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ON THE VALUES AT NEGATIVE INTEGERS
OF THE ZETA-FUNCTION
OF A REAL QUADRATIC FIELD

by Don ZAGIER 1)

§0. INTRODUCTION

In this paper we will be interested in the numbers (i (b), where K is a
real quadratic field and b a negative odd integer. It has been known for
some time [3] that these numbers are rational; indeed, this is true for K
any totally real number field [5], [9]. They are interesting on the one hand
because they generalize Bernoulli numbers (the special case KX = Q) and
on the other because they reflect properties of the arithmetic of K. For
example, there is a conjecture of Bass, Birch and Tate relating {x (—1) to
the “deviation from the Hasse principle” of K (= order of Ker (K, K
-] K, Kgy), with K o running over the completions of K). The value of
{x (b), and in particular the problem of estimating its denominator, is
related to formulas for the “Euler characteristic” of certain arithmetic
groups (see for instance [6]).

Our main object is to give an account of Siegel’s formula for {x (1 —2m)
for general K, to describe the form it takes when K is quadratic, and prove
it in this special case by direct analytic methods. We have tried to keep
prerequisites to a minimum by reviewing the main facts about zeta functions
of fields (in §1) and the arithmetic of quadratic fields (in §2). We give an
exposition of Siegel’s theorem and proof in Section 1.

When K is a quadratic field, it is very easy to obtain elementary formulas
for (x (1—2m) directly, using the decomposition (g (s) = {(s)L (s, 3).
These formulas are discussed in §2. In the simplest case, namely m = 1

1_) This paper was written while the author was at the Forschungsinstitut fiir Mathe-
matik der Eidgendssischen Technischen Hochschule Ziirich and the Sonderforschungs-
bereich Theoretische Mathematik, Bonn.
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and K = Q (\/:v) with p

question reads
1 2Zt/j
—-1) = — =1j*, 1
{x (—1) 24p,-,_.1<p> (1

Il

1 (mod 4) a prime number, the formula in

where (l> is the Legendre-Jacobi symbol.
p

In §3 we return to the Siegel formula and specialize it to the case of real
quadratic fields. Because the arithmetic of quadratic fields is completely
known and very simple (the different is a principal ideal; the splitting of a
rational prime p depends only on the value +1, 0, —1 of y(p)), we can
completely evaluate the terms of this formula, arriving at a formula for
{x (1 —2m) not involving any notions of algebraic number theory. For
instance, in the case above (m = 1, discriminant of K a prime p), the
formula is

1
CK(_I)__—S_O 4 5 (2)

where the sum is over all ways of writing p = b? + 4ac with a, b and ¢
positive integers. We also discuss bounds for the denominator of {y (1 —2m)
(the importance of which was mentioned above) and give tables for m < 6,
discriminant of K < 50.

The elementary character of the right-hand sides of (1) and (2) suggests
the problem of proving their equality directly, by reasoning involving only
finite sums. This is probably impossible: it is not even easy to see a priori
why the sum in (2) must be divisible by 5 if p is a prime different from 5.
However, it is possible to study the sum (2) by the methods of analytic
number theory. To do this, we observe that the right-hand side of (2) is
the coefficient of e?™¥Z in the Fourier expansion of a function which is (up
to a factor) the product of a theta-function and an Fisenstein series. This
function transforms in a known way under the action of the modular
group, and therefore one can describe its asymptotic behaviour as z tends
towards any rational point on the real axis. This is precisely the sort of
problem for which the Hardy-Littlewood circle method was designed.
When we apply it, we obtain a “singular series” which approximates (2)
and which, on the other hand, can be explicitly summed to yield (1). How-
ever, we do not obtain a proof of (2): there is a built-in error in the circle
method in this situation, and we cannot show that the singular series really
sums to the expression in (2), but only that the error is of smaller order
than the main term (roughly the square root) as p — co. Indeed, in working
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out the analogous formula for {, (1 —2m), where m > 3, we find that there
really is a difference of this order between the Fourier coefficient we are
trying to evaluate and the value of the singular series. The calculation of
the singular series is carried out in Section 4.

Finally, in §5 we give conjectures concerning the Fourier coeﬂiments of
a certain modular form of weight 4m related to the value of (g (1 —2m).

§1. SIEGEL’S FORMULA

In this section, we will state the formula of Siegel for the value of { ()
where K is a totally real algebraic number field and b a negative odd integer.
We will also give a brief description of the proof.

We begin by reviewing the main properties of the zeta-function of a
field. Let K be an algebraic number field of degree n, and @ the ring of
integers in K. For any non-zero ideal U of @, the norm N () is defined as
the number of elements in the quotient O/U. For m = 1, 2, ..., let i (m)
denote the number of ideals of @ with norm m. This number is finite for
each m and has polynomial growth as m — oo, and so the series
2n_1i(m)m™° makes sense and is convergent if s is a complex number
with sufficiently large real part. The function it defines can be extended
meromorphically to the whole s-plane, and the function obtained is de-
noted (g (s). Thus we have the two representations.

1
k() = Y 1
= Ny )
= ] (1=-N®)°, (2)

pt

provided that Re (s) is large enough. The sum in (1) is to be taken over all
non-zero ideals of ¢, and the product in (2) (Euler product) over all prime
ideals. The function obtained by analytic continuation has a simple pole
at s = 1 and is holomorphic everywhere else.

Moreover, the function { satisfies a functional equation relating { (s)
and (g (1—ys). In the case of a totally real field K (i.e. K = Q (o) where «
satisfies a polynomial of degree n with n real roots), this takes the form

F(s) = F(1-5), (3)
where

F(s) = D¥2 g~z [ < ) {x (s). (4)




58 —

(Here D is the discriminant of K.) In particular, we have

{k(—2m) =0, (5)

(g (1=2m) = {(=D"(2m—1)1j22" L g2m 3" D2m= 12 (4 (2m)
(m=1,2,..) (6)
It 1s thus equivalent to give the values of (i (s) at s = 2 4,6, ... or at
s = —1, =3, =5, ...; we shall prefer writing our formula for the latter

values since, as it turns out, they are always rational numbers. For instance,
if K = Q is the field of rational numbers, thenn = 1, D = 1, 0 = Z, and
the only ideals are (r) with r = 1, 2, ..., so

1
Lk (s) = Lo(s) = L(s) = Z = (7)
is the ordinary Riemann zeta-function; in this case (6) says
(—D"(2m—1)!
((1=2m) = Em=T 2m £ (2m) (3)
= - BZm/zm ’ (9)
where B; is the i-th Bernoulli number (B, = 1, B, = —1/2, B, = 1/6,
B; =0, B, = —1/30, ...) and is always rational.

We now proceed to describe Siegel’s formula. We first need some
preliminary notation. Recall the definition of the different d of K: b is the
inverse of the fractional ideal

= {xeK|tr(xy)eZ(yye0)} (10)

(here tr (z) = zP) + ... + z ™ denotes the trace of z e K). The ideal d is
integral, and its norm is related to the discriminant D of K by

D = N(d). (11)
Next, for r = 0, 1, 2, ... we define
o.(n) =Y d (n=1,2,3,..) (12)

dn

to be the sum of the r-th powers of the positive divisors of z#. (This is standard
notation.) We generalize this definition to number fields by setting

o, (W = > N(B) (Ac 0O an ideal). (13)

B A
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Here the sum is over all ideals B of @ which divide (i.e. contain) . If
K=0Q,0 =Z, A = (n), this agrees with (12).
Finally, for /, m = 1,2, ..., we define
Slf (2m) = 21 Oam—1 ((V) b)- . (14)

vep —

v>0
tr(v) =l

The sum extends over all totally positive (i.e. all conjugates positive)
elements of the fractional ideal (10) with given trace / (there are only
finitely many such elements). Such a v need not be integral, but the product
of the principal ideal (v) with the different d will be an integral ideal, and
therefore 6,,,—; ((v) ) is defined.

We can now state Siegel’s formula.

