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ment triviale. Donc / est C00-équivalente aux applications qui lui sont
proches. L'affirmation que / et g sont C00-équivalentes suit du fait que les

applications de type I forment un ouvert de Zariski, donc connexe, de

PC17.

Soit /: PC2 -> PC2. On pose Gf {(h, H) 6 Aut (PC2) x Aut (PC2)
\ H .f. h"1 /}. On va déterminer Gf lorsque / est de degré deux; sauf
si / est de type deux, il se trouve que si h est un automorphisme qui
laisse invariantes les singularités de fi il existe un unique H tel que
(A, H) e Gf.

4.1. Proposition. I) Si t =£ —10 ± (108)^", le groupe d'isotrophie de fTt

est engendré par les paires

oil h et v sont les solutions de u3 t et v3 1. En fait, la
troisième paire s'écrit comme composition des deux premières. Ce groupe est

d'ordre 18.

Si t — —10 ± (108)^, on peut ajouter la paire (h, H), où h est

l'automorphisme qui s'écrit, dans les coordonnées introduites ,sous 2.6.,

(z0,z1,z2)->(z0,/.z1,z2), et H est construit selon le corollaire 2.5.

appliqué à ft.h~1 et ft afin que H.ft.h~x ft. Le groupe d'isotropie
est ici d'ordre 36.

II) Le groupe d'isotropie de fu est engendré par :
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et

où v3 1. Il est d'ordre 6.
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III) Le groupe d'isotropie de fIU est engendré par

1 0 0 \ / 1 0 0 \ / o 1 0 \ / o i o \
0 x2 0 ; 0 x4 0 \ et 1 0 0 ; 1 0 0

0 0 x / \ 0 0 x2 J \ 0 0 1 / \ 0 0 !/
où x est un nombre complexe non nul.

IV) Le groupe d'isotropie de fIV est engendré par

1 0 0 \ / 1 0 0 \
0 x 0 J ; J 0 x2 0 J et (As, As),
0 0 y J \ 0 0 y2 J

où x et y sont des nombres complexes non nuls et As(z0, zl9 z2)

(zS(0), zs(1), zs(2)), où s parcourt les permutations de (0,1,2).
Démonstration: On vérifie que les automorphismes décrits laissent
invariantes les applications en question.

I) Si t 7^ -10 ± (108)* et t ^ -4, il ne peut y avoir d'autres
automorphismes laissant f\ invariante, puisque la projection du groupe décrit

sur le premier facteur de Aut (PC2) x Aut (PC2) donne tous les

automorphismes qui laissent £ (f\) invariante (voir remarque 2.7). Si t -4,
on a des automorphismes supplémentaires, mais ils ne laissent pas

271 (ft) invariant et ne donnent donc rien de nouveau.
Si t —10 + (108)* par contre, l'automorphisme qui échange qi

et q2 (notations de 2.7) laisse pej]1,1 (f{) fixe et donne lieu, ainsi qu'on
l'a énoncé, à un nouvel élément de GfL

Pour II, III et IV les affirmations se vérifient facilement.

4.2. Théorème. Soit f : PC2 — PC2 une application de degré deux. Si f est
de type /, elle est C00-stable. Si elle est de type III ou IV, elle est stable dans
les applications Gf-équivariantes.
Si elle est de type II, elle n 'est pas Gf-stable.

Démonstration: Les applications de type I forment un ouvert; leur C00-

stabilité suit alors de 3.3.

Si / est de type III, son groupe d'isotropie est de dimension un et son
lieu singulier est la réunion de trois droites d0, dl et d2. Si g est Gf
équivalante, son groupe d'isotropie est de dimension un ou deux. Supposons
que dim (ker (dfpj) 1, où p« d0ndt;si g est assez proche de /,
dim (ker {dgq)) < 1, pour q dans un voisinage de p, donc g ne peut être
de type IV et doit donc être de type III.
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Si / est de type IV, son groupe d'isotropie est de dimension deux, de

même que pour toute autre application g Gy-équivariante, g doit donc être

aussi de type IV.
Si

y(^0' zi,Z2) zl,z21+z0
l'application

{zl + t.zi.z2,z\ + Z0.Z2,Z22

pour t petit, est proche de / et Gy-équivariante, mais de type I, donc non
équivalente à /.
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