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(ce qui équivaut aux permutations cycliques des racines troisiéme de
I'unité), et cela donne en tout un groupe d’ordre 54. La deuxiéme exception
est lorsque b = —1; dans ce cas, auquel appartient ) (f,) lorsque

t = —10 + \/ 108, il faut ajouter & G le groupe d’ordre deux engendré par
(zo> 2y, 23) = (— 2z, 1.2, z,) €t On obtient en tout un groupe d’ordre 36.

Pour la détermination du groupe des automorphismes qui laissent
invariante une cubique, on peut consulter [2], pages 84 et 85.

3. CLASSIFICATION

Considérons la famille d’applications

2 2
fr(zo,21,25) = (20+1ty . 21 . 25, 27+t . 2. 2y, Z§+t2'20°zl)a

Ol‘l T = (to, tl,tz);

on vérifie que fr définit bien une application de PC?* dans lui-méme 2
condition que #, . #; . %, # —1. On va distinguer dans cette famille quatre
cas:

I) to,t;ett, #0ett,.t,.1, # 8 Aprés changement de coordonnées

; 1 r 1 2 , %
alasource: zo = t¢/3. 1% . 2o, 2y = to/2 . 13 . 2y, z, = z,, et au but:

wo = o3 713 Lwg, wy = t23 . t7%3 . w,, w, = w,, en omettant
les primes et en posant t = t, .1, . t,, on retrouve la famille 1% (z,, z4, z,)
= (z50+2,.2,, 21 +29.25, 22+ 1.24.2,) déja vue dans la démonstration
de 2.6. Puisque ¢ # — 1,0, 8, le lieu singulier de f? est une cubique non
singulicre.

I ¢z, = 0, t; et t, # 0. Aprés un changement de coordonnées on est
ramené a la forme [ (z, 2z, z,) = (25,25 +24.2,, 25+ 24.24). Le lieu
singulier a pour équation 2z, . (4z,.z,—zg) = 0; c’est l'intersection d’une
droite et d’une conique qui lui est transverse. Aux points d’intersection,
le noyau de df est de dimension un et paralléle a la droite z, = 0. Signalons
que le cas 7y, ty et t, # 0,2, .7; .1, = &, qui a été exclu sous I, se ramene
au cas II aprés un changement de coordonnées convenable.

III) t, = 0,t;, = 0,¢, # 0. Seramene a
T 3 3
fHI(Zm Z1,23) = (20, 21,23+ 20 - Z9) -

Le lieu singulier a pour équation z,.z,.z, = 0; c’est la réunion des
trois droites d,, d,, d, d’équation respectivement z, = 0, z; = 0, z, = 0.
En d, n d, ker (df) est de dimension deux; en d, N d, il est de dimen-
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sion un, paralléle a d,, en d; N d, il est aussi de dimension un, parallele
ad.

V) to = t; = ts [ (2o, 21, 2,) = (25, 21, 23). Le lieu singulier est le
méme que sous III mais aux points d’intersection d; N d;, i # ], ker (df)
est toujours de dimension deux.

Allure des lieux singuliers: Les traits // ou les petits carrés E) indiquent les noyaux.

3.1. THEOREME. Soit f:PC? — PC* une application de degré deux non
constante. f est équivalente a l'une des applications de 1 a 1V.

Démonstration. Remarquons d’abord qu’il ne peut arriver que £~ ! (p)
= courbe, ou p est un point, car alors, si d est une droite ne contenant pas
p, £ =1 (p) et f 1 (d) seraient deux courbes d’intersection vide.

Supposons que Y (f) ait pour équation z2 .z, = z3 et que ker df,),
ou p = (0,0, 1), soit de dimension un et distinct de la droite z; = 0.
Soit p, = (1/n?, 1/n* 1), q, = (1/n*, —1/n*,1); on a que p, = p, g, = p
ker (dj;,n) — ker (df,), ker (dfqn) — ker (df,). On en déduit facilement que
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la deuxiéme dérivée de la restriction de f & la droite ker (df,) serait nulle,
donc cette restriction serait elle-méme constante, ce qui est impossible.
Donc ker (df,) doit contenir la droite z; = 0; mais alors cette droite
rencontre Y (f) seulement en p et f | ker (df,) aurait p comme seul point
singulier, ce qui contredit le lemme 2.2.

On déduit de ce qui précéde que le lieu singulier de f ne peut pas étre
une cubique avec un point cuspidal. Un raisonnement analogue permet
d’exclure le cas ou f aurait comme lieu singulier une cubique avec point
double, ol encore la réunion d’une conique et d’une droite qui lui est
tangente. |

Cas I. Supposons que Y (f) soit une cubique non singuliére; on va
d’abord en déduire que f est générique. Puisque I’équation de ) (f),

0 f; : o

dét <6——> ij=0,1,, = 0 définit une courbe non singuliére, f est Y 'et ) ?
Zj

transverse. Sip € Y *' (f), la restriction de fa ker (df,) ne peut étre constante

et sa dérivée en p doit donc s’annuller a ordre 1. Ainsi fest Y. 1! — trans-

verse. En résumé, f est générique. Les propositions 2.5. et 2.6. permettent

de conclure que f est équivalente a X pour un ¢ convenable.

