it is possible to give a completely elementary
formula, derived in a completely elementary way, for the value of ÇK (1 ~~ 2m).

As an illustration, we take m 1. Since

B2(x) x2 - x +~ (15)
6

one gets (after some trivial manipulations)

C/c(-!) ~ Z '/SJ)J2 • (16)

For example, with KQ (v^5) we get

Cl(-1) T5o[1'-22-32+4!] (l7)

L'Enseignement mathém., t. XXII, fasc. 1-2. 5
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while for KQ (^13)

CK(-1)

-
*

[l2 — 22 + 32 +42 — 52 — 62 — 72 — 82 + 92 +102 — 112 +122]
24 x 13 J

\ (18)

For a more complete discussion of the formulas treated in this
section, see Siegel [8].

§3. The Siegel Formula for Quadratic Fields

In this section we shall exploit the simple arithmetic of quadratic fields
to evaluate in elementary form the various terms entering into Siegel's
formula, thus arriving at an expression for ÇK (1 ~2m) which is elementary
in the sense that it involves only rational integers and not algebraic numbers

or ideals.
We have to evaluate s^ (2m), and to do so we must first know how to

compute or (51) for any ideal 51.

Lemma. Let 51 be any ideal of the ring of integers (9 of a quadratic field

K. Let D be the discriminant of K and x(j) — the associated character

(as in §2). Then, for any r > 0,

',(30 I x(j)jrer(Nlj2), (1)
J191

where N N (51) is the norm of 51, the function or on the right-hand
side is the arithmetic function of 1 (12), and the sum is over all positive
integers j dividing 51 (i.e. v/jeO for every ve 51; clearly this implies
j2 I N, so equation (1) makes sense).

Proof: It is very easy to check that both sides of (1) are multiplicative
functions, i.e. ar (5123) ar (51) or (23) for relatively prime ideals 51 and 23,

and similarly for the expression on the right-hand side of (1). It therefore
suffices to take 51 to be a power of a prime ideal ^3. Write N ($) pl
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where p is a rational prime and i 1 or 2. Then we can evaluate the left-

hand side of (1) :

<rr(5l) <7r0T) I tf(»)r
23| <j3m

m m

X JV(r)r S Pinr °ir(pm) (2)
n 0 71 0

To evaluate the right-hand side of (1), we must distinguish three cases,

according to the value of % (p).

Case1. xO) 1, (p) iß iß' (iß' conjugate of iß). Then 21)

N (iß)m pm. Clearly j | 31=>j1, for j can only be a power of p
(since j \ N(31)) and cannot be divisible by p (because iß' | p, iß'^31). Hence

the sum in (1) has only one term ar (N) ar (pm), in agreement with (2).

Case 2. x(p) 0, (p) iß2. Again can only be a power of p, and

since % (p) 0, the only term in (1) that does not vanish is the term y 1,

namely ar N).Since N N (iß)m pm and 1, this again agrees with (2).

Case 3. x (p) — 1, (p) iß. Now 31 iß"1 (/>'"), so j can take on
the values 1 ,p,p2,...,pm,with x (p") (~ !)"• Here 2 and A(iß)m

p2m, so we must prove
m

C2r(pm) I — 1)" (3)
71 0

This is just an exercise in summing geometric series.

The lemma enables us to calculate the generalized sums-of-pow'ers
functions <rr (9t) in terms of the ordinary function ar (m). It remains to see

what ideals 51 occur in Siegel's formula. Recall that

ski(2m) X <*2m-i((v)b), (4)
veb~ 1

v 0

tr(x)=l
and that

b (Jd) (5)

for a quadratic field. Furthermore, the ring of integers of K is

fx + y \/D
' x,yeZ, x =y D (mod4)V. (6)

We can now describe explicitly the v occurring in the sum (4). Write such

a v as a + ß^J D with a and ß rational. Then
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veb-1 o' Vy/D eO (7)

v > 0 o cc > \ ß \ yj D (8)

tr(y) I o a 1/2 (9)

From (6), (7) and (9) we then get ß b/2D, where b is a rational integer
satisfying

b2 l2D (mod 4) (10)
and (because of (8)) also

b2 < l2D (11)

Then (v) ô is the principal ideal

(v)b (vVD) =(b- +/^d).(12)

An integer / can divide this only ifj | b andj | / and (b/j)2 (l/j)2 D (mod 4),
so by the lemma

fl'2D-b'2\
^r(Wb) y.(j)jrVr (— J. (13)

b jb'
b'Z=l'ZD (mod 4)

We now substitute this into (4), where the summation in (4) is now to be

taken over all integers b satisfying (10) and (11), and obtain finally

sf (2m)X l e(14)
II'

where the arithmetic function er (n) is defined by

er(n)= Z (15)
*2 „(mod 4) V ^ /

I x I V w

(r 0, 1, 2, n a positive integer, not a perfect square). Then (15) is a

finite sum (empty, if n 2 or 3 (mod 4)), and so is (14), so that we have

completely evaluated sf (2m) in elementary terms. Then Siegel's theorem
states

Cx(l-2m)=4 Z b,(4m)s?(2ni), (16)
1 1

with r [mj3] and the coefficients bt (4m) computable rational numbers
tabulated on p. 60 for 1 < I < 10.



