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Soit maintenant f: PC? —» PC? une application de degré d > 2; il
suit de 1.1 quen déformant arbitrairement peu f on peut la rendre géné-
rique pour les singularités de Boardman d’ordre deux: on dira alors que
f est « générique ». Si f est donc générique, ses seules singularités sont
S L (f) = {ze PC*|dim (ker (df,)) = 1}, qui est une courbe régulicre, et
S L1(f) = {ze PC* | ker (df,) = T, (3. (f))}> qui est un ensemble fini
de points (7, désigne I’espace tangent au point z).

1.3. PROPOSITION. Soit f:PC?* - PC? une application générique de
degré d. Alors Y '(f) est une courbe réguliére de degré 3.(d—1) et
N BL(f) est constitué de 3. (4d—5) . (d—1) points.

Démonstration: Soit s € H? (PC?) la classe d’Euler du fibré canonique et
désignons par N (f) = f* (T (PC?) — T (PC?) le fibré virtuel normal & f.
On a que ¢(T(PC?*) = 1 + 3s + 3s%, ol ¢ désigne la classe de Chern
totale, et f* (s) = d.s. La classe duale & )" (f) est égale a

) ¢ (N(f)) =f*(3s) = 3s = 3(d—1).s.
La classe duale & ) "' (f) est égale a

() GIN) + (N () = 3= [Ed=3). .

L’expression de ces classes duales est calculée par exemple dans [1]. On
obtient les formules cherchées en évaluant (*) et (**) respectivement sur la
classe fondamentale d’un hyperplan et sur la classe fondamentale de PC?,
ce qui revient a remplacer s par 1.

En fait, on se convainc facilement que pour toute application f de degré
d le lieu singulier, qu’on désignera dorénavant par Y. (f), a pour équation:

of.
dét <8—ﬁ> ij=01.2 = 0, ce qui définit bien une courbe de degré 3 (d—1).
Z

J

2. UNE COINCIDENCE

On se borne dorénavant aux applications de degré deux de PC? dans
PC?; I’ensemble 4% (2,2) de ces applications est un ouvert de Zariski de
PC'7, sur lequel opére P (G1 (3, C)) x P(G1 (3, C)), qui est de dimension
16; Porbite générique a donc une codimension au moins égale a un. Le
lieu singulier d’une telle application est une cubique; I’ensemble des
cubiques de PC* s’identifie & PC®. Si I'on fait agir P (GL (3, C)) sur ces
cubiques, l’orbite générique est de codimension un. On peut donc s’attendre
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a ce que si f est générique 'orbite de ) (f) détermine l'orbite de f a un
nombre fini de choix prés; les propositions qui suivent vont nous dire
comment.

2.1. PROPOSITION. Soit f:PC?* — PC? une application générique. Alors

si peY "' (f), la droite tangente a Y (f) en p recoupe Y (f) en un
point d’inflexion.

La démonstration de cette proposition est précédée de trois lemmes.

2.2. LeMME. Soit g : PC' — PC? une application de degré deux. S’il
existe p € PC' tel que dg, = 0, g (PC') est une droite et il existe un et un
seul point g # p tel que dg, = 0.

Démonstration: Si dg, = 0, g (PC") est une conique irréductible avec un
point double: ce ne peut étre qu’une droite double. g : PC' — g (PC?) est
une application générique de degré deux: dans ce cas elle a exactement
deux points singuliers distincts.

2.3. LeMME. Soitf : PC* — PC? de degré deux générique. Sipe Y "' (f),
il existe une et une seule droite d = PC? passant par p, telle que d © ). (f)
= {1, 9,92}, P, 9, et q, distincts, et telle que d = ker (df,) = ker (df,,).

