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APPLICATIONS POLYNÔMIALES DE DEGRÉ DEUX

DU PLAN PROJECTIF COMPLEXE DANS LUI-MÊME

par Felice Ronga

Soit / C/0,/1,/2) un triple de polynômes homogènes de degré deux à

coefficients complexes et à trois variables z0, zl5z2; s'ils n'ont d'autre
racine commune que OeC3, ils déterminent une applications notée encore

f : P C2 -» PC2. On se propose de classer ces application à des changements

de coordonnées de la source et du but près. Il se trouve qu'elles sont
essentiellement déterminées par leur lieu singulier, qui est soit une cubique
non singulière, soit la réunion d'une conique et d'une droite en position
générale, soit la réunion de trois droites en position générale. Dans le

dernier cas il y a deux possibilités: aux trois points d'intersection des trois
droites le noya11 de la dérivée de / est soit partout de dimension deux, soit
de dimension deux en l'un des points et de dimension un en les deux

autres.
On dira que f et g : P C2 P C2 sont équivalentes si elles coïncident

après changement de coordonnées à la source et au but, c'est à dire

f — H. g h'1, où H, he Aut (PC2). Au §4 on considère le groupe d'iso-
tropie Gf {Ch, H) e Aut (PC2) x Aut (PC2) \f H ./. h~1}. On
montre que si dim (Gf) > 1, / est stable dans les applications Gy-équi-
variantes; c'est à dire que si g est proche de / et invariante par l'action
de Gf (soit Gg Gy), g est équivalente à /.

Je remercie Pierre Siegfried pour les nombreuses conversations qui
m'ont permis d'éclairer plusieurs points de ce travail.

1. Applications génériques de PCm dans PC"

Soit Ad (im, n) l'ensemble des applications polynomials de degré d
de PCm dans PC"; toutfe Ad (m, n) se met sous la forme:

/ (z0> •••> Zm) — (/o (Z0> •••> Z m) • • • 5 fn (z0> •••? Z m))
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où f est un polynôme homogène de degré d. Le «-tuple (/0, ...,/„) est

déterminé à une constante non nulle près; / est bien définie à condition
que 0 e Cm+1 soit le seul zéro commun aux f. Puisque chaque ft est déter-

(d + m\
miné par coefficients, A (m, ri) s'identifie à un ouvert de Zariski

\ m J
/d -{- 7ii\

de PC, où k (n+ 1) — 1 ; si m > n, A se réduit aux constantes.
\ m J

Soit S c Jr (PCm, PC") une sous-variété localement fermée (dans la
topologie transcendante) du fibré des jets d'ordre r d'applications de

PCm dans PC". Si / : PCm -> PC", on dit que / est P-transverse si son extension

aux jets d'ordre rf (/) : PCm Jr (PCm, PC") est transverse à P.

1.1. Proposition. Soit S a /''(PC", PC") une sous-variété localement

fermée ; si « > m et d > r, l 'ensemble des f e Ad (m, ri) qui sont S-

transverses est dense.

La démonstration, qui suit le schéma habituel des théorèmes de trans-
versalité, est précédée par un lemme :

1.2. Lemme. La dérivée de l'application F : PCm x Ad(m,n)
-> Jd (PCm, PC"), F (z, g) jd (g)(z), est surjective en tout point.

Démonstration: Soit Bd l'ensemble des («+ l)-uples (/0, ...,/„) de polynômes
homogènes de degré d en les variables z0, zm ; soit U a Bd l'ouvert de

Zariski formé des (« + l)-uples n'ayant d'autre racine commune que
0 g C" +1. Puisque (zdo, z^, 0, 0) est dans U, celui-ci est non vide, donc
dense dans Bd. Désignons par Pd l'ensemble des applications polynômiales
de degré au plus égal k d de C" dans C". Si (z°, g) g PC" x jj, on peut

supposer sans perte de généralité que z° (1,0, 0) et g0 (z°) ^ 0.

