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APPLICATIONS POLYNOMIALES DE DEGRE DEUX
DU PLAN PROJECTIF COMPLEXE DANS LUI-MEME

par Felice RoNGga

Soit ' = (fo, f1, /) un triple de polyndmes homogénes de degré deux a
coefficients complexes et a trois variables z, zy, z,; s’ils n'ont d’autre
racine commune que 0 € C3, ils déterminent une applications notée encore
f:PC?* - PC? On se propose de classer ces application a des change-
ments de coordonnées de la source et du but pres. Il se trouve qu’elles sont
essentiellement déterminées par leur lieu singulier, qui est soit une cubique
non singuliére, soit la réunion d’une conique et d’une droite en position
générale, soit la réunion de trois droites en position générale. Dans le
dernier cas il y a deux possibilités: aux trois points d’intersection des trois
droites le noyar de la dérivée de f est soit partout de dimension deux, soit
de dimension deux en I'un des points et de dimension un en les deux
autres.

On dira que fet g : PC* — P C? sont équivalentes si elles coincident
apres changement de coordonnées a la source et au but, c’est a dire
f=H.g.h ', ou H, he Aut (PC?). Au §4 on considére le groupe d’iso-
tropie G, = {(h, H) € Aut (PC?) x Aut (PC*)|f=H.f.A~"}. On
montre que si dim (G,) > 1, f est stable dans les applications G -équi-
variantes; c’est a dire que si g est proche de f et invariante par ’action
de G, (soit G, > G,), g est équivalente a f.

Je remercie Pierre Siegfried pour les nombreuses conversations qui
m’ont permis d’éclairer plusieurs points de ce travail.

1. APPLICATIONS GENERIQUES DE PC™ DANS PC"

Soit A% (m, n) Uensemble des applications polyndmiales de degré d
de PC™ dans PC"; tout f'€ A% (m, n) se met sous la forme:

f(ZO7 teeo Zm) = (fO (ZO> treo Zm)a “'7.)(;1(203 $3%5 Zm))
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ou f; est un polyndme homogene de degré d. Le n-tuple (f,, ...,f,) est
déterminé a une constante non nulle prés; f est bien définie a condition
que 0 € C™* ! soit le seul zéro commun aux f;. Puisque chaque f; est déter-
d+m

)coefﬁcients, A% (m, n) s’identifie & un ouvert de Zariski
m

miné par <

d+m _ g .
— 1;s1m > n, A se réduit aux constantes.
m

Soit S = J" (PC™, PC") une sous-vari¢té localement fermée (dans la
topologie transcendante) du fibré des jets d’ordre r d’applications de
PC™ dans PC". Si f: PC™ — PC", on dit que f est S-transverse si son exten-
sion aux jets d’ordre rj" (f) : PC™ —» J" (PC™, PC") est transverse a S.

de PC*, ouk = (n+1) <

1.1. PrOPOSITION. Soit S < J" (PC™, PC") une sous-variété localement
fermée; si n>m et d>r, [ensemble des fe A*(m,n) qui sont S-
transverses est dense.

La démonstration, qui suit le schéma habituel des théorémes de trans-
versalité, est précédée par un lemme:

1.2. Lemme. La dérivée de [Dlapplication F :PC™ X A*(m, n)
— J4(PC", PC"), F(z,9) = j*(9)(), est surjective en tout point.

Démonstration: Soit B ’ensemble des (n+ 1)-uples (fy, ..., f,) de polyndmes
homogeénes de degré d en les variables z,, ..., z,,; soit U = B? ouvert de
Zariski formé des (n+1)-uples n’ayant d’autre racine commune que
0e C""!. Puisque (z‘j, e zi, 0, ..., 0) est dans U, celui-ci est non vide, donc
dense dans BY. Désignons par P? 'ensemble des applications polyndmiales
de degré au plus égal & 4 de C™ dans C". Si (z° g) € PC™ x U, on peut
supposer sans perte de généralité que z° = (1,0, ...,0) et g, (%) # 0.
Pour montrer que la dérivée de Fen (z°, g) est surjective, il suffit de vérifier
que I’application linéaire G : B* > P4, G (f) = (f1 (1, 2), ..., £, (1, 2")), ol
z' = (z4, ..., Z,,), est surjective. Or si ge P4, g = < Y a;'Z,a)i=1,...,n on

{2
d 1 d— d -1
pose gy (Zgy s Zm) = (26, 3. @y .2%.zo VL Y a2 z5TI et
e =

on a que G(gq,) = q.