— 69 —

Using the values of bt (4m) and equation (14), we can write out the

first few cases to illustrate (16): m — 1. Here r 1, bx (4) =» 1/240, and

so (16) reduces to

' en)

Thus for KQ 5) we find

1 1 f /5 — 12\ /5 — — 1):

£,<-« - ^«,(5) 4», (—) + », {—^
2(71(l)/60 1/30, (18)

in agreement with 2 (17), and similarly for K Q (yj 13)

1 2 f / 13 — 12\ /13 — 32

Ck — 1) 77 ei (13> 77 "Ui 7 +
60 60

—(3 + 1 + 1) 1/6, (19)
oU

in agreement with 2(18) (but notice how many fewer terms!), m 2.

Here again r 1, and the formula is just as simple:

Ck(-3) — s^(4) — e3(D). (20)
120 120

Thus with K Q (>/l3) we find

2 29
CK(-3) (33 +13 + l3) — (21); 120 60

m 3. Here r 2 and the formula is more complicated:

Cx - 5)
4— (s§ (6) -24 si (6))

196560 v J

1

{ es (4D) + 32 x (2) e5 (D) - 24 e5 (D) } (22)
49140

Here for K Q (y/l3) we get

Cx(-5) (^5 (52) - 56e5(13))/49140

(a5 (13) + 2a5 (12) + 2a5 (9) + 2u5 (4)

- 112ct5 (3) - 112<75 (1))/49 1 40

- 980370/49140 3631/182. (23)
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Table 2.

The Siegel formulas for quadratic fields

K Q (t/D) D discriminant, / (m) —
'D\
,m)

60Ck(-1) e,(D)

120 Ck(~ 3) e3(D)

er (n) £
b^-\-4ac n

a,c> 0

~ "5rv \ - / J \" J

49140 CA-5) e5(4D) + [32*(2) + 24] e5 (£»)

36720 CK(- 7) e7 (4D)+ [128 *(2) - 216]c7(D)

9900 CA-9) e9(4D)+ [512*(2) - 456]e9(D)

13104000 Ck(~H) eu(9I>) + 48eu (4 +[177147*(3)
+ 98304 *(2) - 195660] eu(D)

3897600 Cx —13) e13(9D) - 192e13 (4D) + [1594323 *(3)

- 1572864 *(2) - 151740] e13 (D)

652800 Ck(~15) e15(9D) - 432e15(4D) + [14348907*(3)

- 14155776*(2) - 50220] els(D)

1554543900 £K( —17) c17(16D) + 72e17(9I>) + [131072/(2)

- 194184] e17(4D) + [17179869184 *(4) + 9298091736 *(3)

- 25452085248 * (2) - 57093088] e17 (£>)

312543000 CK(-19) e19(16I>) - 168c19(9I>) + [524288 *(2)

- 156024] e19(4D) + [274877906944/(4) - 195259926456/(3)

- 81801510912/(2) - 19291168] e19

42124500 CK(-21) e21(16D) - 408c21(9 + [2097152/(2)

- 60264] e21 (4D) + [4398046511104/(4) - 4267824106824/(3)

- 126382768128/(2) - 3953248] e21
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In Table 2 we write out in full the formula for Ck (1 — 2m) (1 < m < 6)
in terms of the arithmetical functions er (n). In Table 3 we give the values

of Ck (1 ~2m) for 1 < m < 6 and K a quadratic field with discriminant at
most 50. Since it is more convenient to tabulate integers, we in fact give
the values of

Zim-i Km)Cx(l"2m), (24)

where t (m) is the bound implied by (16) for the denominator of Ck (1 -2m),
namely

t (m) L.C.M. {denom 4bt (4m), 1 < I < r). (25)

Because the question of the denominator of (1 — 2m) is important
(namely, a prime p divides this denominator whenever the p-adic analogue
of Ck (s) has a P°le at s 1 — 2m), it is worthwhile to try to sharpen (25).
To do this, we use the result of §2, namely

2m

Ck(1—2m) (B2J4m2)£B.D^1 ß2m_r(D), (26)
r — 0

where Br is the r-th Bernoulli number and

ßriP) Z (27)
J=1

Set

a (m) U p. (28)
3 ^p^2/n-f 1

p prime

For 0 < r < 2m, 2a (m) is an integer, by von Staudt's theorem, and

since ßr (D) 0 (mod 4), ^a (m) Br Dr~1 ß2m-r (^) is an integer for r > 1.

There remains the term r 0 of (26). If f) is divisible by an odd prime p
but D # p, then (writing D pD\ with p X D

ß2m(D)Z XP(.k)k2mZ Xo-(J) (mod (29)
k= 1 ./=1

j /c (mod p)

and the inner sum is 0 for D' > 1. One also checks easily that ß2m(B) is

always even, is divisible by 8 if D 0 (mod 4) and is divisible by 16 if
D 0 (mod 8). Therefore ß2m (D)jD is an even integer, unless D p is

a prime (=1 (mod 4)). In that case,

ß2m(p) Z (-) fe2m Z fc2m+(p-1)/2 s 0 (mod p) (30)
fc=l \Pj k^i
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if 2 m+ — is not divisible by p —1. Finally, if 2m + — is divisible
2 2

by p - 1, then (/?— 1) | 4m and hence p 4m + 1 or < 2m + 1. Therefore

a(m) ßlm(D)jD is an even integer here also, except in the one case

D 4m + 1 prime. Thus, if we set

5 (m) a (m) • denom (B2J2m2) • em (31)

' 4m + 1 if 4 m + 1 is prime,
^

1 otherwise,

then s(m)(K(l~2m) will be an integer for all quadratic fields and

indeed (s (m)/sm) ÇK (1 -2m) will be an integer for all fields except

Q(^/4m + l). We have tabulated the two bounds t (m) and s(m) for
1 < m < 17 in Table 4, putting the factor em of s (m) in brackets because

it only occurs in the denominator of £K(l-2m) for a single exceptional
field K. It will be seen that in general neither of s (m), t (m) divides the other,
so that

u (m) G.C.D. { s (m), t (m) } (33)

gives a better bound than is provided by either the Siegel or the elementary
method alone. From the table of values of u (m) one sees that, for instance,