Pour montrer que la dérivée de Pen (z°, g) est surjective, il suffit de vérifier

que l'application linéaire G : Bd -» Pd, G (/) (1, z'), fn (1, z')), où

z' (zl5...,zw), est surjective. Or si qePd,q ^ ^ 4 •i=i,on
pose ^ (z0, ..„zj /zo, E a,1 z'a. E • z'a • 4"|ah) et

V |g y

on a que G (qh) q.

Démonstration de 1.1: en remplaçant éventuellement S par son image
inverse par la projection dtJd (PC", PC") sur Jr (PCm, PC"), on se ramène

au cas où d r. Soit alors S' P-1 (P) et p : S" -» la restriction de

la projection de PC" x Ad sur le deuxième facteur. Si fe Ad est une valeur

régulière de p, (/) est transverse à P. Le résultat suit alors du théorème

de Sard.
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Soit maintenant / : PC2 -» PC2 une application de degré rf>2; il

suit de 1.1 qu'en déformant arbitrairement peu/on peut la rendre générique

pour les singularités de Boardman d'ordre deux: on dira alors que

/ est « générique ». Si / est donc générique, ses seules singularités sont

(/) {z e PC2 | dim (ker (dfz)) 1}, qui est une courbe régulière, et

^1'1 (/) {z g PC2 | ker (dfz) Tz QT1 (/))}, qui est un ensemble fini
de points (Tz désigne l'espace tangent au point z).

1.3. Proposition. Soit f : PC2 -> PC2 une application générique de

degré d. Alors J]1 (/) est une courbe régulière de degré 3.{d~\) et

S1'1 (/) est constitué de 3 {Ad—S) {d— 1) points.

Démonstration: Soit s e H2 (PC2) la classe d'Euler du fibré canonique et

désignons par N(f) /* (P(PC2)) - T(PC2) le fibré virtuel normal à/.
On a que c{T{PC2)) 1 + 3s + 3s2, où c désigne la classe de Chern

totale, et/* (s) d. s. La classe duale à ^T1 (/) est égale à

(*) Ci(N(/)) / * (3 s) - 3s 3{d-l).s.
La classe duale à ^1,:L (/) est égale à

(**) ^ (N (/)) + c2 (N (/)) - 3 {d - 1) {Ad - 5). s2

L'expression de ces classes duales est calculée par exemple dans [1]. On

obtient les formules cherchées en évaluant (*) et (**) respectivement sur la
classe fondamentale d'un hyperplan et sur la classe fondamentale de PC2,

ce qui revient à remplacer s par 1.

En fait, on se convainc facilement que pour toute application/ de degré

d le lieu singulier, qu'on désignera dorénavant par £ (/), a pour équation :

dét —\
i ;—0 i 2 0, ce qui définit bien une courbe de degré 3 {d— 1).

\ÔZjJ '

2. Une coïncidence

On se borne dorénavant aux applications de degré deux de PC2 dans

PC2; l'ensemble A2 {2,2) de ces applications est un ouvert de Zariski de

PC17, sur lequel opère P (Gl (3, C)) x P (Gl (3, C)), qui est de dimension
16; l'orbite générique a donc une codimension au moins égale à un. Le
lieu singulier d'une telle application est une cubique; l'ensemble des

cubiques de PC2 s'identifie à PC9. Si l'on fait agir P (GL (3, C)) sur ces

cubiques, l'orbite générique est de codimension un. On peut donc s'attendre
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à ce que si / est générique l'orbite de Z (/) détermine l'orbite de / à un
nombre fini de choix près; les propositions qui suivent vont nous dire
comment.

2.1. Proposition. Soit /:PC2-»PC2 une application générique. Alors
si p eYj1,1 (/), la droite tangente à Z (/) <?/? p recoupe Z (/) eo/î
point d'inflexion.

La démonstration de cette proposition est précédée de trois lemmes.

2.2. Lemme. Soit # .-PC1 PC2 une application de degré deux. S'il
existe p ePC1 tel que 0, g (PC1) est une droite et il existe un et un
seul point q # p tel que dgq 0.