THEOREM (Siegel [9]). Let m = 1,2, ... be a natural number, K a
totally real algebraic number field, n = [K:Ql, and h = 2mn. Then

Lo (1=2m) = 2" z b, (h) s (2m) . (15)
I=1

The numbers r > 1 and b, (h), ..., b.(h) €Q depend only on h. In par-
ticular,

r = dimc M, (16)

where IR, is the space of modular forms of weight h; thus by a well-known
formula

h/12 if h=2(modl12),

L { [h/12] ( ) (17)

[R/12] +1 if  h = 2(mod 12),
where [x]| denotes the greatest integer < X.

(We have given a table of the coefficients b, () on page 60, if for no
other reason than to emphasize that they really only depend on the integer
h and not on the field. The values for 4 even, 4 < h < 24, were taken from
Siegel [9]; the values for 4 | h <40 were calculated on the System 370 compu-
ter at Bonn.)

Proof of theorem (sketch): Recall that one can define a modular form
of weight 2m by the Eisenstein series

1
G2m (Z) - Z n . \NOm
iz Az 4"
(4,1) #(0,0)

(18)
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TABLE 1.

The Siegel coefficients b, (h)

h b1 (h) ba (h) b3 (h) by (h)
4 RS
240
6 -1
504
8 b
480
10 -1
264
12 -1 1
8190 196560
14 -1
24
16 -1 1
680 146880
18 22 1
3591 86184
20 —19 b
1650 39600
2 —4 1
207 14904
- —1087 1 1
291200 1092000 52416000
’3 —2529 -1 1
259840 81200 15590400
3 837 -9 1
43520 54400 2611200
36 — 274486 — 899 1 1
29895075 28787850 86363550 6218175600
10 — 602849 —1773 -1 1
39067875 14206500 7441500 1250172000
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(ze $ = upper half-plane, i.e. zeC and Im(z) > 0). Since G, (z) has
2riz

period 1, it has a Fourier expansion as a power series in g = e~"",
Gym(2) ~ag +a;q +a,q° + ... (19)
valid as z — i oo (i.e. ¢ = 0). Then clearly

ag = Y 47 =2002m), (20)
iz

and an easy calculation gives

~N2m
a, = 2%02,,2_1(n) (n=1,2,...). (21)
In an entirely analogous way, for the field K one can construct a modular
form of weight 2m in n variables z, ..., z,€ 9 (the Hecke-Eisenstein series)
and calculate its Fourier coefficients. By setting z; = ... = z, = z, W¢
obtain a modular form G5, (z) in one variable, of weight 2mn = h, with a
known Fourier expansion, namely

Gym(2) ~ag +ayq +ayq* + ... (22)
with
ap = (x(2m), (23)
a, = {Q2n)*"/2m—-11}"D 2" 2T 2m) (1=1,2,..). (24)
On the other hand, since the space 9, of modular forms of weight 4 has
finite dimension r, there must be a linear relation among the first r + 1
coefficients in the Fourier expansion of any such form, i.e. there must exist
numbers ¢y g, Cp 15 -..» ¢, depending only on /4 such that
feM,, f~ag +aq +ag* + ...
= Ch’oao + Ch’lal + iig + Ch’,.a,. —_— O . (25)

Siegel then shows that ¢, , is non-zero for all /, so we can set

by(h) = —cpifeo (I+1,...,7) (26)

to obtain from (25) the relation
o = lZl b,(h) a, (27)

expressing the constant term of a modular form of given weight as a linear
combination of finitely many of the other coefficients of its Fourier ex-
pansion. Substituting (23) and (24) into (27) gives
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(e (2m) = {QriP"(2m—1)1})"D=2m 12 Y by (5K 2m),  (28)

which 1n view of the functional equation (6) is equivalent to the assertion
of the theorem.

Since the numbers o, () and hence s5 (2m) are clearly (rational) integers,
we deduce from (15) not only that {; (1 —2m) is rational, but also that its
denominator is bounded by a number depending only on 4, i.e. only on the
number 1 — 2m and the degree of the field K.

We now juggle the terms in the Siegel formula somewhat to rewrite it
in a suggestive form. If we substitute the definitions (14) and (13) into
equation (15) and invert the order of summation, we obtain

CK(l——z}n) — o VZ bl (h) Z Z N(%)2m~l

vep—1 Bl (v)d
v>0

tr (v) =1

= 3 w(B)N (B!, (29)

B

where the sum is over all non-zero integral ideals B and the “weight”
w (B) is defined by

W(B) =2" Y by (). (30)

veBp—1

V3> 0
The sum in (30) is always finite and is empty for all but finitely many ideals
B (because b, (k) = 0 for / > r) so the sum (29) is in fact finite. Equation
(29) is a rather amusing formulation of Siegel’s theorem, for if we had just
mechanically substituted s = 1 — 2m into (1) without regard for conver-
gence, we would have obtained

(x(1—2m) = ) N(B™ ', (30)
B

which is of course nonsense, but then equation (29) tells us that it is all
right after all, if we just insert “fudge factors” w (B) to weight the summands:
thus one really can evaluate {; (1 —2m) by adding up (2m— 1)-th powers of
norms of ideals.

In this connection, it is perhaps worthwhile to observe that the weights
w (B) are not unique. Indeed, given /4, we can choose any ' > r and find
coefficients b, (h), ..., b., (h) expressing the constant term of any form
feM, in terms of the next r’ coefficients (such collections 5" will form an
affine space of dimension r’ — r). Then Siegel’s theorem is valid with the
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b} in place of the b,, and similarly using the 4; in (30) would give other
weights making (29) hold.

Finally, for completeness’ sake we should mention that Siegel gave a
somewhat more general formula than the one stated. If 4 denotes any
ideal class of the field K, then restricting the ideals A in the sum (1) to
ideals in the class A gives rise to another meromorphic function, denoted
{ (s, A). This function also takes on rational values at negative odd integers,
and Siegel’s formula for these rational numbers is identical to (15) except
that one must modify the definition of o, () by only allowing those ideal
divisors B in (13) that lie in the class 4. In the formulation of Siegel’s
result just given, this can be simply stated

((1—-2m,A4) = > w(B)N(B)*" 1, (32)

BeA

with the same weights w (B) as before.

§2. ZETA-FUNCTIONS OF QUADRATIC FIELDS

We now specialize to quadratic fields. A totally real quadratic field can
be written uniquely as Q (¢'/?) with d > 1 a square-free integer. Then it
is easy to check that

D

D

Il

d if d=1(mod4), (1)
4d if d =2or3(mod4),

and
b =(/D), (2)

1.e. the different is a principal ideal. The decomposition of rational primes
in the ring of integers @ is described in terms of the primitive character

x (mod D) defined by
D
7() = <~>
X

(here y is completely multiplicative, and given on primes by: y(p) = 0 if
D [ D;forp k2D, y(p)is +1 according as D is or is not a quadratic residue
(mod p); for p=2 and D =d odd, y(2) = (= 1)@ V%) as follows: if
p=2,3,5,.. is a rational prime, then the ideal (p) = @ decomposes into
prime ideals according to the value of y (p) —

(3)
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x(p) = Il=(p = PP,, P, = %29 N(B) = p, (4a)
1) = 0=(p) = P2, N(P) =p, (4b)
1(p) = —1=(p) = P, N(P) = p*. (4c)

Substituting this into the Euler product 1 (2) gives (for Re (s) sufficiently
large) .

1
{x(s) = —
1;[ 1L = NCB)

1 1 1 1

= H SH -sH 2s

x(p)=1 1 —p721—-p %(p)=0 1—-p x(p):—ll - D

1 1
- fpl IL—p=1-x®p’
= {(s) L(s, %), (5)
where { (s) 1s defined in 1 (7) and
L) = 3, o (6)
n=1 N

is the L-series associated to the character y. Again, (6) is convergent only
for Re (s) large enough, but the function L (s, y) it defines can be extended
to the whole s-plane (and (5) is then true everywhere). L (s, y) is holo-
morphic everywhere.