3 I Z7 20 I Zn (34)
and that

5 I Zx if D # 5 13 I Z5 if D ^ 13 17 | Z7 if D ^ 17 (35)

All of these congruences can be verified in Table 3. Indeed, Table 3 suggests
that (34) can be improved to

3 I Z5 9 I Z7 3 I Z9 400 I Ztl (36)

and that, as well as the congruences (35), one has

5 IZ5 25 I Z9 if D * 5. (37)

All of these are special cases of the following

Conjecture ([6], p. 164). For any totally real K,

wm (K) Ck (1 ~ 2m) e Z (38)

where the integer wm (K) is defined as

G.C.D. { (Nty)1 (Nty2m- 1), m, Ç a prime ideal}. (39)
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Define an integer j (m) for m 1, 2,... by

j (m) G.C.D. { nm+1 (n2m - 1) n e Z } (40)
Thus

y(l) 24,7(2) 240,7(3) 504,7 (4) 480, •

Then it is easy to check that, for K a quadratic field, wm (K) 7 (m)

(independent of K Î) unless K is one of the finitely many fields Q (y/p) with

p a prime such that (/? — 1) 14m, (p — \))(2m, in which case wm(K)
Pv+1 j where pv is the largest power ofp dividing m. This is interesting
because the numbers j (m) occur in topology: it is known (now that the

Adams conjecture has been proved) that 7 (m) is precisely the order of the

group This may be just a coincidence, of course, but could conceivably

reflect some deeper connection between the values of zeta-functions
and topological i^-theory (the conjectured connection between these values
and algebraic X-theory was mentioned in the introduction).

§4. The Circle Method and the Numbers e2m-1 (n)

In §3 we defined

«,(»)= i d)
fc2 /j (mod 4) \ ^ /

|fcj

where r and n are positive integers and, for b a positive integer, ar (b) is
defined as the sum of the r-th powers of the positive divisors of b. Since (1)
was only needed for n not a perfect square, we are still at liberty to define

ar (0) ; we set

<r,(0) |f(-r)= (2,

This defines ar (b) for b0,1, 2,we extend the definition to all real b
by setting cr (b)0 if b<0or b£Z.Then (1) can be rewritten

We were led to consider these numbers by Siegel's theorem, which, for
real quadratic fields K, expresses the value of ÇK (2m) or (1 -2m) in
terms of the numbers («) with K Q (7«). In this section we
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follow a different course, and study the numbers (3) directly by the
techniques of analytic number theory—specifically, by means of the Hardy-
Littlewood circle method. This will lead to the following formula for
e2m-i(n)'

Theorem 1. Let m and n be positive integers, n not a perfect square.

If n 2 or 3 (mod 4) then e2m_1 (n) 0. If n 0 or 1 (mod 4),
write

n f2D (4)
with

Then
D discriminant of K, K Q (yjri). (5)

C*(l-2m) v* TL(/) + 0(n 1 (6)
24 (1 —4m)

w/zer<? x ^ character associated to K (cf. §2) mzJ T2m (/) w f/ze

multiplicative function given by

TL(/)= I»4"-1 (7)
q/ a|t a

£ ß(a)x(a)(8)
« 1/

fii (a) denotes the Möbius function).
Note that the first term in (6) really is of bigger order than the error

term, since one easily checks that T$m(f) > c1f4m~1 and (K(l—2m)
> c2D2m~1/2 with constants cuc2 > 0, and hence the first term is

> cn2m~112.

Before turning to the proof of this theorem by means of the Hardy-
Littlewood method, we consider its relationship to the results discussed in
Sections 1 and 3. We saw in §1 that the Hecke-Eisenstein series G2m (z) of
K has the Fourier expansion

GK2,n(z)~ a0+ axq+ a2q2 + (9)
with

aoC/c (2m), (10)

at kms*(2 m)km £ (U)
j 11 V /

where km (2n)4m D~2m+1/2 / (2m-l)l2. Since G2m (z) is a modular
form of weight 4m, the form G2m (z) - a0 G4m (z) / 2£ (4m) is a cusp form
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of weight Am,whereGAm (z) is the ordinary Eisenstein series (we have used

1 (20)). But a very well-known theorem of Hecke asserts that the th

Fourier coefficient of a cusp form of weight is 0 (nk). Therefore (using

1 (21) for the Fourier coefficients of G4m)

1 tl 2 4m+l

_ + OC")
(4m — 1) £ (4m)

'»k (1 —2m)
7~T (0 + u(/ )'

2Ç (1 -4m)

where in the last line we have used the functional equations of £x and £.

Substituting (11) and inverting gives

e2m-i(/2£>) Z li(a)x(a)a2m~1 sj/a(2m) (12)
«1/

Ck (1 —2m) 2m-1
j—\ Z ti{a)yXa)a m (a)

2Ç (1-4m) a{f

+ 0 (/2), (13)

and this is essentially the same as (6)—indeed with a better error term
0 (nm) rather than 0 (nm+1/4).

Nevertheless, there is some point to proving Theorem 1 by the circle
method. First of all, it provides a direct proof of the relationship between

the arithmetic function e2m~1 (n) and the value at s 2m of the zeta-

function of Q fJn). Secondly, the evaluation of the "singular series"—-

which yields the first term of eq. (6)—involves an evaluation of certain
Gauss sums and of a Dirichlet series with such Gauss sums as coefficients
which are of interest in their own right. Namely, we will prove the following
two theorems.