Démonstration: Si 0, g (PC1) est une conique irréductible avec un
point double : ce ne peut être qu'une droite double, g : PC1 -» g (PCx) est

une application générique de degré deux: dans ce cas elle a exactement
deux points singuliers distincts.

2.3. Lemme. Soitf : PC2 PC2 de degré deux générique. Si/? e Z1 '1 (/),
il existe une et une seule droite d cz PC2 passant par p, telle que d n Z (/)

{/?, #l5 q2},P, #i et #2 distincts, et telle que d ker (dfqi) ker (dfq2).

Démonstration: Soit a e H2 (X (/)) classe fondamentale en cohomo-

logie de Z (/) et b e H2 (Z (/)) la classe duale à Z1'1 (/) dans Z (/); soit
N le fibré normal à Z (/) dans PC2 et K ker (rf/), fîbré de rang 1 sur

Z (/). Puisque / est générique, on a: b 9 a (TV) — (Ä"); Z (/)
étant une cubique, on a: (N) — 9 a. Ainsi c1 (K) 0. Soit d' une
droite ne passant pas par p et g : Z (/) -» d'l'application qui à q e Z (/)
associe (/?, g) n <P, où (/?, #) désigne la droite par p et q, et (/?, p)

TP (Z (/))• Z (/) ^tant une cubique, (g* (P(<P))) 3 a; il s'en suit

que (g* (T (d'))) - cx (K) 6 a. On en déduit que le nombre de

points singuliers comptés avec multiplicité du morphisme G: K g* (T (<d')),

donné par projection de K sur d'depuis p, est égal à 6. Le point p est une

singularité de ce morphisme, mais sa multiplicité ne peut excéder 3, sans

quoi / admettrait en p un point singulier non générique. Il doit donc
exister un point qt distinct de p où G est singulier, ce qui revient à dire que
ker (dfqi) (p, qx) et (p, q±) A Tp (Z (/))• A cause du lemme 2.2 il doit
exister q2 distinct de q1 tel que (ip, qx) ker (dfq2); on a forcémment que
q2 ï p, sans quoi {p,ker (dfp) Tp (E (/))• On pose qt);
l'unicité de d suit du fait que G ne peut avoir plus de 6 points singuliers.
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2.4. Lemme. Soient g et g': PC1 -» PC2 deux applications de degré deux.

Alors :

(i) si g et g' coïncident en quatre points, elles coïncident partout;

(ii) si g (PC1) une droite et g et g' coïncident en trois points, elles

coïncident partout.

Ce lemme est un petit exercice dont la démonstration est laissée au

lecteur.
Démonstration de 2.1. (voir fig. du §3): Soit (/) et d la droite
donnée par 2.4. La tangente à £ (/) en p recoupe £ (/) en un point z; on

a que z / p, sans quoi la restriction de / à cette tangente serait en contradiction

avec 2.2. Soit e f(d), qui est une droite d'après 2.2; /_1 (e) est

une conique contenant d, donc dégénérée en la réunion de d et une autre
droite d'. Puisque f(d') e, qui est une droite, d' (/, /?), sans quoi on
serait en contradiction avec l'unicité de d démontrée dans 2.3.; ainsi,

/(z) e e. Soit h\ PC2 PC2 la symétrie de centre z qui laisse fixe point
par point. Soient rePC2 — (Up) ~ d, r' h (r) et PT: PC2 -»PC2 la

symétrie qui envoit/(r) sur f(r') et qui laisse e fixe point par point. Considérons

l'application g H on a que f\d=g\d, f | (z, p)
g| (Up)et/[ (r, r')g|(r, r'). Si s e £ (/) - J)1'1 (/'), /(ker (rf/s)) est

une droite et g| ker (df\) coïncide avec/1 ker aux trois points d'inter-
section de ker (dfs) avec les droites d, (z, /?) et (r, r'). On en déduit que

f g, en particulier h envoit (/) dans elle-même; z étant un point fixe de

h, ce doit être un point d'inflexion, car ceux-cis sont en nombre impair et
ils sont échangés par h.