Since we know the values of { (2m) (equation 1 (9)), we only need
calculate L (2m, y). But y (n) is periodic with period D and satisfies
y (n) = x (—n), so we have

0 _ 1D——1
L@2m,y) = ) xm)yn™?" =3 Y x(a)¢(a,D;2m), (7)
n=1 a=1
where |
¢(a,D;2m) = Y a7 ®)
nE'cII:(rrToch)

This last sum can be evaluated in terms of elementary functions:

a
¢(a,D;2m) = X (rD+a)"*™ = D7*"f, (5) ) 9)
reZ

where

fn(x) = %

reZ (r+x)2m




b

.

ol
-
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_q gpemt oo
B (2m—1)ldx
2m—1
e d‘i oot nx. (10)
Thus
fi(x) = 7n?(csc?nx), f,(x) = n* (csc* nx — —i csc” mx) . (11

This gives a finite and elementary expression for L (2m, y). It can be sim-
/a
plified yet further by observing that f,, kD) is periodic in a with period D,

and therefore has a finite Fourier expansion as a sum Xy, e*™"/P, The
coefficients y, are easy to compute and are rational. If we then put all this
into (7), we finally obtain the formula

(_1)m—1 22m=1 ,2m D i

where B, (x) denotes the r-th Bernoulli polynomial :

B, (x) = z (;) B._.x°. (13)

s=0

If we substitute (12) and 1 (9) into equation (5) and apply the functional
equation 1 (6), we obtain finally
> i
- ¢ ' m\ ~ (14)
i=1 : <D)

That 1s, for quadratic fields it is possible to give a completely elementary
formula, derived in a completely elementary way, for the value of { (1 —2m).
As an illustration, we take m = 1. Since

B2m

Bz(x)zxz——x—{——é, (15)
one gets (after some trivial manipulations)
1 D-1
Lk (— )—ﬁﬁ Z o)V (16)
For example, with K = Q (\/_ 5) we get
CK(—1)=%0[12——22—32+42] =§%, (17)
L’Enseignement mathém., t. XXII, fasc. 1-2. 5




s G e
while for K = Q (/13)
(k(—1)

[12—22+3244%>—52—62 =72 —82 4+ 92 + 102 —11% +127]

=—24>< 13

! 18
== (18)
For a more complete discussion of the formulas treated in this sec-

tion, see Siegel [8].

§3. THE SIEGEL FORMULA FOR QUADRATIC FIELDS

In this section we shall exploit the simple arithmetic of quadratic fields
to evaluate in elementary form the various terms entering into Siegel’s
formula, thus arriving at an expression for {y (1 —2m) which is elementary
in the sense that it involves only rational integers and not algebraic numbers
or ideals.

We have to evaluate sX (2m), and to do so we must first know how to
compute o, (W) for any ideal A.

LEMMA. Let U be any ideal of the ring of integers O of a quadratic field

K. Let D be the discriminant of K and y (j) = <D> the associated charac-
ter (as in §2). Then, for any r > 0, !

g, (N = j%{ 1 (D" e, (N[j?), ¢ (1)

where N = N (W) is the norm of W, the function o, on the right-hand

side is the arithmetic function of 1(12), and the sum is over all positive

integers j dividing W (i.e. v/[je O for every ve U; clearly this implies
7* | N, so equation (1) makes sense).

Proof : It is very easy to check that both sides of (1) are multiplicative
functions, i.e. o, (AB) = o, (N) o, (B) for relatively prime ideals W and B,
and similarly for the expression on the right-hand side of (1). It therefore
suffices to take U to be a power P™ of a prime ideal P. Write N (P) = p*
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where p is a rational prime and i = 1 or 2. Then we can evaluate the left-
hand side of (1):

o, (A = 0,.(P") = N (B)
BIPp™

Y N®Y = Y P = (™). 2)
n=0 n=0

To evaluate the right-hand side of (1), we must distinguish three cases,
according to the value of y (p).

Case 1. y(p) =1, (p) = PP’ (P’ = conjugate of P). Then N ()
= N(P)" = p™. Clearly j| A=j= 1, for j can only be a power of p
(since j| N (2) and cannot be divisible by p (because P’ | p, P’y ). Hence
the sum in (1) has only one term o, (N) = o, (p™), in agreement with (2).

Case 2. y(p) =0, (p) = P2 Again j can only be a power of p, and
since x (p) = 0, the only term in (1) that does not vanish is the term j = 1,
namely o, (N). Since N = N (P)" = p™and i = 1, this again agrees with (2).

Case 3.y (p) = —1, (p) = P. Now A= P™ = (p™), so j can take on
the values 1, p, p?, ..., p™, with x (p") = (—=1)". Here i = 2 and N = N (P)"
= p?™ so we must prove

72, (P") = 20 (=" p" o, (") (3)

This is just an exercise in summing geometric series.

The lemma enables us to calculate the generalized sums-of-powers
functions ¢, (A) in terms of the ordinary function o, (m). It remains to see
what ideals U occur in Siegel’s formula. Recall that

S,; (2m) = Z Oam—1 ((V) b) s (4)
5%
tr(v)=lI
and that B
b = (/D) (5)

for a quadratic field. Furthermore, the ring of integers of X is

@z{x_ﬂ_@
2

x,yeZ, x* = y*D (mod 4)} . (6)

We can now describe explicitly the v occurring in the sum (4). Write such
avasa+ f/D with « and f rational. Then
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ved~? @‘v\/ﬁe@, (7)
v>0®cx>]ﬁ[\/5, (8)
tr() =1 < a =12, 9)

From (6), (7) and (9) we then get § = b/2D, where b is a rational integer
satisfying
b? = I’D (mod 4) (10)
and (because of (8)) also
b* < I’D. (11)

Then (v) ¢ is the principal ideal
— b 1
()b = (v /D) = (5 + 5 ﬁ) . (12)

An integer j can divide this only if j | b andj[ land (b/j)* = (I/j)* D (mod 4),
so by the lemma

()= ¥ x(j)fa,<
b b
2D (mod 4)

Z/ZD __b/2
— (13)

b'2=1

We now substitute this into (4), where the summation in (4) is now to be
taken over all integers b satisfying (10) and (11), and obtain finally

st(2m) = 3 1 (NP ez (()*D), (14)

in

where the arithmetic function e, (#) is defined by

n—x>
@ = 3 o (") (15
x2=n (mod 4) 4 ‘
[x|=+n
(r =0,1,2,..;n a positive integer, not a perfect square). Then (15) is a
finite sum (empty, if » = 2 or 3 (mod 4)), and so is (14), so that we have
completely evaluated s% (2m) in elementary terms. Then Siegel’s theorem

states

(x(1=2m) = 4 2 b, (4m) s (2m), (16)
1=1

with r = [m/3] and the coefficients b, (4m) computable rational numbers
tabulated on p. 60 for 1 <</ < 10.
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Using the values of b, (4m) and equation (14), we can write out the
first few cases to illustrate (16): m = 1. Here r = 1, by (4) = 1/240, and
so (16) reduces to |

(- = KO =ga®. (D
Thus for K = Q(\/S) we find
1 1 512 5—(—1)
k(=D = _6691 (5) = 60{ <—4_#> T 04 <__(I—)“>}
= 20, (1)/60 = 1/30, (18)

in agreement with 2 (17), and similarly for K = Q (\/1_?;)

(1) = e (1) = ?2(){” (13;12> + oy (”13;32\)}

\

I

2
=B+ = 1/6, (19)

in agreement with 2 (18) (but notice how many fewer terms!). m = 2.
Here again r = 1, and the formula is just as simple:

(- 1
CK(—3)=§651(4) T2_063(D)' (20)

Thus with K = Q (\/13) we find

2
(e (—=3) = Wﬁ(33+13+13) 2(9) (21)

m = 3. Here r = 2 and the formula is more complicated:

Il

{x(=3) (52 (6) =24 57 (6))

196560

1
= 29140 {es(4D) + 32 x(2)es (D) — 24 e5 (D)} . (22)

Here for K = Q (\/1_3) we get

Lk (=35) = (e5(52) — 56es(13))/49140
= (05 (13) + 205 (12) + 205 (9) + 205 (4)
— 11205 (3) — 11205 (1))/49140
= 980370/49140 = 3631/182. (23)
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TABLE 2.