Theorem 2. For positive integers a and c, let

X(a, c) —

/(I c)/2
-J if c is odd, a even

c\ -, • ^ (14)ia/2 if a is odd, c even

otherwise,
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where - I (q odd) is the Legendre-Jacobi symbol and iaj2 e%lal^. Thus
W

X (a, c) is 0 if a and c have a common factor or are both odd, and is an
8th root of unity otherwise ; furthermore, y (<a, c) is periodic in a with
period 2c. We define a Gauss sum yc (n) by

1 2c

lc(») 7= X l(a,c)e
Ve«-1

Then Xc (n) is given as follows :

If c is odd, write c Id2 with I square-free. Then

yc(n)

0 if dpi,

If c is even, write c 2r c1 with c1 odd, r > 1.

rc(n) Gr («) yci (n) >

where

Qr(n)

2r/2( — lfim-l)/4

r — 1

2 \ \m(m- 1 )/2

if r is even

n 2r~2m

m 1 (mod 4).

2 2 (-1)"

0

if r is odd

n 2r~1m

otherwise

(15)

(16)

(17)

(18)

Theorem 3. Let n be a non-zero integer and define a Dirichlet series

E„(s) by
1 £ vAn) 1 "

"(S)
2 ^ ^

c 1

c odd

2 cf2 (c/2)s
c even

(19)

(i.e. E„ (s) I am m s with am- (7m(n) + 72m^")) for m odd,

: 72, ,(n) for m even. Clearly | yc (n) \ < 2 so the series in (19)

converge for Re s>f; in fact, yc (n) 0 (1) as c ->• oo by Theorem 2;
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so they even converge for Re s > 1). Let K — Q (^/n), D discriminant

of K, x character of K, L (s, x) L-series of % (if n is a perfect

square, x (m) 1 for m and L (s, x) C C?)). rAen

(s) 0 if n 2 or 3 (mod 4), (20)

while, if n 0 1 (mod 4), then

\ L(5'^) y MZ>xO) M*,*) ^(/) pn
C (2s) fl,4i ^2s"^s C (2s) J25"1

5

oc|/
w/zere n f2 D.

As corollaries to Theorem 3, we see that (s) has a meromorphic
continuation to the whole .s-plane, and that En (s) possesses an Euler

product whose ^-factor is 1 + x (p)P~s if Pfn and is a polynomial in p~s
in any case.

We will now show how the Dirichlet series (19) arises in connection
with the numbers e2m-\ (n), deferring to the end of the section the proofs
of the two theorems on Gauss sums just enunciated.

Let G2m (z) be the Eisenstein series of weight 2m, defined in 1 (18),
and 9 (z) the theta series

00

0(z) X e"*2' (ze§), (22)
k— — oo

where § is the upper half-plane {z e C | Im z > 0}.
We define

— l)m(2m — 1)F»>(Z)22m+l7I2m
G2m(2z) 9 (z) (z£$) (23)

Clearly Fm(z+ 2) Fm (z), so Fm (z) has a Fourier expansion. From (22)
and the Fourier expansion of Glm (eqs. 1 (19)-1 (21)), together with
eq. (3) and the functional equation of £ (s), we obtain

P /(-l)m(2m-l)iPm(z)
22mn2m

0

„nikïz

£ (2m) + Y a2m-
a 1 /

x £ e*
fc= — 00

S
a 0 fc

Z e2m-i(n)eKinz. (24)

k

tikïz

n 0
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Thus the numbers e2m-1 (ri) are precisely the Fourier coefficients of Fm (z).

By Cauchy's theorem, therefore,
2 — is

1e2m-i0)- Fm{z)dz (25)

for any s > 0.

The idea of the Hardy-Littlewood method is to replace the integrand
in the neighbourhood of each rational point of the interval [0, 2] by an
elementary function, integrate this function, and then sum up the
contributions obtained in this way from all rational points; this sum, the so-called

''singular series," should then be an approximation to the integral. To
apply this to (25), we first use the transformation laws of the theta and
Eisenstein series under modular transformations to obtain

0(c + I>') >.(a,c)(cyyli2 +0(>~1/2e~'l/4cV)» (26)

G2m (j + 0') 2 — 1 )m Ç (2m)+ o (27)

a
as y 0 with Re (v) > 0, where - is a rational number in lowest terms.

c

Therefore

Fn,(-+ iy V~4W7t2~m" ^ ^ ^772 1 (fl ' C)

+ 0(y-2m~1/2 e-n/4c2y) (28)

as y -» 0, where a and c are relatively prime and (c, 2) is the greatest

common divisor of c and 2. To obtain the contribution from the rational

point ajc to the singular series, therefore, we replace Fm by the first member

of (28) and integrate over y. Since

1

2

n2"1*1'2 n2m~1/2 e~nina/c/r (2m +1/2) (29)

i co F 8 wj_/\ -> i/o-,e-mn(iy + a!c) -2m-l/2
— Î CO +8

(this is just the standard integral representation for l/F (s)), we obtain as

the contribution from ajc
(c 2)2m

C On)n2-1'2(«'c) e~"n"e (3°)

with
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n1'2 (2m —1)1
C(m) 2"" f (2m +1/2)

(31)

Summing this over all rational points — e [0, 2), we obtain the following
c

formula for the singular series:
00 (c,2)2m

e2,n-i(n) C (m) n2m~1/2 £ ^-yc(n) (32)
c= t C

2C(m)n2m'1/2En(2m), (33)

where (s) is the Dirichlet series of Theorem 3.