Démonstration: Soit ae H? (3 (f)) la classe fondamentale en cohomo-

Jogie de ) (f) et be H? (), (f)) la classe dualea ) '»* (f)dans ) (f); soit
N le fibré normal a ) (f) dans PC? et K = ker (df), fibré de rang 1 sur
> (f). Puisque f est générique, on a: b = 9.a = ¢ (N) — ¢; (K); Y. (f)
étant une cubique, on a: ¢; (N) =9.a. Ainsi ¢, (K) = 0. Soit d’ une
droite ne passant pas par p et g: ). (f) — d’ application qui a g€ ) (f)
associe (p,q) nd’, ou (p,q) désigne la droite par p et ¢q, et(p,p)
= T,(3. (/). Y, (f) étant une cubique, ¢, (9* (T'(d")) = 3.a; il sen suit
que c; (9% (T(d"))) — ¢, (K) = 6.a. On en déduit que le nombre de
points singuliers comptés avec multiplicité du morphisme G: K — g* (T (d )5
donné par projection de K sur d’ depuis p, est égal a 6. Le point p est une
singularité de ce morphisme, mais sa multiplicité ne peut excéder 3, sans
quoi f admettrait en p un point singulier non générique. Il doit donc
exister un point ¢, distinct de p ou G est singulier, ce qui revient a dire que
ker (df,) = (p,q4) et (p,q1) # T, (3. (f)). A cause du lemme 2.2 il doit
exister ¢, distinct de ¢, tel que (p, g¢;) = ker (df,,); on a forcémment que

g, # p, sans quoi (p, g;) = ker (df,) = T, (3. (f)). On pose d = (p, q,);
I’unicité de d suit du fait que G ne peut avoir plus de 6 points singuliers.
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2.4, LEMME. Soient g et g': PC! — PC? deux applications de degré deux.,
Alors:

(i) si g et g’ coincident en quatre points, elles coincident partout;

(i) si g (PC') = une droite et g et g’ coincident en trois points, elles
coincident partout.

Ce lemme est un petit exercice dont la démonstration est laissée au
lecteur.
Démonstration de 2.1. (voir fig. du §3): Soit pe > 11 (f) et d la droite
donnée par 2.4. La tangente & Y (f) en p recoupe Y (f) en un point 7; on
a que I # p, sans quoi la restriction de f a cette tangente serait en contra-
diction avec 2.2. Soit e = f(d), qui est une droite d’aprés 2.2; /! (e) est
une conique contenant d, donc dégénérée en la réunion de d et une autre
droite d’. Puisque f(d') = e, qui est une droite, d’" = (i, p), sans quol on
serait en contradiction avec 'unicité de d démontrée dans 2.3.; ainsi,
f (i) ee. Soit h: PC* — PC? la symétrie de centre i qui laisse d fixe point
par point. Soient re PC* — (i,p) — d, ¥’ = h(r) et H: PC* —» PC? la
symétrie qui envoit £ (r) sur f(r') et qui laisse e fixe point par point. Considé-
rons lapplication g = H.f.h™'; on a que f|d=g|d f|(@np)
=g |Gp) et £ () =g | (nr). SiseX (f) = X1 (), S (ker (df)) est
une droite et g | ker (df;) coincide avec f'| ker (df;) aux trois points d’inter-
section de ker (df,) avec les droites d, (i, p) et (r, #’). On en déduit que
S/ = g, en particulier & envoit ) (f) dans elle-méme; i étant un point fixe de
h, ce doit €tre un point d’inflexion, car ceux-cis sont en nombre impair et
ils sont échangés par A.

2.5. COROLLAIRE. Soient [ et f':PC?* — PC* deux applications de degré
deux génériques. Si ) (f) = Y, (f) et UL (f) n YV (f) # @, alors
il existe un automorphisme H: PC* — PC* tel que H.f = f, et
YU = TR,