The Siegel formulas for quadratic fields

D |
K=0Q (\/]3) , = discriminant, y(m) = (—) )
m
e,(n) = > a.
b24ac=n

a,c>0

60k (—1) = e; (D)

120 (—3) = e3(D)

49140 ¢ (—5) = e5(4D) + [32%(2) + 24] es (D)
36720(x (—=7) = e;(4D) + [128 % (2) — 216] e; (D)
9900 {x (—9) = ey (4D) + [512%(2) — 456] ey (D)

13104000 {x (—11) = e,, (9D) + 48e,, (4D) + [177147 % (3)
+ 98304 x(2) — 195660] ey, (D)

3897600 (x (—13) = e,5(9D) — 192¢,5(4D) + [1594323 4 (3)
— 1572864 3 (2) — 1517407 e,5 (D)

652800 ¢ (—15) = e,5(9D) — 432e,5(4D) + [14348907 y (3)
— 14155776 1 (2) — 50220] e, 5 (D)

1554543900 ¢ (—17) = e,7(16D) + 72e,,(9D) + [131072 x(2)
— 1941847 e, (4D) + [17179869184 y (4) + 9298091736 x(3)
— 25452085248 3 (2) — 57093088] e, (D) ~

312543000 (¢ (—19) = e,o (16D) — 168e,o (9D) + [524288 1 (2) ‘
— 156024] e, (4D) + [274877906944 3 (4) — 195259926456 y (3)
— 81801510912 y(2) — 19291168] e,o (D) |

42124500 ¢4 (—21) = e,y (16D) — 408 e,, (9D) + [2097152 1 (2)
— 60264] e,, (4D) + [4398046511104 y (4) — 4267824106824 y (3)
— 126382768128 % (2) — 3953248] e,, (D)
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In Table 2 we write out in full the formula for {x (1—2m) (1 < m < 6)
in terms of the arithmetical functions e, (n). In Table 3 we give the values
of {x (1—2m) for 1 <<m < 6 and K a quadratic field with discriminant at
most 50. Since it is more convenient to tabulate integers, we in fact give
the values of

Zym-1 = t(m){xg(1-2m), (24)

where ¢ (m) is the bound implied by (16) for the denominator of { (1 —2m),
namely

t(m) = L.C.M. {denom 4b, (4m), 1 <[ <r}. (25)

Because the question of the denominator of (j (1 —2m) is important
(namely, a prime p divides this denominator whenever the p-adic analogue
of {x (s) has a pole at s = 1 — 2m), it is worthwhile to try to sharpen (25).
To do this, we use the result of §2, namely

2m
(K(l—zrn) = (B2m/47nz) Z BrDr——lﬁZm—r(D)z (26)
r=0
where B, is the r-th Bernoulli number and
D
fr(D) = Xt ()" 27
J=
Set
a(m)y=_[] p. (28)
3<=p=2m+1
P prime

For 0 <r << 2m, 2a(m) B, is an integer, by von Staudt’s theorem, and
1
since B, (D) = 0 (mod 4), 54 (m) B, D"~ B, _, (D) is an integer for r > 1.

There remains the term r = 0 of (26). If D is divisible by an odd prime p
but D # p, then (writing D = pD’, with p ¥ D’)

D

fon®) = T 1,008 YT () (mod p. @9

j=1
Jj=k (mod p)

and the inner sum is O for D’ > 1. One also checks easily that f,,, (D) is
always even, is divisible by 8 if D = 0 (mod 4) and is divisible by 16 if
D = 0 (mod 8). Therefore f,,, (D)/D is an even integer, unless D = p is
a prime (= 1 (mod 4)). In that case,

p—1 p—1 '
Pou(P) = 2 (5) = ) kD2 = 0(mod p)  (30)
p

k=1 k=1
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1s divisible

if2m+p

is not divisible by p — 1. Finally, if 2m + ©

by p — 1, then (p—1) | 4m and hence p = 4m + 1 or p <2m + 1. There-
fore a(m) B,,, (D)/D is an even integer here also, except in the one case
D = 4m + 1 = prime. Thus, if we set

s(m) = a(m)-denom (B,,/2m?) "¢, , (31)

(32)

m

dm + 1 if 4m + 1 is prime,
¢ 1 otherwise,

then s (m) {x (1—2m) will be an integer for all quadratic fields K, and
indeed (s (m)/e,,) (x (1—=2m) will be an integer for all fields except

Q (V/ 4m ﬁ). We have tabulated the two bounds ¢ (m) and s(m) for
1 <m <17 in Table 4, putting the factor ¢, of s (m) in brackets because
it only occurs in the denominator of (i (1—2m) for a single exceptional
field K. It will be seen that in general neither of s (m), ¢ (m) divides the other,
so that

u(m) = G.C.D.{s(m),t(m)} (33)

gives a better bound than is provided by either the Siegel or the elementary
method alone. From the table of values of u (m) one sees that, for instance,

31Z;, 20|Zy (34)
and that

50Z, if D#5, 13|Zs if D #£13, 17|Z, if D #17. (35)

All of these congruences can be verified in Table 3. Indeed, Table 3 suggests
that (34) can be improved to

31Zs, 91Z,, 3|Z,, 400|Z, (36)
and that, as well as the congruences (35), one has
5/Zs, 25|Zy if D #5. (37)
All of these are special cases of the following
CONJECTURE ([6], p. 164). For any totally real K,
w,(K){(x(1-2m)eZ, (38)
where the integer w,, (K) is defined as

G.C.D. { (NBY (NP>"—1),i > m, P a prime ideal}. (39)
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Define an integer j (m) for m = 1, 2, ... by

j(m) = G.C.D.{n""2(n*"—1),neZ}. (40)
Thus
j() = 24,j(2) = 240, (3) = 504, (4) = 480, ... -

Then it is easy to check that, for K a quadratic field, w,, (K) = j (m)

(independent of K!) unless K is one of the finitely many fields Q (\/ p) with
p a prime such that (p—1) | 4m, (p—1))2m, in which case w, (K)
p°*1j(m), where p® is the largest power of p dividing m. This is interesting
because the numbers j (m) occur in topology: it is known (now that the
Adams conjecture has been proved) that j (m) is precisely the order of the
group J (S*™). This may be just a coincidence, of course, but could conceiv-
ably reflect some deeper connection between the values of zeta-functions
and topological K-theory (the conjectured connection between these values
and algebraic K-theory was mentioned in the introduction).

§4. THE CIRCLE METHOD AND THE NUMBERS €,,,_; (1)

In §3 we defined

M= Y o ( “kz) , (1)

k2=n (mod 4) 4
k| =V
where r and n are positive integers and, for b a positive integer, o, (b) is
defined as the sum of the r-th powers of the positive divisors of b. Since (1)
was only needed for n not a perfect square, we are still at liberty to define
g, (0); we set
1 B,y

1
GAD)Z:EC(—r)=:—'Er_+1'

(2)

This defines o, (b) for b = 0, 1, 2, ...; we extend the definition to all real b
by setting ¢, (b)) = 0if b < 0 or b ¢ Z. Then (1) can be rewritten

e = Y a,(""k). 3)

k=—w 4

We were led to consider these numbers by Siegel’s theorem, which, for
real quadratic fields K, expresses the value of {x (2m) or ( (1—2m) in

terms of the numbers e,,_; (n) with K = Q(\/ 1;). In this section we
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follow a different course, and study the numbers (3) directly by the tech-
niques of analytic number theory—specifically, by means of the Hardy-
Littlewood circle method. This will lead to the following formula for

erm—1 (n):

THEOREM 1. Let m and n be positive integers, n not a perfect square.
If n=2 or 3(mod4) then e,,_,(n) =0. If n =0 or 1(mod4),
write

n = fD (4)
with
D = discriminant of K, K = Q (/). (5)
Then
_CK(l——2m) . o
€rm-1(n) = m T3n(f) +0(n ) s (6)

where y is the character associated to K (cf. §2) and T%,, (f) is the multi-
plicative function given by

T5,(f) = ety MO 2@ 7
tif alt a
B zl:f'u(a) 2(@)a*" " 04y (f]a) (8)

(u (@) denotes the Mobius function).