We wish to estimate the difference between e2m-i (n) and e2m-i («)•

To do this, we define a function having the same behaviour in the neighbourhood

of each rational point - as that described by the leading term of (28):
c

(2m — 1)
n,(z) =y-¥n^rC(2m)

~ (c, 2)2m»„ Jz-a/cy21"-1'2
X I TÏ^TTÏ S —T— • (34)

— 2m —1/2
c 1 c a~ — oo

The series is convergent for z e §, and

Fm(z) - Fm(z) 0 (35)

for z —h iy y 0. On the other hand, Fm (z) is evidently periodic
c

with period 2, and one easily finds (using the Cauchy integral for the
Fourier coefficients and the contour integral (29)) that its Fourier expansion
is

Fm{z) Z ë2m-i{n)e* (36)

with e2m_ i (n) given by (32). The analysis given by Hardy [2] now permits
us to deduce from (35) that

e2m-i(n) — ê2m-i(ri)0 (nm+1/4) (37)

as n -> co. We will not reproduce this analysis here, since our main interest
is not in a rigorous proof of (6) with error term (in any case, as pointed out

L'Enseignement mathém., t. XXII, fasc. 1-2.
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above, this error term is not best possible) but in the evaluation of the

singular series obtained in the Hardy-Littlewood approach. To see that
(37) and (6) are the same, we use equation (33) and Theorem 3 to get

^-,(/>D> - 2

Ck(1 -2m)
2£ (1 — 4m)

TLAf), (38)

where in the last line we have used (7) and the functional equations of £

and Ck-

It remains to prove Theorems 2 and 3.

Proof of Theorem 2 : We first suppose c is odd. Then the standard
Gauss sum

- É 0c2*fai/c (39)

is related to yc (/?) by
2c 1 -c /a\

7c(n) YjC~1,2i2 (-j
a even

tc (n), (40)

as one sees by setting a 2b. If c is square-free, then the value of (39) is

well known to be

tc(n)

- J y/c if c 1 (mod 4).

- j if c 3 (mod 4),

(41)

or
c—i / 2w\

Tc(n) i 2 I c1/2 (c square-free) (42)

Therefore yc (n) if c is square-free, in agreement with (16) (since in

this case d 1, I c). Now let c W2 with / square-free. Then
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1
if (ft, d) 1

0 if 1

y) 2>(;),
lJ j\b

J\à

where fi (j) is the Möbius function, so

Tc 00 E f(i) I 7
j\d 6=1

J \b

2ninb/c

- IfO) I
J |d V/ 6 1 V

7 \ c/-i //A
d \ / \ glninkjjc (43)

where we have written b ;7c. Since only depends on k (mod /), the

inner sum in (43) equals

1 /r\ cljl
£ / ^ g2nin(r+ ml)j/c

r l\ lj m I

0 if - X n
ß

(44)
c njl\ c

T
-

ß
if - I n

c J jl

Write t for djj, so — dt. Then, substituting (44) into (43), we find that
jl

rc (n) 0 if d j( n, while if d I n

(«) Z AM 7
t\d

dt I n

d\ (d/t
dtxx

J J V ' /
Since / is square-free, we can now use (42) to get

(45)

The factor preceding the sum is precisely c 1/2 -2'
i(c 1)/2, since

c Id2 I (mod 8), so combining (45) and (40) yields precisely equation
(16).
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Now suppose that c is even, c 2rc1(r> 1, c1 odd). For a odd, we
have

'-1\ wn/a"A(fl,c) ia/2
\a ["m i®- -

where we have used the law of quadratic reciprocity. The factor in square

brackets has period 8 and the factor — has period cl9 so
VJ

2(a + 8cl5c) 2(a,c). (47)

It follows easily that yc(n) is 0 unless e~Smncilc equals 1, i.e. unless 2r~2

divides n (this condition is empty if r 1). Write

n 2r~2v (48)
with v an integer. Then

or - 2 8ci

ye(n)=-=- Y k(a,c)e~. (49)
\J C a— 1

a odd

Now write
a kc2 + 8jy (50)

where
Sy 1 (mod cj (51)

(e.g. y (l-Ci)/8). Then a y(m°dci) and a A: (mod 8), so a runs

over all odd residue classes (mod 8^) when j runs over the values 1, 2, c1

and k over the values 1, 3, 5, 7. Therefore (46) and (49) give

2r~2 C1 fi\yc(n)£ (L\e-*Wi
Ve j-i VJ
8 n\r / 1 \ (fc-D/2

\?//2u)w) e~^k'4- (52)

k odd

The first sum is xci(- vy),and by virtue of (51), (48) and (40).

M(-'y) <53)

The second sum in (52) is

•1/2 e-#ivCl/4 +(_iy(_i) j3/2 g-3^/4
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+ - l)r i5'2g-5*""^/4 + i1'2 e7/2 p-l TTtvci/4

-lN
i1'2 e-cHA(!_ _ jy +

v) + _ 1)-- 1/2

Putting this all into (52), we obtain

5 -2 /2Y 5!
rc(n) 2 2 (-) i2 e--ive1/4-(l _ _ l)' + v)

x (l + (-l)T1(1-v))7cl(n). (54)

Clearly this is 0 if r v (mod 2), while if v r — 1 (mod 2) we obtain

n 2 Y ^1 (V — 1)
?c(n) 2r/ (—J cos yci (n). (55)

