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(ce qui équivaut aux permutations cycliques des racines troisième de

l'unité), et cela donne en tout un groupe d'ordre 54. La deuxième exception
est lorsque b — 1 ; dans ce cas, auquel appartient (ft) lorsque

t — 10 + -y/108, il faut ajouter à G le groupe d'ordre deux engendré par
(z0, zu z2) (~zo, z.zj, z2) et on obtient en tout un groupe d'ordre 36.

Pour la détermination du groupe des automorphismes qui laissent
invariante une cubique, on peut consulter [2], pages 84 et 85.

3. Classification

Considérons la famille d'applications

It (Zq, Zl> Zl) — (Z0 +^o • Z1 • Z2> Z1 + h • Z0 • Z2> Z2 + G • zo • zi)
où T (t09tut2)i

on vérifie que fT définit bien une application de PC2 dans lui-même à

condition que t0 t1 t2 ^ — 1. On va distinguer dans cette famille quatre
cas:

I) t09 tl et t2 0 et t0 t1 t2 ^ 8. Après changement de coordonnées
à la source: z0 t\13 £ J/3 z0, Z| rJ/3 ^/3 z'l9 z2 z2, et au but:
wo to4/3 • ^ï2/3 • if' o w[ to2'3 t^4'3 wl5 vr2 w29 en omettant
les primes et en posant t t0 tx f2, on retrouve la famille f\ (z0, z1? z2)

(zq +z1 .z2, Zi +z0.z2, z2 + /.z0.z1) déjà vue dans la démonstration
de 2.6. Puisque / A — 1,0, 8, le lieu singulier de f \ est une cubique non
singulière.

II) t o 0, t1 et t2 A 0. Après un changement de coordonnées on est

ramené à la forme fu (z0, zl5 z2) (z\9 z3 + z0.z2, z2 + ZQ.Zi). Le lieu
singulier a pour équation 2z0 (4z1.z2— z\) 0; c'est l'intersection d'une
droite et d'une conique qui lui est transverse. Aux points d'intersection,
le noyau de df est de dimension un et parallèle à la droite z0 0. Signalons

que le cas t09 tx et t2 # 0, t0 tx t2 8, qui a été exclu sous I, se ramène

au cas II après un changement de coordonnées convenable.

III) t0 0, tl 0, t2 ^ 0 Se ramène à

fm(z0»Zl» Zz) (Z0» Zl> Z2 +Z0 • Zl) •

Le lieu singulier a pour équation z0 zx z2 0; c'est la réunion des

trois droites d09 dl9 d2 d'équation respectivement z0 0, z1 0, z2 0.

En d0 n ker (r//) est de dimension deux; en d0 n d2 il est de dimen-
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sion un, parallèle à d0f en d1 n d2 il est aussi de dimension un, parallèle

à dt.

IV) t0 t2JIV (z0, zl5 z2) (z§, zï, z>). Le lieu singulier est le

même que sous III, mais aux points d'intersection dt n dj9 i ^ j, ker (W/)

est toujours de dimension deux.

Allure des lieux singuliers: Les traits // ou les petits carrés [~j indiquent les noyaux.

3.1. Théorème. Soit f :PC2 -> PC2 «ne application de degré deux non

constante, f est équivalente à l'une des applications de 1 à IV.

Démonstration. Remarquons d'abord qu'il ne peut arriver que /_1(/?)
courbe, où p est un point, car alors, si d est une droite ne contenant pas

p, f'1 (p) et/-1 (d) seraient deux courbes d'intersection vide.

Supposons que £ (/) ait pour équation z\ z2 zl et que ker (dfp),
où p (0, 0, 1), soit de dimension un et distinct de la droite z1 0.

Soit pn(1 In2,l/n31), q„ (1 In2,~l/n3,1);on a que pn -
ker (dfpJ ker (dfp), ker (dfqJ -» ker (dfp). On en déduit facilement que

L'Enseignement mathém., t. XXII, fasc. 1-2. 4
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la deuxième dérivée de la restriction de / à la droite ker (<dfp) serait nulle,
donc cette restriction serait elle-même constante, ce qui est impossible.
Donc ker (dfp) doit contenir la droite 0; mais alors cette droite
rencontre £ (/) seulement en p et /1 ker (dfp) aurait p comme seul point
singulier, ce qui contredit le lemme 2.2.

On déduit de ce qui précède que le lieu singulier de / ne peut pas être

une cubique avec un point cuspidal. Un raisonnement analogue permet
d'exclure le cas où / aurait comme lieu singulier une cubique avec point
double, où encore la réunion d'une conique et d'une droite qui lui est

tangente.

Cas I. Supposons que (/) S°L une cubique non singulière ; on va
d'abord en déduire que / est générique. Puisque l'équation de £ (/),

transverse. Si p e ^1 '1 (/), la restriction de/à ker (dfp) ne peut être constante
et sa dérivée en p doit donc s'annuller à l'ordre 1. Ainsi /est J]1'1 — transverse.

En résumé,/est générique. Les propositions 2.5. et 2.6. permettent
de conclure que/est équivalente à/, pour un t convenable.