Note that the first term in (6) really is of bigger order than the error
term, since one easily checks that 7%, (f) > ¢ f*™ ' and (x(1—2m)
> ¢, D*™"1/2 with constants ¢, c, > 0, and hence the first term is
> ¢ n2m-— 1/2.

Before turning to the proof of this theorem by means of the Hardy-
Littlewood method, we consider its relationship to the results discussed in
Sections 1 and 3. We saw in §1 that the Hecke-Fisenstein series G5, (2) of

K has the Fourier expansion

G3m(2) ~ ag + a1q + ayq® + ... (q=€>") 9
with
ag = {x(2m), (10)
| 2
a, = kst (2m) =k, Y x(Nj*" " eam-1 (]—2 D): (11)
it

where k, = Qn)*" D~?"+1/2 | 2m—1)!2. Since G5, (z) is a modular
form of weight 4m, the form G5, (2) — ay G4, (2) | 2L (4m) is a cusp form
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of weight 4m, where G, (z) is the ordinary Eisenstein series (we have used
1(20)). But a very well-known theorem of Hecke asserts that the n-th
Fourier coefficient of a cusp form of weight 2k is O (n*). Therefore (using
1 (21) for the Fourier coefficients of G,,,)

1w, 24mtigem

K —_ S 2m
s1(2m) = k20 (4m) (4m_1)!04m—1(l) + 0(°™)

2m—1)"1*{x (2m)

= (4m—1)1 {(4m) Pam-1 () + 0 ()
1-2

where in the last line we have used the functional equations of {x and (.
Substituting (11) and inverting gives

eam—1(f?D) = Zlf u(a) y(aya* =" s, (2m) (12)
CK (1 —2m) Im—1
= % (1~4m)(%,u(a)x(a)a Oam—1 (@)
+0(f*m, (13)

and this is essentially the same as (6)—indeed with a better error term
0 (n™) rather than 0 (n™*1/4),

Nevertheless, there is some point to proving Theorem 1 by the circle
method. First of all, it provides a direct proof of the relationship between
the arithmetic function e,,_, (1) and the value at s = 2m of the zeta-

function of Q (\/ ;). Secondly, the evaluation of the “singular series”—
which yields the first term of eq. (6)—involves an evaluation of certain
Gauss sums and of a Dirichlet series with such Gauss sums as coefficients

which are of interest in their own right. Namely, we will prove the following
two theorems.

THEOREM 2. For positive integers a and c, let

c

1) = 14
(a,c) jar2 (E)lf a is odd, ¢ even, (14)

a

( a
j(1=e)/2 <—> if ¢ isodd, a even,

0 otherwise,
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|

z where( ) (q odd) is the Legendre-Jacobi symbol and i*? = e™*/*, Thus
; q

A(a,c) is O if a and c have a common factor or are both odd, and is an
8th root of umity otherwise; furthermore, 7y (a,c) is periodic in a with
period 2c. We define a Gauss sum 7y, (n) by

v, (n) = jﬁ Z A(a, c) e mirale (15)

Then A, (n) is given as follows :
If ¢ is odd, write ¢ = ld* with | square-free. Then

[ 0 if dyn,

n 2 16
Ve (n) = 5 (—)<n/;>zfd|n (16)
t](d)

If c is even, write ¢ = 2" ¢, with ¢, odd, r > 1. Then

Ye(n) = Q,(n)y, (n), (17)
where
[2r/2 (—1)m—Di4 if r iseven,
=2""?m,
= 1 (mod 4),
0, (m) =1 5 _ o (18)

22 (=pm==DI2 i f y isodd,
n=22"1m,

L 0 otherwise .

THEOREM 3. Let n be a non-zero integer and define a Dirichlet series
E, (s) by

1 &y 1 & v.(n)
O350 YL oy 4

c
¢ odd c even

1
(ie. E,(s)= 2 a,m * with a, = 5 (Ym(") + 72m(M)  for m odd,

ay == Vam(n) for m even. Clearly |y, (n) | < 2¢'/?, so the series in (19)

converge for Re s > %; in fact, y,(n) = 0(1) as ¢ = oo by Theorem 2,
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so they even converge for Res > 1). Let K = Q (\/ ;), D = discriminant
of K, x = character of K, L (s,y) = L-series of y (if n is a perfect
square, y (m) =1 for all m and L(s,x) = ((s)). Then

E,(s) =0 if n=2o0r3 (mod4), . (20)
while, if n = 0 or 1 (mod 4), then
L(s, x) p(@x(a)  L(s,x) T5(S)

E, (s) = Y (21)

((2s) o2y & ta®  ((2s) fETLC
acl| f

where n = f? D.

As corollaries to Theorem 3, we see that E, (s) has a meromorphic
continuation to the whole s-plane, and that E, (s) possesses an Euler
product whose p-factor is 1 + y (p) p~* if p¥n and is a polynomial in p~*
in any case.

We will now show how the Dirichlet series (19) arises in connection
with the numbers e,,,_ ; (n), deferring to the end of the section the proofs
of the two theorems on Gauss sums just enunciated.

Let G,,, (z) be the Eisenstein series of weight 2m, defined in 1 (18),
and 0 (z) the theta series

6(z) = Y ™ (ze9), (22)
k=-—o0
where $ is the upper half-plane {z € C | Im z > 0}.
We define
(=D"2m—=1)!
Fm (Z) = 22m+1 7_52,,1 G2m(22) 6 (Z) (265) d (23)

Clearly F, (z+2) = F,, (2), so F, (z) has a Fourier expansion. From (22)
and the Fourier expansion of G,, (egs. 1(19)-1(21)), together with
eq. (3) and the functional equation of { (s), we obtain

2m _2m
2°" ¢ -

- 1" —1)! ®
Fm (Z) — (( ) (2m 1) ! C(zrn) + Z O'2m_1 (a> e4niaz>
% :.V: em’k2z
k=—o

0
— Z B e (Z) e4m’az Z en:ikzz
a=0 k

= ) eyp—yq (n)e™™. (24)
n=0
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Thus the numbers e,,,_; (n) are precisely the Fourier coefficients of F), (2).

By Cauchy’s theorem, therefore,
2 ~ie

J e ™ F, (2)dz (25)

ie

N =

€rm—1 (n) =

for anv e > 0.

The idea of the Hardy-Littlewood method is to replace the integrand
in the neighbourhood of each rational point of the interval [0, 2] by an
elementary function, integrate this function, and then sum up the contri-
butions obtained in this way from all rational points; this sum, the so-called
“singular series,” should then be an approximation to the integral. To
apply this to (25), we first use the transformation laws of the theta and
Eisenstein series under modular transformations to obtain

; (ﬁ +f>‘> = J(a,0) ()2 + 0 (y e mI4R) (26)
c

Gam (ﬁ +iy> = 2(=1)"L@2m) (cy) 2" + 0(y~2me” ™) (27)
C

: a, : .
as y —» 0 with Re (y) > 0, where — is a rational number in lowest terms.
£

Therefore
a 2m-1"! (c, 2)*™ . e
Fm (; +ly> —W (2 ) 2 +1/2 ’ (a C) Y : e
+ O(J,,-Zm—l/z e—rz/4c-y) (28)

as 3 — 0, where ¢ and ¢ are relatively prime and (c, 2) is the greatest
common divisor of ¢ and 2. To obtain the contribution from the rational
point a/c to the singular series, therefore, we replace F,, by the first member
of (28) and integrate over y. Since

_1_ I + & e—nin(iy+a/c) y—2m—1/2 dy
2 —Iioo + &

= p2mE1/2 2m=1/2 g rinale| (D 1 1)2) (29)