Démonstration: Soit pe ) '+ (f) n ) 11 (f); posons i =T, (3 (/) n Y. (f).
Il suit des hypotheéses et de 2.1 qu'on a aussi i = 7, () (f) 0 Y. (/).
Les points ¢, et g, construits dans la démonstration de 2.1 coincident pour
f et f', puisqu’ils sont déterminés par le fait que (7, q;) = T,, (Y (/).
(i, q2) = T,y Q. () et que Y. (f) =3 (f"). Soit re ¥ (f), r distinct de i,
P> 41, q5; soit H: PC* » PC? l'automorphisme qui envoit £ (p) sur £ (p)
J7(q0) sur f(q.1), /7 (g2) sur f(q2) et f* (r) sur f (). Puisque p, g, et g, sont
alignés, on peut encore exiger que H envoie la droite (f* (r), 7 (r')) sur la
droite (f(r), f (")), r’ étant le symétrique de r pour la symétrie 4 construite
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dans la démonstration de 2.1. Puisque f'~'(f"(d)) = du (i,p), f et
H . f'coincident sur d, sur (i, p) et sur (r, r’), donc elles coincident partout.

Soit C une cubique non singuliére de PC? et i € C un point d’inflexion.
La classe de C étant 6, il existe en plus de T; (C), qui compte pour trois
droites, trois autres droites distinctes passant par i et tangentes a C en des
points ry, ¥, et rs.

2.6. PROPOSITION. Avec les notations ci-dessus, si p est l'un des points
ri, ¥, Ou rs, il existe une application générique f:PC?* — PC? telle que
C=Y(f) et peX ().

Démonstration: Soit f, = (zﬁ + z,.2,, zi + 24 .25, zz +1t.29.27). On
vérifie que si ¢ # —1, f, définit bien une application de PC? dans lui-
méme. Le lieu singulier de f, a pour équation

Zo.21.2,. (842 — 2t.(2542) — 2z, = 0.

On vérifie que si ¢ # 0 et ¢ # 8 ce lieu est une cubique non singuliére; on
montrera sous 3.1. qu’il s’en suit que f, est générique. On calcule que
i = (1, 1, 0) est un point d’inflexion de ) (f) et que les points p, g, et g,
correspondants ont pour coordonnées: p = (1/2,1/2,1),q, = (= (s+1)71,
—(+D7L 1), g, = (—D L -7 1), ou s = (1+1)"? la racine
ayant une détermination quelconque (changer de détermination revient a
échanger ¢, et ¢g,). En prenant s # 0, -1, +3 on s’assure que ¢ # —1,0
et 8. On se propose de mettre 'équation de ). (f) en coordonnées inhomo-
génes (z, = 1) sous la forme

zt = zy.(zo—1).(zg—B), ou B #0,1,

1

avec p = (0,0,1), ¢q, =(,0,1), g, =(B,0,1).

Si t = —4, I’équation devient: 823 + 82? e 222 = 0. Aprés le change-
ment de coordonnées

2y = Zy, — 273 Zy = Z, + 213 Zy = Z{,.(iﬁ—S) +22;,
en omettant les primes, I’équation devient
A.2 = 2. (20=1). (20— 1/2.(iy/3+1)), oh A #0.

Aprés un changement de coordonnées évident, 4 est remplacée par 1.

Sis # +i \/ 5, on aura t # —4. Pour mettre I’équation sous la forme
voulue, il faut envoyer la tangente & » (f) en i sur la droite z, = 0 et les
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points p, q, et g, respectivement sur (0, 0, 1), (1, 0, 1) et (B, 0, 1). Pour cela,
il faut effectuer le changement de coordonnees

22
, (s=3)".(s+1) (zy—z,—20); 21 =1/2.(z;—2o);

T (543).(52+3)

. 3(s*=1)

7, = ———= (zo+2y) + 2,.
2 & + 3 (zo 1) 2

Aprés omission des primes, ’équation de ) (f) devient
B (s+1).(s=3)°
o (s=1D.(s+3)?

On peut supposer que I’équation de la cubique C donnée soit 77 =
Zo. (2= 1) . (zo—=b), o b # 0,1, et que p = (0,0, 1). Les valeurs inter-

A.z2 =z2y.(zg—1).(zo—B), ou B

dites de s sont s = 0, quidonne B = 1;s = —1,dou B = Oets = i\/3,
dou B=".(0 \/3+1). Ce dernier cas se raméne au cas out = —4.

Sinon, on peut résoudre par rapport a s dans I’équation

(s +1).(s=3)
o (s=1).(s+3)*’

puis on pose ¢ = s> — 1 et f, est alors 'application cherchée.