Cas I1. Supposons que le lieu singulier de f soit constitué d’une conique
C et d’une droite d qui lui est transverse. Posons C nd = {q4, q,}. On
doit avoir que ker (dﬂ) = d, i = 1, 2, sans quoi on en concluerait que
f ] ker (df4) serait constante. Pour presque tout red — {q4, q,} ker (df,)
recoupe C en deux points distincts s, et s,, qu’on numérote de sorte que
ker (dfs ) = ker (df,) = (s¢, 5,). Soit f’ une autre application ayant pour
lieu smguher la réunion d’une droite et d’une conique, et soient ¢, g,, ',
s; et s, les points construits de maniére analogue pour f’. Soit /4 I’auto-
morphisme de PC? qui envoit g; sur g; et s; sur s;, et soit H l’automor-
phisme qui envoit £’ (g;) sur £(g,) et f'(s;) sur f(s,); f = H.f" .h™*
f coincident sur les droites d et (sq, s,). Les fibrés ker (df) et ker (df")
coincident sur d, car ils coincident en r, g, et g,; alors, siped — {q4, q,},
f [ ker (df,) et [~ | ker (df,) coincident aux deux points de ker (df,) n C,
ainsi que leur dérivées en p. D’aprés 2.4., elles doivent coincider sur
ker (df,); il s’en suit que f = f". En particulier, f est équivalente a /7',

Cas IIT et IV. Si le lieu singulier de f est composé de trois droites dis-
tinctes d,, d, et d,, ces droites ne peuvent se rencontrer en un seul point p.
Car alors f serait constante sur toute droite passant par p distincte de d,,
d; ou d,. Posons: dy nd{ = p,,dy nd, = pgetdy nd, = p;. On se
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convainc facilement que pour les noyaux en p,, p; ou p, les seules possi-
bilités sont celles rencontrées pour 71 ou . On montre I’équivalence de
Fet 1T ou £V en faisant coincider les lieux singuliers et leurs images. Dans
ces cas pour le choix de I’équivalence on a un degré de liberté dans le cas III,
deux degrés dans le cas IV. B

Il est clair que si f est équivalente & I'une des applications du type I
a IV, elle ne peut étre équivalente a une application d’un autre type. Cela
a donc un sens de dire que fest de type I, 11, TII ou IV.

3.2. Définition. Les applications f, et f, : PC* — PC?* sont dites C-
équivalentes s’il existe une famille d’applications f, : PC* — PC?, ol s est
un nombre réel compris entre 0 et 1, faisant passer de f, a f;, f, (z) étant
polynoémiale par rapport & z et différentiable par rapport a s, la famille
étant différentiablement triviale. C’est dire qu’il existe des familles de
difféomorphismes A, et H, 0 < s < 1, de PC?* en tant que variété C%,
tels que fy, = H,. f, . h1, 0 <<s <.

3.3. THEOREME. Si f et g sont des applications de degré deux de PC* dans
PC? de méme type 11, 11 ou 1V, elles sont équivalentes. Si elles sont de
type 1, elles sont C*-équivalentes.

Démonstration: Si fest de type II, III ou 1V I'affirmation suit de la démon-
stration de 3.1.

Si f est de type I, désignons par & (PC?) et @ (f)" respectivement les
champs de vecteurs C* sur PC? et les champs de vecteurs holomorphes
le long de f; @ (PC?), et & ()" désignent les germes de tels champs en x.
On a:

(i) df (@ (PC?),) + f* (D (PCjixy) 2 @ (f)}f(x) pour tout x € PC?
(ii) /| Y (f) est injective.

(1) suit du fait que f est générique et donc localement stable (on pourrait
mettre partout des champs holomorphes). (if) suit du fait que, Y (f) étant
une cubique, f ] Y. (f) doit avoir 9 points doubles, qui en Poccurence sont
dégénérés en les 9 points de Y *** (f), et pas plus.

Il suit de (i) et (ii), en recollant par partitions de 'unité, que df (& (PC )
+ f* (P (PCz)) > @ (f)". Par un théoréme du type du théoréme de Mather,
qui est élémentaire dans nos circonstances, on en déduit que toute déforma-
tion assez petite de f dans les applications holomorphes est différentiable-
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ment triviale. Donc f est C -équivalente aux applications qui lui sont
proches. L’affirmation que f et g sont C”-équivalentes suit du fait que les
applications de type I forment un ouvert de Zariski, donc connexe, de
PC'7,

4. GROUPES D’ISOTROPIE

Soit f: PC* - PC?. On pose G, = {(h, H) € Aut (PC?) x Aut (PC?)
] H.f.h™" = f}. On va déterminer G, lorsque f est de degré deux; sauf
si f est de type deux, il se trouve que si 4 est un automorphisme qui

laisse invariantes les singularités de f, il existe un unique H tel que
(h, H) € G,.

4.1. PropositioN. I) Si t # —10 + (108)%, le groupe d’isotrophie de f:
est engendré par les paires

100 10 O 0 vO 0920
00utl |; 00 u? |, 2200 |; v 00
Ouo 0u?o 0 01 00 1
et
ut 0 0 u?
010 ; 0 10 ,
u00 u* |

ot u et v sont les solutions de w®> =t et v> = 1. En fait, la troi-
sieme paire s’écrit comme composition des deux premiéres. Ce groupe est
d’ordre 18.

Si t = —10 + (108)*, on peut ajouter la paire (h, H), ou h est
[’automorphisme qui s’écrit, dans les coordonnées introduites sous 2.6.,
(zo, 21, 25) = (20, 1.21, 2,), et H est construit selon le corollaire 2.5.
appliqué a f, . h™1 et f, afin que H.f,.h™' = f,. Legroupe d’isotropie
est ici d’ordre 36.

1) Le groupe d’isotropie de f™ est engendré par :

100 i0 O 100 100
020 . 0220 et 001 |; 001
00 v? 00 v 010 010

onv® = 1. Il est d’ordre 6.
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