Démonstration de 1.1: en remplacant éventuellement S par son image
inverse par la projection de J¢ (PC™, PC") sur J" (PC™, PC"), on se raméne
au cas ot d = r. Soit alors S’ = F~1(S)et p:S’ — A? la restriction de
la projection de PC™ x A% sur le deuxiéme facteur. Si fe A% est une valeur
réguliere de p, j¢ (f) est iransverse a S. Le résultat suit alors du théoréme
de Sard.
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Soit maintenant f: PC? —» PC? une application de degré d > 2; il
suit de 1.1 quen déformant arbitrairement peu f on peut la rendre géné-
rique pour les singularités de Boardman d’ordre deux: on dira alors que
f est « générique ». Si f est donc générique, ses seules singularités sont
S L (f) = {ze PC*|dim (ker (df,)) = 1}, qui est une courbe régulicre, et
S L1(f) = {ze PC* | ker (df,) = T, (3. (f))}> qui est un ensemble fini
de points (7, désigne I’espace tangent au point z).

1.3. PROPOSITION. Soit f:PC?* - PC? une application générique de
degré d. Alors Y '(f) est une courbe réguliére de degré 3.(d—1) et
N BL(f) est constitué de 3. (4d—5) . (d—1) points.

Démonstration: Soit s € H? (PC?) la classe d’Euler du fibré canonique et
désignons par N (f) = f* (T (PC?) — T (PC?) le fibré virtuel normal & f.
On a que ¢(T(PC?*) = 1 + 3s + 3s%, ol ¢ désigne la classe de Chern
totale, et f* (s) = d.s. La classe duale & )" (f) est égale a

) ¢ (N(f)) =f*(3s) = 3s = 3(d—1).s.
La classe duale & ) "' (f) est égale a

() GIN) + (N () = 3= [Ed=3). .

L’expression de ces classes duales est calculée par exemple dans [1]. On
obtient les formules cherchées en évaluant (*) et (**) respectivement sur la
classe fondamentale d’un hyperplan et sur la classe fondamentale de PC?,
ce qui revient a remplacer s par 1.

En fait, on se convainc facilement que pour toute application f de degré
d le lieu singulier, qu’on désignera dorénavant par Y. (f), a pour équation:

of.
dét <8—ﬁ> ij=01.2 = 0, ce qui définit bien une courbe de degré 3 (d—1).
Z

J

2. UNE COINCIDENCE

On se borne dorénavant aux applications de degré deux de PC? dans
PC?; I’ensemble 4% (2,2) de ces applications est un ouvert de Zariski de
PC'7, sur lequel opére P (G1 (3, C)) x P(G1 (3, C)), qui est de dimension
16; Porbite générique a donc une codimension au moins égale a un. Le
lieu singulier d’une telle application est une cubique; I’ensemble des
cubiques de PC* s’identifie & PC®. Si I'on fait agir P (GL (3, C)) sur ces
cubiques, l’orbite générique est de codimension un. On peut donc s’attendre
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a ce que si f est générique 'orbite de ) (f) détermine l'orbite de f a un
nombre fini de choix prés; les propositions qui suivent vont nous dire
comment.

2.1. PROPOSITION. Soit f:PC?* — PC? une application générique. Alors

si peY "' (f), la droite tangente a Y (f) en p recoupe Y (f) en un
point d’inflexion.

La démonstration de cette proposition est précédée de trois lemmes.

2.2. LeMME. Soit g : PC' — PC? une application de degré deux. S’il
existe p € PC' tel que dg, = 0, g (PC') est une droite et il existe un et un
seul point g # p tel que dg, = 0.

Démonstration: Si dg, = 0, g (PC") est une conique irréductible avec un
point double: ce ne peut étre qu’une droite double. g : PC' — g (PC?) est
une application générique de degré deux: dans ce cas elle a exactement
deux points singuliers distincts.

2.3. LeMME. Soitf : PC* — PC? de degré deux générique. Sipe Y "' (f),
il existe une et une seule droite d = PC? passant par p, telle que d © ). (f)
= {1, 9,92}, P, 9, et q, distincts, et telle que d = ker (df,) = ker (df,,).

