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ment triviale. Donc f est C -équivalente aux applications qui lui sont
proches. L’affirmation que f et g sont C”-équivalentes suit du fait que les
applications de type I forment un ouvert de Zariski, donc connexe, de
PC'7,

4. GROUPES D’ISOTROPIE

Soit f: PC* - PC?. On pose G, = {(h, H) € Aut (PC?) x Aut (PC?)
] H.f.h™" = f}. On va déterminer G, lorsque f est de degré deux; sauf
si f est de type deux, il se trouve que si 4 est un automorphisme qui

laisse invariantes les singularités de f, il existe un unique H tel que
(h, H) € G,.

4.1. PropositioN. I) Si t # —10 + (108)%, le groupe d’isotrophie de f:
est engendré par les paires

100 10 O 0 vO 0920
00utl |; 00 u? |, 2200 |; v 00
Ouo 0u?o 0 01 00 1
et
ut 0 0 u?
010 ; 0 10 ,
u00 u* |

ot u et v sont les solutions de w®> =t et v> = 1. En fait, la troi-
sieme paire s’écrit comme composition des deux premiéres. Ce groupe est
d’ordre 18.

Si t = —10 + (108)*, on peut ajouter la paire (h, H), ou h est
[’automorphisme qui s’écrit, dans les coordonnées introduites sous 2.6.,
(zo, 21, 25) = (20, 1.21, 2,), et H est construit selon le corollaire 2.5.
appliqué a f, . h™1 et f, afin que H.f,.h™' = f,. Legroupe d’isotropie
est ici d’ordre 36.

1) Le groupe d’isotropie de f™ est engendré par :

100 i0 O 100 100
020 . 0220 et 001 |; 001
00 v? 00 v 010 010

onv® = 1. Il est d’ordre 6.
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1Y) Le groupe d’isotropie de f™! est engendré par

10 0 10 O 010 010
0x*0 |; 0x*0 et 100 |; 100
00 x 00 x? 001 001

ot x est un nombre complexe non nul.

IV) Le groupe d’isotropie de f'V est engendré par

100 10 O
0x0 |; 0x20 et (A, A,
00y 00 y?

ol x et y sont des nombres complexes non nuls et Ag(zg, 21, 2,)
= (Zy(0)» Zs(1y> Zs(2))s Ol s parcourt les permutations de (0, 1, 2).
Démonstration: On vérifie que les automorphismes décrits laissent inva-
riantes les applications en question.

I) Sit# —10 + (108)% et t # —4, il ne peut y avoir d’autres auto-
morphismes laissant /7 invariante, puisque la projection du groupe décrit
sur le premier facteur de Aut (PC?) x Aut (PC?) donne tous les auto-
morphismes qui laissent Y (f T invariante (voir remarque 2.7). Si t = —4,
on a des automorphismes supplémentaires, mais ils ne laissent pas
Y 11 (f}) invariant et ne donnent donc rien de nouveau.

Si ¢ = —10 4 (108)* par contre, I’automorphisme qui échange ¢,
et ¢, (notations de 2.7) laisse pe Y *** (f7) fixe et donne lieu, ainsi qu’on
I’a énoncé, a un nouvel élément de Gf){ .

Pour II, III et IV les affirmations se vérifient facilement.

4.2. THEOREME. Soit f: PC*> — PC?* une application de degré deux. Si f est
de type I, elle est C*™-stable. Si elle est de type III ou 1V, elle est stable dans
les applications G ;~équivariantes.

Si elle est de type 11, elle n’est pas G ;-stable.

Démonstration: Les applications de type I forment un ouvert; leur C*-
stabilité suit alors de 3.3.

Si f est de type III, son groupe d’isotropie est de dimension un et son
lieu singulier est la réunion de trois droites d,,, d; et d,. Si g est G r €qui-
variante, son groupe d’isotropie est de dimension un ou deux. Supposons
que dim (ker @dfy)) =1, ol p =dy ndy; si g est assez proche de f,
dim (ker (dg,)) < 1, pour ¢ dans un voisinage de p, donc g ne peut étre
de type IV et doit donc étre de type III.
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Si fest de type IV, son groupe d’isotropie est de dimension deux, de
méme que pour toute autre application g G -équivariante. g doit donc €tre
aussi de type IV.

Si

S (2o 21, 22) = (25, 21 +20.25, 23 +20.2y),
I’application
(z8+1.2.25,25 4 25.25,25 + 2. Z1),

pour ¢ petit, est proche de f et G -équivariante, mais de type I, donc non
équivalente a f.
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