2.5. Corollaire. Soient f et f : PC2 -» PC2 <Peioc applications de degré
deux génériques. Si £ (/) £ (/') et Y1-1 (/) n £l>1 (/') # 0, a/orj
il existe un automorphisme H: PC2-> PC2 tel que H. f et
I1-1 en-!1,1 en-
Démonstration : Soit pe X1 '1 (f)ny1 1 (/') ; posons / Tp (£ (/)) n £ (/)•
Il suit des hypothèses et de 2.1 qu'on a aussi Yp(L(/')) nL(/')-
Les points et #2 construits dans la démonstration de 2.1 coïncident pour

/ et /', puisqu'ils sont déterminés par le fait que (£ (/)),
(h 9 2) Tqi (Y(/)) et que £ (/) £ (/'). Soit r e £ (/). r distinct de

p, qu q2;soit LP PC2 -> PC2 l'automorphisme qui envoit/' (p) sur/(p)
/' (p) sur/Ojq),/' (q2) sur f(q2)et f(r) sur Puisque p, et q2 sont
alignés, on peut encore exiger que H envoie la droite (/' (r),f ')) sur la
droite (/(r),/ (r')),r'étant le symétrique de r pour la symétrie h construite
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dans la démonstration de 2.1. Puisque du(i,p), f et

if ./'coïncident sur d, sur (f, p) et sur (r, r'), donc elles coïncident partout.
Soit C une cubique non singulière de PC2 et / e C un point d'inflexion.

La classe de C étant 6, il existe en plus de Tt (C), qui compte pour trois
droites, trois autres droites distinctes passant par i et tangentes à C en des

points ru r2 et r3.

2.6. Proposition. Avec les notations ci-dessus, si p est l'un des points

ru r2 ou r3, il existe une application générique f : PC2 -» PC2 telle que

c=!(/) et pe^ul(f).
Démonstration: Soit ft (.z2Q + zx z2, z^ + z0 z2, + t. z0 z^). On
vérifie que si t ^ ~\,ft définit bien une application de PC2 dans lui-
même. Le lieu singulier de ft a pour équation

z0 Zi z2 (8 -f 21) - 21. (zj| + z®) - 2z^ 0

On vérifie que si t ^ 0 et t ^ 8 ce lieu est une cubique non singulière ; on
montrera sous 3.1. qu'il s'en suit que ft est générique. On calcule que
i (1,1,0) est un point d'inflexion de £ (/) et que les points p, q1 et q2

correspondants ont pour coordonnées : p (1/2, 1/2, 1),ql (— (i'+l)-1,
— (i'+l)-1, 1), q2 ((s—1)~x, (i-- 1)~1, 1), où s — (l + t)1/2, la racine

ayant une détermination quelconque (changer de détermination revient à

échanger q1 et q2). En prenant s # 0, ±1, ±3 on s'assure que t ^ — 1, 0

et 8. On se propose de mettre l'équation de £ (/) en coordonnées inhomogènes

(z2 1) sous la forme

z\z0 .(z0 -1) (z0-B), où B#0, 1,

avec p (0,0,1), q1 (1,0,1), g2 (5,0,1).

Si —4, l'équation devient: 8zjj + 8z^ — 2z* 0. Après le changement

de coordonnées

Z0 z2 - Zi ; zl z2 + z[; z2 z0 (iy/3 - 3) + 2z2

en omettant les primes, l'équation devient

A z\ z0 (z0 1). (z0 -1/2 0*^3 +1)), où A =£ 0

Après un changement de coordonnées évident, A est remplacée par 1.

Si s # ±z a/3, on aura t ^ —4. Pour mettre l'équation sous la forme

voulue, il faut envoyer la tangente à £ (/) en i sur la droite z2 0 et les
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points p, q2et q2respectivement sur (0, 0, 1), (1, 0, 1) et ,0, 1). Pour cela,

il faut effectuer le changement de coordonnées

' (s — 3)2. (s +1) ' 1/o /
z0 / 2 T.