Ainsi, d’aprés 2.5 et 2.6, la cubique non singuliére C détermine ’orbite
de I’application f telle que Y (f) = C, au choix prés de pe Y, "' (f) parmi
les points ry, r, et r3 de C.

b

2.7. Remarque. Soit C la cubique d’équation zi = z,.(zo—1). (zo—b);
’automorphisme de PC? : (zy, z4, 2,) = (2o, —24, Z,) laisse C invariante.
On obtient de maniére analogue d’autres tels automorphismes en envoyant
chacun des neuf points d’inflexion de C sur (0, 1, 0); on engendre ainsi un
groupe G a 18 éléments. Il est bien connu qu’en général ce groupe est celui
de tous les automorphismes de PC? qui laissent C invariante, & deux
exceptions prés. La premicre, c’est lorsque les points 0, 1 et b € C peuvent
étre envoyés, par une transformation du type z — az + A, sur les trois

racines troisiemes de I'unité, ce qui équivaut a dire que b = % . (i \/5 +1);

c’était le cas de ) (fy) pour ¢ = —4. Dans ce cas il faut ajouter a G le
groupe d’ordre 3 engendré par '

1 _
(20,21, 25) = (Zo . i . (i\/3 —1), z4, Zz)
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(ce qui équivaut aux permutations cycliques des racines troisiéme de
I'unité), et cela donne en tout un groupe d’ordre 54. La deuxiéme exception
est lorsque b = —1; dans ce cas, auquel appartient ) (f,) lorsque

t = —10 + \/ 108, il faut ajouter & G le groupe d’ordre deux engendré par
(zo> 2y, 23) = (— 2z, 1.2, z,) €t On obtient en tout un groupe d’ordre 36.

Pour la détermination du groupe des automorphismes qui laissent
invariante une cubique, on peut consulter [2], pages 84 et 85.

3. CLASSIFICATION

Considérons la famille d’applications

2 2
fr(zo,21,25) = (20+1ty . 21 . 25, 27+t . 2. 2y, Z§+t2'20°zl)a

Ol‘l T = (to, tl,tz);

on vérifie que fr définit bien une application de PC?* dans lui-méme 2
condition que #, . #; . %, # —1. On va distinguer dans cette famille quatre
cas:

I) to,t;ett, #0ett,.t,.1, # 8 Aprés changement de coordonnées

; 1 r 1 2 , %
alasource: zo = t¢/3. 1% . 2o, 2y = to/2 . 13 . 2y, z, = z,, et au but:

wo = o3 713 Lwg, wy = t23 . t7%3 . w,, w, = w,, en omettant
les primes et en posant t = t, .1, . t,, on retrouve la famille 1% (z,, z4, z,)
= (z50+2,.2,, 21 +29.25, 22+ 1.24.2,) déja vue dans la démonstration
de 2.6. Puisque ¢ # — 1,0, 8, le lieu singulier de f? est une cubique non
singulicre.

I ¢z, = 0, t; et t, # 0. Aprés un changement de coordonnées on est
ramené a la forme [ (z, 2z, z,) = (25,25 +24.2,, 25+ 24.24). Le lieu
singulier a pour équation 2z, . (4z,.z,—zg) = 0; c’est l'intersection d’une
droite et d’une conique qui lui est transverse. Aux points d’intersection,
le noyau de df est de dimension un et paralléle a la droite z, = 0. Signalons
que le cas 7y, ty et t, # 0,2, .7; .1, = &, qui a été exclu sous I, se ramene
au cas II aprés un changement de coordonnées convenable.

III) t, = 0,t;, = 0,¢, # 0. Seramene a
T 3 3
fHI(Zm Z1,23) = (20, 21,23+ 20 - Z9) -

Le lieu singulier a pour équation z,.z,.z, = 0; c’est la réunion des
trois droites d,, d,, d, d’équation respectivement z, = 0, z; = 0, z, = 0.
En d, n d, ker (df) est de dimension deux; en d, N d, il est de dimen-
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