If r is even, therefore, v must be odd, and then the cosine in (55) is 0 if
v 3 (mod 4) and (— l)(v_ 1)/4 if v 1 (mod 4). Thus for r even, yc (n)
is 0 unless n 2r_2 m with m 1 (mod 4) and is then 2r/2 — l)(m~1)/4"

x yci (n). If r is odd, then v is even, say v 2m, and then the cosine in (55)

(~ l)m(m~1)/2 (2/cf)/ yjl. Thus for r odd, yc (n) is 0 unless n 2

and is then 2(r-1)/2 (-yc^n)t xhis proves equation (18).

r~lm

Proof of Theorem 3. According to eq. (17), we can write

£„(s) E°ndd(s)R„(s), (56)
with

E°ndd(s)i^(57)
c=l C-

c odd

and

n / \ I V ^r\nJ / _ o\K (*)=-+- E • (58)11 y QM
2 2 A (2r_1)

We first evaluate (57). Substituting (16) gives

70dd / _ Y Y 7m2 (w)

zs rf2s
£,°dd(s) E E

d|« Z 1
d odd Z odd

I square-free

- Z i-'- Z <*(") E (59)
d\n / n \ V/ /odd \ *

d odd I ("» dJ I square-free
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Now let r2 be the largest odd square dividing n, and write n Nr2. Then
11 r, and N and D differ by an even power of 2, so for any odd /

n/t2\ fr/t\2 fD\ fr/t\2
1J \iJ \iJ \i)'

/r/A2
where x is the character of K Q («Jn). Also I —J is 1 or 0 depending

whether / is or is not relatively prime to r/t. Therefore (59) can be rewritten

Eddd(s) £ (T2î £ lfi(h n (1+x(p)p~1)' (60)

Ä 'l('-s) V/«T
where the final product extends over primes p not dividing the even integer

r d
2r/t. Let u -, e — then

E°ndd(s) Z («/r)2-1 Z n (1
u Ir e\Nu% & pX2u

e odd

n(i + ^)i£ n d-p-^na+zWi»-)-'
p^2 \ P J u\r ' p\Nu2 p\u

n(i + ^)n(i-p;)i^n(i-^p± 2 \ P J p\N \ P J u\r r p\u\ P
p* 2

=n (6i)
p + 2

1 ~X(P)P

We now evaluate the factor (58) of En (s) corresponding to the prime 2.

Comparing (61) and (20), (21), we see that it remains to prove

0 if n 2, 3 (mod 4),
R« (s) 1 — 2~2s (62)

2q(i-2S)rx(2?) if
1 J

1-X(2)2
where in the latter case we have set/ odd.

The first line of (62) follows immediately from (18), since we see that

n2,3(mod4) => Ql (n)-1, Qr (n) 0 1). (63)

We thus suppose nf2 D, f2" r, r odd. We distinguish two cases,

according to the parity of D :
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Case 1. D 0 (mod 4), x (2) 0. Then either D Sd with d odd or
D 4d with d 3 (mod 4). In either case, we deduce easily from (18)

that Qr (n) 0 if r is even or if r is odd and greater than 2q + 3, that Qr (n)
2(r_1)/2 if r is odd and less than 2q + 3, and that Q2q+3 («)

Therefore

2q+1 n

2+1

*„(*) ^
1 23+1 20s--I )/2

1 Z 9(r-l)s
r 1 Z

i* odd

2(+!)S

-[l+l+x2+x4 + ...+x2"-x2"+2']
2

(1 —x2/2) (1 + x2 +... + x2?)

(1 —2'2s)2_9(2s_1)(1 +22s_1 +... +24(2s_1))

(1 —2~2s) 2""a(2s_1) Txs(2q),

in agreement with (62); in this calculation we have set 2~s+
convenience.

for

Case 2. D 1 (mod 4), x (2) (- 1)(D"1)/4. In this case, equation (18)
tells us that Qr{n) 2{r~1)/2 if r is odd and 1 < r < 2q + 1, that
Qiq+ 2 (n) 2q+1 X (2), and that Qr (n) 0 for all other values of r. Therefore

Rn(s) j
2q-' 1 2(^-1 )/2 29+1 X (2)~

^ Z 2(r_i)s 2(2«+!)5
r odd

1 +1 +x2 +x4 +... +x2?+ x(2)

"l
a.

*(2)
'

1 + — -]=x/2 J
Z(2),

_ 2-«(2S-1) 1 +

1 +X2 + +x2q - + X3 + + X2®"1)

X(2Ï
V2

1 +22s_1 + +2e(2s_1)

(22s_1 +22<2s_1) +... +2«(2s'

_ 2"«(2»-l)
1 - 2 -2s

T*(2«).
1-Z(2)2"

This proves (62) in this case also, and completes the evaluation of En (s).
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§5. Congruences for the Hecke-Eisenstein series

For K a totally real number field and m > 1, define

G«m(z) { (2ni)2ml(2m — 1) }~n D2m~1/2 Gfm (z), (1)

where n [ÄT :Q] and G*m (z) (as in §1) is the restriction to the diagonal of
the Hecke-Eisenstein series of weight 2m. Then Gfm is a modular form of
weight h 2mn whose Fourier expansion (cf. eqs. (22), (23), (24) and (6)
of §1) is

CO

GL(z) Ck(1 —2m)+ X s«(2m)e2*iU (2)
1

with (2m) g Z.
In the space %Rh of all modular forms of weight /z, let

CO

3N? {fe3Jlh|/(z)X ane2z, a„eZ for n > 1}

be the set of modular forms whose Fourier coefficients, apart from the

constant term, are all integral. Then is a free Z-module of rank

r dimc 9JI/, and 9Jlh =» ®z C. Write

c: Wlf -» C

for the map sending a modular form f (z) I an e2ninz to its constant
term a0. Then

Mh
c(mf) z

^ h

for some coprime integers Mh and IVA, and iVA is then a universal bound for
the denominators of the constant terms of forms in 9Jtjf and in particular
of Gfm, i.e.

iV„2-"Çx(l-2m)eZ. (3)

This is the essence of Siegel's theorem as discussed in §1.