• (Z2 ~Z1~Zo) Î Z1 — 1/2 • (Z1 ~ Zo) '
(s + 3). (s2 + 3)

' 3(s2-!) ^z2 —2 — • O0 + Zl) + Z2 •

s +3

Après omission des primes, l'équation de ^ (/) devient

(s + 1) .(s — 3)3
A z\ — Zq (zq — 1). (zq B), où B —

(5-1). (s + 3)3

On peut supposer que l'équation de la cubique C donnée soit z\ —

Zq (z0-l) (z0 — b), où b # o, 1, et que p (0, 0, 1). Les valeurs interdites

de 5 sont 5 0, qui donne B 1 ; 5 - 1, d'où B 0 et 5 / v^3,

d'où B Vi (z\/3 + l). Ce dernier cas se ramène au cas où t -4.
Sinon, on peut résoudre par rapport à 5 dans l'équation

^ _
(5 + 1). (5 — 3)3

- (s_i).(s + 3)3 '

puis on pose t s2 - 1 et/f est alors l'application cherchée.

Ainsi, d'après 2.5 et 2.6, la cubique non singulière C détermine l'orbite
de l'application/ telle que £ (/) C, au choix près de p e Y,1'1 (/) parmi
les points r1? r2 et r3 de C.

2.7. Remarque. Soit C la cubique d'équation z3 z0 (z0-1) (z0 — b);
l'automorphisme de PC2 : (z0, zl5 z2) -> (z0, —zl9 z2) laisse C invariante.
On obtient de manière analogue d'autres tels automorphismes en envoyant
chacun des neuf points d'inflexion de C sur (0, 1,0); on engendre ainsi un

groupe G à 18 éléments. Il est bien connu qu'en général ce groupe est celui
de tous les automorphismes de PC2 qui laissent C invariante, à deux

exceptions près. La première, c'est lorsque les points 0, 1 et b e C peuvent
être envoyés, par une transformation du type z -> az + A, sur les trois
racines troisièmes de l'unité, ce qui équivaut à dire que b — V2 (z + 1);
c'était le cas de ^ (ft) pour t -4. Dans ce cas il faut ajouter à G le

groupe d'ordre 3 engendré par

(z0) zuz2) -> ^z0
1

(/\ 3- 1), zls z2^
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(ce qui équivaut aux permutations cycliques des racines troisième de

l'unité), et cela donne en tout un groupe d'ordre 54. La deuxième exception
est lorsque b — 1 ; dans ce cas, auquel appartient (ft) lorsque

t — 10 + -y/108, il faut ajouter à G le groupe d'ordre deux engendré par
(z0, zu z2) (~zo, z.zj, z2) et on obtient en tout un groupe d'ordre 36.

Pour la détermination du groupe des automorphismes qui laissent
invariante une cubique, on peut consulter [2], pages 84 et 85.

3. Classification

Considérons la famille d'applications

It (Zq, Zl> Zl) — (Z0 +^o • Z1 • Z2> Z1 + h • Z0 • Z2> Z2 + G • zo • zi)
où T (t09tut2)i

on vérifie que fT définit bien une application de PC2 dans lui-même à

condition que t0 t1 t2 ^ — 1. On va distinguer dans cette famille quatre
cas:

I) t09 tl et t2 0 et t0 t1 t2 ^ 8. Après changement de coordonnées
à la source: z0 t\13 £ J/3 z0, Z| rJ/3 ^/3 z'l9 z2 z2, et au but:
wo to4/3 • ^ï2/3 • if' o w[ to2'3 t^4'3 wl5 vr2 w29 en omettant
les primes et en posant t t0 tx f2, on retrouve la famille f\ (z0, z1? z2)

(zq +z1 .z2, Zi +z0.z2, z2 + /.z0.z1) déjà vue dans la démonstration
de 2.6. Puisque / A — 1,0, 8, le lieu singulier de f \ est une cubique non
singulière.