Cas II. Supposons que le lieu singulier de / soit constitué d'une conique
C et d'une droite d qui lui est transverse. Posons C n d {qu q2). On
doit avoir que ker {dfq.) d9 i 1,2, sans quoi on en concluerait que
/1 ker (//.) serait constante. Pour presque tout red - {qu q2} ker (dfr)
recoupe C en deux points distincts s1 et s2, qu'on numérote de sorte que
ker (dfs) ker (df) (st> s2). Soit /' une autre application ayant pour
lieu singulier la réunion d'une droite et d'une conique, et soient q[, q2, r',
^ et s2 les points construits de manière analogue pour /'. Soit h l'auto-
morphisme de PC2 qui envoit q\ sur qt et s\ sur sh et soit H l'automor-
phisme qui envoit f (ql) sur et/' (st) sur /(^f); f H .f h~x et

/ coïncident sur les droites d et (.sq, ^2). Les fibrés ker (df) et ker (df ")

coïncident sur d, car ils coïncident en r, qx et q2 \ alors, si p e d — {qu q2},

/1 ker (dfp) et f" | ker (dfp) coïncident aux deux points de ker (dfp) n C,

ainsi que leur dérivées en p. D'après 2.4., elles doivent coïncider sur
ker (dfp); il s'en suit que / f". En particulier,/ est équivalente à fn.

Cas III et IV. Si le lieu singulier de / est composé de trois droites
distinctes d0, d1 et d2, ces droites ne peuvent se rencontrer en un seul point p.
Car alors / serait constante sur toute droite passant par p distincte de d0,

dx ou d2. Posons: d0 n d1 p2, d1 n d2 p0 et d0 n d2 p1. On se

courbe non singulière, / est ^ Z2
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convainc facilement que pour les noyaux en p0, ou p2 les seules possibilités

sont celles rencontrées pour fIH ou fIv. On montre l'équivalence de

/et f111 ou fIV en faisant coïncider les lieux singuliers et leurs images. Dans

ces cas pour le choix de l'équivalence on a un degré de liberté dans le cas III,
deux degrés dans le cas IV.

Il est clair que si / est équivalente à l'une des applications du type I
à IV, elle ne peut être équivalente à une application d'un autre type. Cela

a donc un sens de dire que/est de type I, II, III ou IV.

3.2. Définition. Les applications /0 et f1 : PC2 -> PC2 sont dites C00-

équivalentes s'il existe une famille d'applications fs : PC2 PC2, où 5 est

un nombre réel compris entre 0 et 1, faisant passer de /0 à fufs (z) étant

polynômiale par rapport à z et différentiable par rapport à s, la famille
étant différentiablement triviale. C'est dire qu'il existe des familles de

difïéomorphismes hs et Hs, 0 < s < 1, de PC2 en tant que variété C00,

tels que/0 Hs.fs. h~ \ 0 <# < 1.

3.3. Théorème. Si f et g sont des applications de degré deux de PC2 dans
PC2 de même type II, III ou IV, elles sont équivalentes. Si elles sont de

type I, elles sont C-équivalentes.

Démonstration: Si/est de type II, III ou IV l'affirmation suit de la
démonstration de 3.1.

Si / est de type I, désignons par $ (PC2) et <P (f)h respectivement les

champs de vecteurs C00 sur PC2 et les champs de vecteurs holomorphes
le long de /; <P (PC2)X et <P (f)hx désignent les germes de tels champs en x.
On a:

(i) df($ PC2)X)+ /* Cpc2)/(x)) => # (/)/<*) Pour tout x e

(ü) f\E(/) est injective.

(i) suit du fait que / est générique et donc localement stable (on pourrait
mettre partout des champs holomorphes), (ii) suit du fait que, E (/) étant
une cubique, /1 £ (/) doit avoir 9 points doubles, qui en l'occurence sont
dégénérés en les 9 points de E1'1 (f), et pas plus.

Il suit de (i) et (ii), en recollant par partitions de l'unité, que df($ (PC2))
+ /* (<I> (PC2)) => <P (/)''. Par un théorème du type du théorème de Mather,
qui est élémentaire dans nos circonstances, on en déduit que toute déformation

assez petite de/dans les applications holomorphes est différentiable-



ment triviale. Donc / est C00-équivalente aux applications qui lui sont
proches. L'affirmation que / et g sont C00-équivalentes suit du fait que les

applications de type I forment un ouvert de Zariski, donc connexe, de

PC17.

Soit /: PC2 -> PC2. On pose Gf {(h, H) 6 Aut (PC2) x Aut (PC2)
\ H .f. h"1 /}. On va déterminer Gf lorsque / est de degré deux; sauf
si / est de type deux, il se trouve que si h est un automorphisme qui
laisse invariantes les singularités de fi il existe un unique H tel que
(A, H) e Gf.

4.1. Proposition. I) Si t =£ —10 ± (108)^", le groupe d'isotrophie de fTt

est engendré par les paires

oil h et v sont les solutions de u3 t et v3 1. En fait, la
troisième paire s'écrit comme composition des deux premières. Ce groupe est

d'ordre 18.

Si t — —10 ± (108)^, on peut ajouter la paire (h, H), où h est

l'automorphisme qui s'écrit, dans les coordonnées introduites ,sous 2.6.,

(z0,z1,z2)->(z0,/.z1,z2), et H est construit selon le corollaire 2.5.

appliqué à ft.h~1 et ft afin que H.ft.h~x ft. Le groupe d'isotropie
est ici d'ordre 36.

II) Le groupe d'isotropie de fu est engendré par :

4. Groupes d'isotropie

et

où v3 1. Il est d'ordre 6.
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