But we know that (3) is not the best possible bound for the denominator

of Ck (I—2m) (cf. the remarks at the end of §3), and this means that
the modular forms Gfm must be contained in some smaller lattice than
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ÏRjf. For example, if K is a real quadratic field, then Serre's bound for the

denominator of - (1 —2m), at least for K not in the set

{Q(\/2)}u {Q(\/p)\Pprime, (p-l)|4m, 0-1)^2m}, (4)

is the number j (m) defined in §3, eq. (40), and this is always smaller than

Nh N4m (for m 1,2,3,4,5 the values of N4m are 24.3.5, 25.3.5,
24.32.5.7.13, 26.3.5.17 and 24.3.52.11, whereas those of j (m) are

23.3, 24.3.5, 23.32.7, 25.3.5 and 23.3.11). Therefore, if is not one of
the finitely many exceptional fields (4), the modular form G\m lies in the

proper sublattice

9ftf.no-1 (j2_Z^ (5)

of We want to describe some numerical evidence that, although

j (m) is the best possible bound for the denominator of - £x(l —2m), the

modular forms Gfm are contained in a much smaller sublattice than (5).
This means that the coefficients s* (2m) satisfy congruences (modulo certain

powers of certain primes) above and beyond those required to obtain the
correct bound for the denominator of Ç.

For m 1 or m 2, is one-dimensional, so a modular form is

completely determined by its constant term and (5) is best possible. Consider
m 3. A basis for 9Jt12 is given by Q and R2, where

00

<2 £4(z) 1 + 240 X <r3(n)c2'tal
n=l

00

RE6(z)1 - 504 £ g 0) e2*'"2
71=1

(Ramanujan's notation). The lattice 9ftf, has the basis — O3, —
720 156

("720 + 1008 R*) ' We conjecture' however, that for all real quadratic

fields K different from Q (^2), Q (^5) and Q G/13), the modular form

Gf lies in the sublattice generated by — and -2- R2 i.e. that if we write
24 504

a' T<Q'+fôlR'
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Table 5

The modular form GK6 (z)

K Q Cv/D), D discriminant of K

Gf(z)-—TT D11/2 G*(z)6 V / 647£ 6 v '
I 00

t C/c - 5) + L ST (6) ^ (« e2"'Z)
4 I =1

JS4(z) ^ G4(z) 1 + 240 £ ff3(n)g»
71 n 1

£6(z) ^ G6(z) 1 - 504 £ <r5 (n)
n==l

G? (z) — £4 (z)3 + — £6 (z)26 24 504

D x y

5 2/5 1

8 11/2 13

12 51 122
13 1018/13 2417/13
17 352 838
21 1092 2602
24 2313 5502
28 5404 12872
29 6438 15327
33 13536 32226
37 24650 58681
40 38437 91526
41 44608 106216
44 64757 154166

then the coefficients x and y will be integral for all quadratic fields K except
the three mentioned. Some numerical evidence for this is presented in
Table 5 (x and y were calculated for much larger discriminants and were
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always integers). Similar data for m — 4 and m — 5 leads to the

conjectures

^e|z + fz (K(K/H)
Gf0e±41^Z+-|^Z(ÜT/Q(V2), Q(V?)).

These assertions imply highly non-trivial congruences for the coefficients

si (2m) of the Hecke-Eisenstein series, since (for example) the lattice
147 5

generated by -y- Q5 and ß2#2 has index 7,938,000 in 9Jlf0 (whereas

[StRfo : SDtfo] is only 50). This leads to the following

Conjecture. For each m > 1, *fe/?/7e t/ze "Hecke-Eisenstein lattice"

^ sublattice of generated by the modular forms Gfm, where

K runs over all real quadratic fields not in the finite set (4). Then

(i) mil has finite index in $21%rn.

(ii) If we replace (4) by any larger finite set in the definition of mil, we

obtain the same lattice (in other words, the only fields which are exceptional

with respect to the congruence properties of their Hecke-
Eisenstein series are those for which the denominator of (K (1 -2m)
is exceptionally large).

(iii) For m < 5, mil is as given in Table 6.

(iv) mil has a basis consisting of monomials in Q and R.

(v) For m > 2, the primes dividing : mll~\ are : all primes < 2m
and 4m + 1 (if the latter is prime).

It would be of interest to have numerical data on Gfm for m > 5 and
for [K : Q] > 2, especially to test the somewhat rash conjecture (iv).
Particularly interesting would be to fix a prime p and study the behaviour
at p of the sublattice mil for varying m, since this could give information
about the /?-adic analogue of the zeta-function of K.
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Table 6

The "Hecke-Eisenstein lattice" /or m < 5

(In the table, Q E4 (z), R E6 (z). The data for m 3, 4, 5 is
conjectural only.)

m Basis for Basis for SDi^f Km- O Exceptional
discriminants

1
: 240

Q
24 0 2.5 10 5, 8

2 — ß2
480 240

2 2 8

3

: —
: 720

;

l / ß3
+

j 156 y720 1008)
1

i iß2,
24

if504

24.32.52.13
46800

5, 8,13

4

— ß4,
960

1 / Q*+ ßÄ*\
153 \ 240 192 /

1 -Lß4,
480

— Qi?2
12

25.32.5.7.17
171360

8, 17

5
i

-2— Q5
1200

i Q5
+

Q2R2

36 \1200 528

147 _0°,
8

— Q2R2 1

264

24.34.53.72
7938000

5, 8

Afterword

The original version of this paper was written three years ago. To
bring it up to date, we must comment on two developments which have

occurred in the intervening time.