(this is just the standard integral representation for 1/I" (s)), we obtain as
the contribution from a/c

(C, 2)2m

-1/2
C(m)nzm Y c2m+1/2

X(a,c) e mrale (30)

with
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/

8] —
2 (2m—1)!
2" T (2m +1/2)

C(m) = {(2m). (3D

a , :
Summing this over all rational points — € [0, 2), we obtain the following
c y

formula for the singular series:

(C 2)2m

ym—1(n) = C(m) n?mo 1 Z Ve (1) (32)

c=1

=2C(m)yn*""Y2E (2m), (33)

where E, (s) is the Dirichlet series of Theorem 3.
We wish to estimate the difference between e,,,_; (n) and &,,,-, ().
To do this, we define a function having the same behaviour in the neighbour-

a
hood of each rational point — as that described by the leading term of (28):
¢

_ 2m—1)!
Fm (Z) - 24m m 2m C(2m)

z 2m—-1/2 2 Aa, c)

c= lc a=—

© (¢, 2% & (z——a/c> stz -,

The series is convergent for z € §, and

Fo(2) = F,(2) = 0(y™2m1/2 = nl4c) (35)

| a _
for z = - + iy, y — 0. On the other hand, F, (z) is evidently periodic

with period 2, and one easily finds (using the Cauchy integral for the
Fourier coefficients and the contour integral (29)) that its Fourier expansion
is

F(2) = i s (n) € (36)

with &,,,_{ (n) given by (32). The analysis given by Hardy [2] now permits
us to deduce from (35) that

Crm-1(n) — &1 (n) = O(nm+1/4) (37)

as n —» o0. We will not reproduce this analysis here, since our main interest
1s not in a rigorous proof of (6) with error term (in any case, as pointed out

L’Enseignement mathém., t. XXII, fasc. 1-2. A
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above, this error term is not best possible) but in the evaluation of the
singular series obtained in the Hardy-Littlewood approach. To see that
(37) and (6) are the same, we use equation (33) and Theorem 3 to get

L(2m, y) y 4 (a) x (a)

é'2m—-1 (sz) = 2C(m)f4m—1D2m_1/2 C(4m) C4m—1 a2m
ac|f

_ {x (1 —=2m)
C20(1—4m)

T%m (f) 2 (38)

where in the last line we have used (7) and the functional equations of {
and (g.
It remains to prove Theorems 2 and 3.

Proof of Theorem 2: We first suppose ¢ is odd. Then the standard
Gauss sum

(b .
T, (I’l) — Z (_C_> eZmnb/c (39)
b=1 ‘
is related to y, (1) by
2c 1—c a
’))c (n) — Z c—1/2i 2 (__) e—rcina/c
a=1

c
a even

-2
= ¢~ 1/2 j-a)f2 <—> 7, (n), (40)
c

as one sees by setting a = 2b. If ¢ is square-free, then the value of (39) is
well known to be

(z) Je ife=1 (mod 4),
T.(n) = 1 (41)
(f> i/e if c=3 (mod 4),
C
or N
ezl /_2n
t,(n) =i 2 <———> cl/? (c square-free) (42)
C

Therefore y,. (n) = (E) if ¢ is square-free, in agreement with (16) (since in
¢

this case d = 1, I = ¢). Now let ¢ = Id* with [ square-free. Then
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O-e-|0

0 if (b,d)>1

b
= ('[) Z ,ll,(_]) s
Jlb

Jjld

where u () is the Mdbius function, so

< [b :
Z ,LL(]) Z <7> eZmnb/c
b=1

Jld }
Jlb

i\ <M /I o
po(EQe @

k
where we have written b = jk. Since <7> only depends on k (mod /), the

7. (n)

inner sum in (43) equals
0 if—y
if—4n,
: r ! 2rin(r+ml)j/c jl
@ - (44)
r=1

m=1 c njl\ .. c
—1l—]if=|n.
| Jl c jl

Write ¢ for dJj, so% = dt. Then, substituting (44) into (43), we find that
J

t.(n) = 0if d ¥ n, while if d | n

B d\ [d]t n
7, (n) = t% I <?) <l> dt T, <dt>

dt|n

Since / is square-free, we can now use (42) to get

= (e 3 ).

t| (d, ;)
. . . 1/2 _2 .( _1 /2 .
The factor preceding the sum 1is precisely ¢ —— i /2 " since

c
¢ = Id* = I(mod 8), so combining (45) and (40) yields precisely equation
(16).
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Now suppose that ¢ is even, ¢ = 2" ¢, (r > 1, ¢; odd). For a odd, we

have
r a—1)/2
o= ()-[()77N). e
a a Cy Cq

where we have used the law of quadratic reciprocity. The factor in square

brackets has period 8 and the factor (—Ci) has period ¢, so
Cq
Ala+8cy,¢) = A(a,c). (47)

It follows easily that y, (7) is O unless e”®™"<1/¢ equals 1, i.e. unless 2"~ 2
divides n (this condition is empty if r = 1). Write

n =272y (48)
with v an integer. Then
ar=2 8l _
v, (n) = 7 Y. A(a,c)e et (49)
& odd
Now write
a = ke + 8jy (50)
where
8y =1 (mod ¢,) (51)

(e.g. ¥y = (1—¢?)/8). Then a = j(mod c,) and a = k (mod 8), so a runs
over all odd residue classes (mod 8c¢;) when j runs over the values 1, 2, ..., ¢4
and k over the values 1, 3, 5, 7. Therefore (46) and (49) give

2r—2 c1 ] o
v, (n) — _ (> e-—21uvy‘1/c1
Je J-; €1

8 N/ —1 k—1)/2 .
% Z ik/2 (E) <_E___> e-—-mvclk/4 . (52)
k=1 1

k odd

The first sum is 7., (—vy), and by virtue of (51), (48) and (40).

61—1

_ r - 2 r 2
ro, (= 1)) = (—;2) (—2-) (1) = /o, (a)" (). (53)

The second sum in (52) is

. -1 .
i1/2 e-—mv01/4 + (_l)r ( i3/2 e—3mvc1/4
Cq
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+ (_1)ri5/2 g~ Smiver/4 4 (_:l) j112 o= Tnivel/4
Cq

. -1 .
= j1/2 g~ mivel/4 (1 _ (__l)r+v) <1 -I—i(—l)r (___) e——mvc]/Z) )
c

1
Putting this all into (52), we obtain

a2\ &
Y, (n) = 9 2 . (__) i2 e—mvc1/4(1_ (_1)r+v)

€1
X (1+ (=D ity (n). (54)
Clearly this is O if » = v (mod 2), while if v = r — 1 (mod 2) we obtain
2\ c,(v—1
ve(m) = 27 () el z—%—lv (n). (55)
€y

If r is even, therefore, v must be odd, and then the cosine in (55) is O if
v = 3 (mod 4) and (— D™ Y/* if y = 1 (mod 4). Thus for r even, v, (n)
is 0 unless n = 2"~ 2 m with m = 1 (mod 4) and is then 2% (—1)(m~ 1/
X 7., (m). If ris odd, then v is even, say v = 2m, and then the cosine in (55)
= (= 1)"tm=DI2(2/c))] ﬁ Thus for r odd, y,(n) is 0 unless n=2""1m
and is then 20"~ V/2 (—1ym»=D/2y . This proves equation (18).