II) t o 0, t1 et t2 A 0. Après un changement de coordonnées on est

ramené à la forme fu (z0, zl5 z2) (z\9 z3 + z0.z2, z2 + ZQ.Zi). Le lieu
singulier a pour équation 2z0 (4z1.z2— z\) 0; c'est l'intersection d'une
droite et d'une conique qui lui est transverse. Aux points d'intersection,
le noyau de df est de dimension un et parallèle à la droite z0 0. Signalons

que le cas t09 tx et t2 # 0, t0 tx t2 8, qui a été exclu sous I, se ramène

au cas II après un changement de coordonnées convenable.

III) t0 0, tl 0, t2 ^ 0 Se ramène à

fm(z0»Zl» Zz) (Z0» Zl> Z2 +Z0 • Zl) •

Le lieu singulier a pour équation z0 zx z2 0; c'est la réunion des

trois droites d09 dl9 d2 d'équation respectivement z0 0, z1 0, z2 0.

En d0 n ker (r//) est de dimension deux; en d0 n d2 il est de dimen-
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sion un, parallèle à d0f en d1 n d2 il est aussi de dimension un, parallèle

à dt.

IV) t0 t2JIV (z0, zl5 z2) (z§, zï, z>). Le lieu singulier est le

même que sous III, mais aux points d'intersection dt n dj9 i ^ j, ker (W/)

est toujours de dimension deux.

Allure des lieux singuliers: Les traits // ou les petits carrés [~j indiquent les noyaux.

3.1. Théorème. Soit f :PC2 -> PC2 «ne application de degré deux non

constante, f est équivalente à l'une des applications de 1 à IV.

Démonstration. Remarquons d'abord qu'il ne peut arriver que /_1(/?)
courbe, où p est un point, car alors, si d est une droite ne contenant pas

p, f'1 (p) et/-1 (d) seraient deux courbes d'intersection vide.

Supposons que £ (/) ait pour équation z\ z2 zl et que ker (dfp),
où p (0, 0, 1), soit de dimension un et distinct de la droite z1 0.

Soit pn(1 In2,l/n31), q„ (1 In2,~l/n3,1);on a que pn -
ker (dfpJ ker (dfp), ker (dfqJ -» ker (dfp). On en déduit facilement que

L'Enseignement mathém., t. XXII, fasc. 1-2. 4
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la deuxième dérivée de la restriction de / à la droite ker (<dfp) serait nulle,
donc cette restriction serait elle-même constante, ce qui est impossible.
Donc ker (dfp) doit contenir la droite 0; mais alors cette droite
rencontre £ (/) seulement en p et /1 ker (dfp) aurait p comme seul point
singulier, ce qui contredit le lemme 2.2.

On déduit de ce qui précède que le lieu singulier de / ne peut pas être

une cubique avec un point cuspidal. Un raisonnement analogue permet
d'exclure le cas où / aurait comme lieu singulier une cubique avec point
double, où encore la réunion d'une conique et d'une droite qui lui est

tangente.

Cas I. Supposons que (/) S°L une cubique non singulière ; on va
d'abord en déduire que / est générique. Puisque l'équation de £ (/),

transverse. Si p e ^1 '1 (/), la restriction de/à ker (dfp) ne peut être constante
et sa dérivée en p doit donc s'annuller à l'ordre 1. Ainsi /est J]1'1 — transverse.

En résumé,/est générique. Les propositions 2.5. et 2.6. permettent
de conclure que/est équivalente à/, pour un t convenable.