1. The conjecture of Serre quoted at the end of Section 3 is now (almost)
a theorem. In the original paper [6], Serre proved the partial result that,
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for any totally real field K and positive integer n, n wm(K)Ck(1 —

m 1

is an integer (the product occurs when one calculates the "Euler
characteristic" of the discrete group Sp2n ® ring of integers of K). For the

case of abelian totally real fields (and thus in particular the case of quadratic
fields), the conjecture is much easier, since it can be reduced to the evaluation

of E-series, and it was proved independently by several people (e.g.

J. Fresnel, "Valeurs des fonctions zêta aux entiers négatifs", Séminaire de

Théorie de Nombres, 1970-1971, Bordeaux). In [7], Serre obtained better
bounds than 3 (25), still by using Siegel's idea, but studying in more detail
the p-adic behaviour of the coefficients sf (2m) of the Hecke-Eisenstein
series. Finally, Deligne, using p-adic modular forms in several variables
and a strengthened version of Mumfiord's results on compactifications of
modular schemes (of which the details have apparently not yet been checked

completely), proved Serre's conjecture for arbitrary totally real fields
modulo the question of the irreducibility of a certain p-adic representation,
and this question was resolved affirmatively by K. Ribet.

Related to the question of the denominator of ÇK (1 —2m) is the question
of its exact fractional part (resolved for K Q by the theorem of von
Staudt). In connection with his work on the Hilbert modular group
(.L'Enseignement Mathématique (3-4) 19 (1973) 183-283). Hirzebruch
found formulas for the fractional part of lk(~ 1), K a real quadratic field,
in terms of the class numbers of certain imaginary quadratic fields. This
formula has been generalized to arbitrary totally real fields by Brown ("Euler
characteristics of discrete groups and G-spaces", Inv. Math. 27 (1974), 229-

264), using the methods of [6], and by Vignéras-Guého ("Partie fractionnaire
de :K (- 1)", C. R. Âcad. Sciences, Paris (10) 279 (1974), 359-361, "Nombres
de classes d'un ordre d'Eichler et valeur au point -1 de la fonction zêta
d'un corps quadratique réel", / 'Ens. Math., 21 (1975) 69-105) using a
formula of Eichler for class numbers of orders in totally definite quaternion
fields.

2. The aim of Section 4, namely to explain without the use of modular
forms in two variables Siegel's formula for cK (1-2m), can now be achieved
in another way, both simpler and more enlightening than the application
of the circle method outlined in §4. In that section, we observed that the
number

e2m-l(n)X
0^n-k2=0 (mod 4) \ 4
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is the coefficient of eninz in the Fourier expansion of a function Fm (z)
(eq. 4 (23)) which is up to a factor the product of the ordinary theta series

0 (z) and the Eisenstein series Glm (2z). The function Fm (2z) (at least if

> 1) is a modular form of weight 2m + - for F0 (4) in the sense of

Shimura's paper "Modular functions of half integral weight", (.Modular
Functions of One Variable I, Lecture Notes 320, Springer Verlag, Berlin/
Heidelberg/New York 1973, pp. 57-74). In this paper, Shimura discusses

how to set up for such forms a theory of Hecke operators with many of the

usual properties but with the essential difference that there are now Hecke

operators Tn only for n a perfect square. He also shows that the two Eisenstein

series of weight 2m + - for F0 (4) have 77-th Fourier coefficients

related to CQ(y7ö (1 ~2m). In fact, one can check that there is a linear
combination of these two Eisenstein series whose 77-th Fourier coefficient
is precisely the number

hm- l(")

0 if n 2 or 3 (mod 4),

T~2m(f) if n f2D DdiscriminantCx(l-2m) _ _ „
2Ç (l-4m) _

of KQ(Vn), z (£)

which arose in our §4 as the sum of the singular series for e2m-1 (n). The
identities of Siegel expressing e2m-\ (n) as a linear combination of

eim-1(«) e2m_i(4/i) 2„,_J(9/7) e2m_iO
772 \

r — +i)V
_

3_

can now be interpreted as saying that the modular form £ e2m~ i («) e2nmz
n 0

of weight 2 772 + ^ can be expressed as a linear combination of the function

Fm (2z) and its images under the Hecke operators T4, T9, Tro. These

ideas have been worked out by Cohen in three papers,

Cohen, H. Sommes de carrés, fonctions L et formes modulaires. C. R.

Acad. Sei. Paris (A) 277 (1973), 827-830.

Variations sur un thème de Siegel et Hecke. To appear in Acta Arithm.
30 (1975).

Sums involving the values at negative integers of L-functions of
quadratic characters. Math. Annalen 217 (1975), 271-285,
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especially the last, in which he studies an arithmetic function H (r, N)
which is related to our function by

2C (1 — 4 m)

£ (1 — 2m)

However, despite these new approaches to Siegel's formula, I have

retained Section 4 because the calculations of the Gauss sums yc (n) and of
the Dirichlet series Y^yc(n)c~s (Theorems 2 and 3 of §4) are often useful

to have (for example, the calculation of the Fourier coefficients of the

Eisenstein series of weight 2 m + —, of which is not carried out in detail in

Shimura's paper, depends on them) and also because the application of the

circle method in the context of forms of half-integral weight seemed novel.
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