Proof of Theorem 3. According to eq. (17), we can write

E,(s) = E"(s)R,(5), (56)
with
odd s v v Y
E;(s) = ), " (57)
Sodd
and
112 0m
RO =343 Loy 9

We first evaluate (57). Substituting (16) gives

o0
odd Va2 (1)
En (S) = Z Z b;s 2s
din =1 I'd
d odd l odd
I square-free

d n/t*

d odd t] (d’ d I square-free
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Now let r* be the largest odd square dividing n, and write n = Nr2. Then
t I r, and N and D differ by an even power of 2, so for any odd /

n/t? r/t\* (D\  [r[t\?
) =) (5) =) 2o,
[ l l [

. rjt\* . .
where y is the character of K = Q (\/;). Also T is 1 or 0 depending
whether / is or is not relatively prime to r/t. Therefore (59) can be rewritten

d
Exii(s) = Y, d7* ) <;> [1A+x®pr™, (60)
d gé’é t| <d, g) P/l’zt—r
where the final product extends over primes p not dividing the even integer

2r/t. Let u

r
—, e = — then
t t

o ;- uie -5
Ex(s) = ) n*t Y S5 T A+x®p™
ulr Zloﬁtéz e py2u

1 (1 + X@) S U= (A2 )

p ulp T p|Nu2 plu
P*2
x(p)> ( 1 ) ue 2 (p

= 1+ s ]-_[ 1— s Z s— H 1 - s

p1;12< p 5;1\; p2 ulr r2 ! plu p

1 _ p-2s s .

_ A AC) (61)

pl;[z l—x(p

We now evaluate the factor (58) of E, (s) corresponding to the prime 2.
Comparing (61) and (20), (21), we see that it remains to prove

f 0 if n=2,3 (mod4),

— —2s '
Ri(s) =y 12 20U=29) TX(20) if = f2D, (62
1—y(2)2°° °

where in the latter case we have set f = 2%r, r odd.
The first line of (62) follows immediately from (18), since we see that

n=23mod4)=0,m=—-1,0.(n) =0(F>1). (63)

We thus suppose n = j2 D, f = 2%r, r odd. We distinguish two cases,
according to the parity of D:
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Case 1. D = 0 (mod 4), x (2) = 0. Then either D = 84 with d odd or
D = 4d with d = 3 (mod 4). In either case, we deduce easily from (18)
that Q, (n) = 0 if r is even or if r is odd and greater than 2¢ + 3, that Q, (n)

= 20" D/2 if r is odd and less than 2¢g + 3, and that Q,, .3 (n) = —20%1
Therefore
1 2q+1 2(r 1)/2 2q+1
R,(s) = [1 + Z =T Z(qﬂ)s]
rodd

1
= o [1+1+x%+x*+... +x2—x%"?]

= (1=x*/2) (1 +x*+... +x°9
= (1=2729)279@7 D (1 42271 4 4213571
= (1-272) 2717 T5(29),

in agreement with (62); in this calculation we have set x = 275%% for
convenience.

Case 2. D = 1 (mod 4), y (2) = (—1)?~ /4 Tn this case, equation (18)
tells us that Q,(n) = 20" Y/2 if r is odd and 1 <r <2¢ + 1, that

Q,4+2 (m) =271 % (2), and that Q, (n) = 0 for all other values of r. There-
fore

1 F 2q+1 2(r 1)/2 2q+1 x(2)
R, (s) = 1+ Z H(r=1)s + 7 (2q+1)s :I

r=1

r odd

|

-

1+£ij|l:1+ +. 44X 2q___)(x+x 4+ .. +x2q 1)]

2 V2

—q(Zs«l){ Xz( )} [1+225—1+”.+2q(23—1)

T+1+x2+x* 4. +x2 + 4 (2) \/5x24+1]

II
N1 N

_ x(2) 22s—1+22(2s—1)+_”+2q(2s~1))]
23
—25
= 274(2s—1) 1 - T* (24
- =@

This proves (62) in this case also, and completes the evaluation of E, (s).




§5. CONGRUENCES FOR THE HECKE-EISENSTEIN SERIES

For K a totally real number field and m > 1, define
Gom (2) = {Q2ni)*"|2m —1)1} 7" D*""'2 G5, (2), (1)

where n = [K:Q] and G5, (2) (as in §1) is the restriction to the diagonal of
the Hecke-Eisenstein series of weight 2m. Then Gx,, is a modular form of
weight A = 2mn whose Fourier expansion (cf. egs. (22), (23), (24) and (6)
of §1) is

[e 0]

Gom(2) = 27" (1=2m) + 3 sT(2m) ™" (2)

=1
with s5 (2m) € Z.
In the space I, of all modular forms of weight 4, let

ME = {feM,|f(z) = Y a,e*™, a,eZ for n > 1}
n=0

be the set of modular forms whose Fourier coefficients, apart from the
constant term, are all integral. Then IMZ is a free Z-module of rank
r = dime M, and M, = MZ ®, C. Write

c: M2 - C

for the map sending a modular form f(z) = 2 a, e*™ to its constant
term a,. Then

M

cME) = L Z

Ny
for some coprime integers M, and N,, and N, is then a universal bound for
the denominators of the constant terms of forms in MZ and in particular
of GX . i.e.

| N, 27"{x(1-2m)eZ. (3)

This is the essence of Siegel’s theorem as discussed in §1.

But we know that (3) is not the best possible bound for the denomi-
nator of {x (1—2m) (cf. the remarks at the end of §3), and this means that
the modular forms G, must be contained in some smaller lattice than

|
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IMZ. For example, if K is a real quadratic field, then Serre’s bound for the

1 :
denominator of 1 (¢ (1—2m), at least for K not in the set

(Q(/2DIu{Q(/p) |p prime, (p—1)]4m, (p—Dy2m}, (4

is the number j (m) defined in §3, eq. (40), and this is always smaller than
N, = N,, (for m = 1,2,3,4,5 the values of N, are 2*.3.5, 2°.3.5,
24.32.5.7.13, 26.3.5.17 and 2*.3.5%.11, whereas those of j(m) are
23.3,2%.3.5,23.32.7,25.3.5 and 2°.3.11). Therefore, if K is not one of
the finitely many exceptional fields (4), the modular form Gj,, lies in the
proper sublattice

1
M = Miwn ¢ < Z (5)
j(m)

of M%Z . We want to describe some numerical evidence that, although

1
J (m) is the best possible bound for the denominator of 7 (g (1 —2m), the

modular forms G5, are contained in a much smaller sublattice than (5).
This means that the coefficients s} (2m) satisfy congruences (modulo certain
powers of certain primes) above and beyond those required to obtain the
correct bound for the denominator of {.

Form =1 or m = 2, M,,, is one-dimensional, so a modular form is
completely determined by its constant term and (5) is best possible. Consider
m = 3. A basis for M, , is given by O and R?, where

Q = E4(Z) =1 + 240 Z 05 (n)eZninz
n=1

R = E6 (z) =1 — 504 Z 0s (n) p2minz
n=1

. ) _ 1
(Ramanujan’s notation). The lattice 93?%2 has the basis —— O3, —1—
720 156

1 1
(726 0 + 1008 R2> . We conjecture, however, that for all real quadratic

fields K different from Q (v/2), Q (y/5) and Q (/13), the modular form

~K 1. . ) 1 5
Gy lies in the sublattice generated by 7 Q? and od R? i.e. that if we write

X 03 L Y p2 o
— 0 + R

=K
G, =



i
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TABLE 5

The modular form G% (z)

K = Q(/D), D = discriminant of K

_ 225
K K
G, (z) = a1 D!1/2 G, (2)

=“CK( 5) + Z Sy (6)‘] (qzezniz)

l=1
45
Ey(z) = — G4(Z) =1+ 240 Z o3(n)q"
n=1
945
E6 (Z) _ G6 (Z) —_ 1 e 504 Z O-c (n) qn
27'C n=1
G (2) = By (2 + o Eq (21
6 24 4 504 °
D X y
5 2/5 1
8 11/2 13
12 51 122
13 1018/13 2417/13
17 352 838
21 1092 2602
24 2313 5502
28 5404 12872
29 6438 15327
33 13536 32226
37 24650 58681
40 38437 91526
41 44608 106216
44 64757 154166

then the coefficients x and y will be integral for all quadratic fields K except
the three mentioned. Some numerical evidence for this is presented in
Table 5 (x and y were calculated for much larger discriminants and were
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always integers). Similar data for m=4 and m=35 leads to the con-
jectures
x _10° SQR*

G a7 +
5 480 12

Z (K#Q(J/2), Q(J17) ., ..

. 1470° 50?R>
GEe 1 2 7
10 g T 64

Z (K#Q(/2).QW/9).