Cas II. Supposons que le lieu singulier de / soit constitué d'une conique
C et d'une droite d qui lui est transverse. Posons C n d {qu q2). On
doit avoir que ker {dfq.) d9 i 1,2, sans quoi on en concluerait que
/1 ker (//.) serait constante. Pour presque tout red - {qu q2} ker (dfr)
recoupe C en deux points distincts s1 et s2, qu'on numérote de sorte que
ker (dfs) ker (df) (st> s2). Soit /' une autre application ayant pour
lieu singulier la réunion d'une droite et d'une conique, et soient q[, q2, r',
^ et s2 les points construits de manière analogue pour /'. Soit h l'auto-
morphisme de PC2 qui envoit q\ sur qt et s\ sur sh et soit H l'automor-
phisme qui envoit f (ql) sur et/' (st) sur /(^f); f H .f h~x et

/ coïncident sur les droites d et (.sq, ^2). Les fibrés ker (df) et ker (df ")

coïncident sur d, car ils coïncident en r, qx et q2 \ alors, si p e d — {qu q2},

/1 ker (dfp) et f" | ker (dfp) coïncident aux deux points de ker (dfp) n C,

ainsi que leur dérivées en p. D'après 2.4., elles doivent coïncider sur
ker (dfp); il s'en suit que / f". En particulier,/ est équivalente à fn.

Cas III et IV. Si le lieu singulier de / est composé de trois droites
distinctes d0, d1 et d2, ces droites ne peuvent se rencontrer en un seul point p.
Car alors / serait constante sur toute droite passant par p distincte de d0,

dx ou d2. Posons: d0 n d1 p2, d1 n d2 p0 et d0 n d2 p1. On se

courbe non singulière, / est ^ Z2



— 51 —

convainc facilement que pour les noyaux en p0, ou p2 les seules possibilités

sont celles rencontrées pour fIH ou fIv. On montre l'équivalence de

/et f111 ou fIV en faisant coïncider les lieux singuliers et leurs images. Dans

ces cas pour le choix de l'équivalence on a un degré de liberté dans le cas III,
deux degrés dans le cas IV.

Il est clair que si / est équivalente à l'une des applications du type I
à IV, elle ne peut être équivalente à une application d'un autre type. Cela

a donc un sens de dire que/est de type I, II, III ou IV.

3.2. Définition. Les applications /0 et f1 : PC2 -> PC2 sont dites C00-

équivalentes s'il existe une famille d'applications fs : PC2 PC2, où 5 est

un nombre réel compris entre 0 et 1, faisant passer de /0 à fufs (z) étant

polynômiale par rapport à z et différentiable par rapport à s, la famille
étant différentiablement triviale. C'est dire qu'il existe des familles de

difïéomorphismes hs et Hs, 0 < s < 1, de PC2 en tant que variété C00,

tels que/0 Hs.fs. h~ \ 0 <# < 1.

3.3. Théorème. Si f et g sont des applications de degré deux de PC2 dans
PC2 de même type II, III ou IV, elles sont équivalentes. Si elles sont de

type I, elles sont C-équivalentes.

Démonstration: Si/est de type II, III ou IV l'affirmation suit de la
démonstration de 3.1.

Si / est de type I, désignons par $ (PC2) et <P (f)h respectivement les

champs de vecteurs C00 sur PC2 et les champs de vecteurs holomorphes
le long de /; <P (PC2)X et <P (f)hx désignent les germes de tels champs en x.
On a:

(i) df($ PC2)X)+ /* Cpc2)/(x)) => # (/)/<*) Pour tout x e

(ü) f\E(/) est injective.

(i) suit du fait que / est générique et donc localement stable (on pourrait
mettre partout des champs holomorphes), (ii) suit du fait que, E (/) étant
une cubique, /1 £ (/) doit avoir 9 points doubles, qui en l'occurence sont
dégénérés en les 9 points de E1'1 (f), et pas plus.

Il suit de (i) et (ii), en recollant par partitions de l'unité, que df($ (PC2))
+ /* (<I> (PC2)) => <P (/)''. Par un théorème du type du théorème de Mather,
qui est élémentaire dans nos circonstances, on en déduit que toute déformation

assez petite de/dans les applications holomorphes est différentiable-



ment triviale. Donc / est C00-équivalente aux applications qui lui sont
proches. L'affirmation que / et g sont C00-équivalentes suit du fait que les

applications de type I forment un ouvert de Zariski, donc connexe, de

PC17.

Soit /: PC2 -> PC2. On pose Gf {(h, H) 6 Aut (PC2) x Aut (PC2)
\ H .f. h"1 /}. On va déterminer Gf lorsque / est de degré deux; sauf
si / est de type deux, il se trouve que si h est un automorphisme qui
laisse invariantes les singularités de fi il existe un unique H tel que
(A, H) e Gf.

4.1. Proposition. I) Si t =£ —10 ± (108)^", le groupe d'isotrophie de fTt

est engendré par les paires

oil h et v sont les solutions de u3 t et v3 1. En fait, la
troisième paire s'écrit comme composition des deux premières. Ce groupe est

d'ordre 18.

Si t — —10 ± (108)^, on peut ajouter la paire (h, H), où h est

l'automorphisme qui s'écrit, dans les coordonnées introduites ,sous 2.6.,

(z0,z1,z2)->(z0,/.z1,z2), et H est construit selon le corollaire 2.5.

appliqué à ft.h~1 et ft afin que H.ft.h~x ft. Le groupe d'isotropie
est ici d'ordre 36.

II) Le groupe d'isotropie de fu est engendré par :

4. Groupes d'isotropie

et

où v3 1. Il est d'ordre 6.
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III) Le groupe d'isotropie de fIU est engendré par

1 0 0 \ / 1 0 0 \ / o 1 0 \ / o i o \
0 x2 0 ; 0 x4 0 \ et 1 0 0 ; 1 0 0

0 0 x / \ 0 0 x2 J \ 0 0 1 / \ 0 0 !/
où x est un nombre complexe non nul.

IV) Le groupe d'isotropie de fIV est engendré par

1 0 0 \ / 1 0 0 \
0 x 0 J ; J 0 x2 0 J et (As, As),
0 0 y J \ 0 0 y2 J

où x et y sont des nombres complexes non nuls et As(z0, zl9 z2)

(zS(0), zs(1), zs(2)), où s parcourt les permutations de (0,1,2).
Démonstration: On vérifie que les automorphismes décrits laissent
invariantes les applications en question.

I) Si t 7^ -10 ± (108)* et t ^ -4, il ne peut y avoir d'autres
automorphismes laissant f\ invariante, puisque la projection du groupe décrit

sur le premier facteur de Aut (PC2) x Aut (PC2) donne tous les

automorphismes qui laissent £ (f\) invariante (voir remarque 2.7). Si t -4,
on a des automorphismes supplémentaires, mais ils ne laissent pas

271 (ft) invariant et ne donnent donc rien de nouveau.
Si t —10 + (108)* par contre, l'automorphisme qui échange qi

et q2 (notations de 2.7) laisse pej]1,1 (f{) fixe et donne lieu, ainsi qu'on
l'a énoncé, à un nouvel élément de GfL

Pour II, III et IV les affirmations se vérifient facilement.

4.2. Théorème. Soit f : PC2 — PC2 une application de degré deux. Si f est
de type /, elle est C00-stable. Si elle est de type III ou IV, elle est stable dans
les applications Gf-équivariantes.
Si elle est de type II, elle n 'est pas Gf-stable.

Démonstration: Les applications de type I forment un ouvert; leur C00-

stabilité suit alors de 3.3.

Si / est de type III, son groupe d'isotropie est de dimension un et son
lieu singulier est la réunion de trois droites d0, dl et d2. Si g est Gf
équivalante, son groupe d'isotropie est de dimension un ou deux. Supposons
que dim (ker (dfpj) 1, où p« d0ndt;si g est assez proche de /,
dim (ker {dgq)) < 1, pour q dans un voisinage de p, donc g ne peut être
de type IV et doit donc être de type III.
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Si / est de type IV, son groupe d'isotropie est de dimension deux, de

même que pour toute autre application g Gy-équivariante, g doit donc être

aussi de type IV.
Si

y(^0' zi,Z2) zl,z21+z0
l'application

{zl + t.zi.z2,z\ + Z0.Z2,Z22

pour t petit, est proche de / et Gy-équivariante, mais de type I, donc non
équivalente à /.
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