These assertions imply highly non-trivial congruences for the coefficients
s% (2m) of the Hecke-Eisenstein series, since (for example) the lattice

147 5 .
generated by = Q° and 364 0?R? has index 7,938,000 in 9%, (whereas

[IM%, : M35] is only 50). This leads to the following

CONJECTURE. For each m > 1, define the “Hecke-Eisenstein lattice”
HE o5 the sublattice of IMZ, generated by the modular forms G%,, where

K runs over all real quadratic fields not in the finite set (4). Then
(i) MEE has finite index in M5,

(i) If we replace (4) by any larger finite set in the definition of WYL, we
obtain the same lattice (in other words, the only fields which are excep-
tional with respect to the congruence properties of their Hecke-
Eisenstein series are those for which the denominator of {y (1 —2m)
is exceptionally large).

(iii) For m < 5, MEE is as given in Table 6.
(iv) MYE has a basis consisting of monomials in Q and R.

(v) For m > 2, the primes dividing [M,,, :smf,’j] are : all primes < 2m
and 4m + 1 (if the latter is prime).

It would be of interest to have numerical data on GX,, for m > 5 and
for [K:Q] > 2, especially to test the somewhat rash conjecture (iv).
Particularly interesting would be to fix a prime p and study the behaviour
at p of the sublattice ML for varying m, since this could give information
about the p-adic analogue of the zeta-function of K.
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TABLE 6
The “Hecke-Eisenstein lattice” for m <5
(In the table, Q = E, (z), R = E4 (z). The data for m = 3,4, 5 is con-
jectural only.)
m Basis for ﬂﬁfm | Basis for ngf [ﬂﬁ%m: imf,fﬁ Icaiji(scc?i)rtli?;l:rllts
|
L 1 | 1 )
546 2 g & 5 =10 5,8
|
5 1 1
2 | o 2 T 2
| 250 2 240 © 2 8
1 1
PEppey Q3 . A Q3 ’
720 2
4 24.32,52.13
3 - 58,13
100 R % = 46800
| + _~_R?
r 156 \ 720 1008 504
555 0 15 O
25.32,5.7.17
4 = 171360 B L
4 2 -
1 (0, QR 5 oR®
1531\ 240 192 12
1 - 147
AT Qo ’ & Q5 b
S 1200 8 24,3153 72 -
S - 7938000 ’
L0 ORY S
| 36 \ 1200 528 264
AFTERWORD

The original version of this paper was written three years ago. To
bring it up to date, we must comment on two developments which have
occurred in the intervening time.

| 1. The conjecture of Serre quoted at the end of Section 3 is now (almost)
. a theorem. In the original paper [6], Serre proved the partial result that,

|
!
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for any totally real field X and positive integer n, [[ w,, (K) (g (1 —2m)
m=1

is an integer (the product occurs when one calculates the “Euler charac-
teristic” of the discrete group Sp,, 0, ¢ = ring of integers of K). For the
case of abelian totally real fields (and thus in particular the case of quadratic
fields), the conjecture is much easier, since it can be reduced to the evalu-
ation of L-series, and it was proved independently by several people (e.g.
J. Fresnel, “Valeurs des fonctions zéta aux entiers negatifs”, Séminaire de
Théorie de Nombres, 1970-1971, Bordeaux). In [7], Serre obtained better
bounds than 3 (25), still by using Siegel’s idea, but studying in more detail
the p-adic behaviour of the coefficients s (2m) of the Hecke-Eisenstein
series. Finally, Deligne, using p-adic modular forms in several variables
and a strengthened version of Mumford’s results on compactifications of
modular schemes (of which the details have apparently not yet been checked
completely), proved Serre’s conjecture for arbitrary totally real fields
modulo the question of the irreducibility of a certain p-adic representation,
and this question was resolved affirmatively by K. Ribet.

Related to the question of the denominator of (x (1 —2m) is the question
of its exact fractional part (resolved for K = Q by the theorem of von
Staudt). In connection with his work on the Hilbert modular group
(L ’Enseignement Mathématigue (3-4) 19 (1973) 183-283). Hirzebruch
found formulas for the fractional part of {x (—1), K a real quadratic field,
in terms of the class numbers of certain imaginary quadratic fields. This
formula has been generalized to arbitrary totally real fields by Brown (“Euler
characteristics of discrete groups and G-spaces”, Inv. Math. 27 (1974), 229-
264), using the methods of [6], and by Vignéras-Guého (“Partie fractionnaire
de (g (—1)”, C. R. Acad. Sciences, Paris (10) 279 (1974), 359-361, “Nombres
de classes d’un ordre d’Eichler et valeur au point —1 de la fonction zéta
d’un corps quadratique réel”, /’Ens. Math., 21 (1975) 69-105) using a

formula of Eichler for class numbers of orders in totally definite quaternion
fields.

2. The aim of Section 4, namely to explain without the use of modular
forms in two variables Siegel’s formula for {y (1 —2m), can now be achieved
in another way, both simpler and more enlightening than the application
of the circle method outlined in §4. In that section, we observed that the

number
n—k?
ean—l(”) = Z O-Zm—l ( >

0=n—k2=0 (mod 4) 4
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is the coefficient of e™"* in the Fourier expansion of a function F,, (z)
(eq. 4 (23)) which is up to a factor the product of the ordinary theta series
0 (z) and the Eisenstein series G,,, (2z). The function F, (2z) (at least if

: , 1 .
m > 1) is a modular form of weight 2m + B for I'y (4) in the sense of

Shimura’s paper “Modular functions of half integral weight”, (Modular
Functions of One Variable 1, Lecture Notes 320, Springer Verlag, Berlin/
Heidelberg/New York 1973, pp. 57-74). In this paper, Shimura discusses
how to set up for such forms a theory of Hecke operators with many of the
usual properties but with the essential difference that there are now Hecke
operators T, only for n a perfect square. He also shows that the two Eisen-

: : : 1 : :
stein series of weight 2m + B for I'y (4) have n-th Fourier coefficients

related to CQ(V;) (1—2m). In fact, one can check that there is a linear
combination of these two Eisenstein series whose n-th Fourier coefficient
is precisely the number

I 0 if n=2or3(mod4),

| (p (1 —2m . _ S
€rm—1 (1) = “k ) T4, (f) if n = f?*D, D = discriminant

20 (1 —4r _
- (=) of K =Q(J/n), 1 =®

which arose in our §4 as the sum of the singular series for e,,,_; (n). The
identities of Siegel expressing é,,,_; (n) as a linear combination of

m
eZm—-l(n) s elm—l(4n) s 82771—1(9”) 5 wuamy eZm——l(rzn) (7' = li_S—] + 1>

2ninz

can now be interpreted as saying that the modular form )’ &,,_, (1) e
n=0

1 : :
of weight 2m + > can be expressed as a linear combination of the function

F, (2z) and its images under the Hecke operators Ty, Ts, ..., T,a. These
ideas have been worked out by Cohen in three papers,

CoHEN, H. Sommes de carrés, fonctions L et formes modulaires. C. R.
Acad. Sci. Paris (A) 277 (1973), 827-830.

— Variations sur un théme de Siegel et Hecke. To appear in Acta Arithm.
30 (1979).

— Sums involving the values at negative integers of L-functions of
quadratic characters. Math. Annalen 217 (1975), 271-285,
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especially the last, in which he studies an arithmetic function H (r, N)

which is related to our function by
20 (1 —4m) _
H(@2m,n) = €rm—1().
(2m, n) 7 (1—2m) 2m—1(1) )
However, despite these new approaches to Siegel’s formula, I have
retained Section 4 because the calculations of the Gauss sums y, (n) and of
the Dirichlet series Y 7. (n) ¢~ (Theorems 2 and 3 of §4) are often useful

to have (for example, the calculation of the Fourier coefficients of the

Eisenstein series of weight 2m + > of which is not carried out in detail in

Shimura’s paper, depends on them) and also because the application of the
circle method in the context of forms of half-integral weight seemed novel.
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