Démonstration: Soit ae H? (3 (f)) la classe fondamentale en cohomo-

Jogie de ) (f) et be H? (), (f)) la classe dualea ) '»* (f)dans ) (f); soit
N le fibré normal a ) (f) dans PC? et K = ker (df), fibré de rang 1 sur
> (f). Puisque f est générique, on a: b = 9.a = ¢ (N) — ¢; (K); Y. (f)
étant une cubique, on a: ¢; (N) =9.a. Ainsi ¢, (K) = 0. Soit d’ une
droite ne passant pas par p et g: ). (f) — d’ application qui a g€ ) (f)
associe (p,q) nd’, ou (p,q) désigne la droite par p et ¢q, et(p,p)
= T,(3. (/). Y, (f) étant une cubique, ¢, (9* (T'(d")) = 3.a; il sen suit
que c; (9% (T(d"))) — ¢, (K) = 6.a. On en déduit que le nombre de
points singuliers comptés avec multiplicité du morphisme G: K — g* (T (d )5
donné par projection de K sur d’ depuis p, est égal a 6. Le point p est une
singularité de ce morphisme, mais sa multiplicité ne peut excéder 3, sans
quoi f admettrait en p un point singulier non générique. Il doit donc
exister un point ¢, distinct de p ou G est singulier, ce qui revient a dire que
ker (df,) = (p,q4) et (p,q1) # T, (3. (f)). A cause du lemme 2.2 il doit
exister ¢, distinct de ¢, tel que (p, g¢;) = ker (df,,); on a forcémment que

g, # p, sans quoi (p, g;) = ker (df,) = T, (3. (f)). On pose d = (p, q,);
I’unicité de d suit du fait que G ne peut avoir plus de 6 points singuliers.
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2.4, LEMME. Soient g et g': PC! — PC? deux applications de degré deux.,
Alors:

(i) si g et g’ coincident en quatre points, elles coincident partout;

(i) si g (PC') = une droite et g et g’ coincident en trois points, elles
coincident partout.

Ce lemme est un petit exercice dont la démonstration est laissée au
lecteur.
Démonstration de 2.1. (voir fig. du §3): Soit pe > 11 (f) et d la droite
donnée par 2.4. La tangente & Y (f) en p recoupe Y (f) en un point 7; on
a que I # p, sans quoi la restriction de f a cette tangente serait en contra-
diction avec 2.2. Soit e = f(d), qui est une droite d’aprés 2.2; /! (e) est
une conique contenant d, donc dégénérée en la réunion de d et une autre
droite d’. Puisque f(d') = e, qui est une droite, d’" = (i, p), sans quol on
serait en contradiction avec 'unicité de d démontrée dans 2.3.; ainsi,
f (i) ee. Soit h: PC* — PC? la symétrie de centre i qui laisse d fixe point
par point. Soient re PC* — (i,p) — d, ¥’ = h(r) et H: PC* —» PC? la
symétrie qui envoit £ (r) sur f(r') et qui laisse e fixe point par point. Considé-
rons lapplication g = H.f.h™'; on a que f|d=g|d f|(@np)
=g |Gp) et £ () =g | (nr). SiseX (f) = X1 (), S (ker (df)) est
une droite et g | ker (df;) coincide avec f'| ker (df;) aux trois points d’inter-
section de ker (df,) avec les droites d, (i, p) et (r, #’). On en déduit que
S/ = g, en particulier & envoit ) (f) dans elle-méme; i étant un point fixe de
h, ce doit €tre un point d’inflexion, car ceux-cis sont en nombre impair et
ils sont échangés par A.

2.5. COROLLAIRE. Soient [ et f':PC?* — PC* deux applications de degré
deux génériques. Si ) (f) = Y, (f) et UL (f) n YV (f) # @, alors
il existe un automorphisme H: PC* — PC* tel que H.f = f, et
YU = TR,

Démonstration: Soit pe ) '+ (f) n ) 11 (f); posons i =T, (3 (/) n Y. (f).
Il suit des hypotheéses et de 2.1 qu'on a aussi i = 7, () (f) 0 Y. (/).
Les points ¢, et g, construits dans la démonstration de 2.1 coincident pour
f et f', puisqu’ils sont déterminés par le fait que (7, q;) = T,, (Y (/).
(i, q2) = T,y Q. () et que Y. (f) =3 (f"). Soit re ¥ (f), r distinct de i,
P> 41, q5; soit H: PC* » PC? l'automorphisme qui envoit £ (p) sur £ (p)
J7(q0) sur f(q.1), /7 (g2) sur f(q2) et f* (r) sur f (). Puisque p, g, et g, sont
alignés, on peut encore exiger que H envoie la droite (f* (r), 7 (r')) sur la
droite (f(r), f (")), r’ étant le symétrique de r pour la symétrie 4 construite
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dans la démonstration de 2.1. Puisque f'~'(f"(d)) = du (i,p), f et
H . f'coincident sur d, sur (i, p) et sur (r, r’), donc elles coincident partout.

Soit C une cubique non singuliére de PC? et i € C un point d’inflexion.
La classe de C étant 6, il existe en plus de T; (C), qui compte pour trois
droites, trois autres droites distinctes passant par i et tangentes a C en des
points ry, ¥, et rs.

2.6. PROPOSITION. Avec les notations ci-dessus, si p est l'un des points
ri, ¥, Ou rs, il existe une application générique f:PC?* — PC? telle que
C=Y(f) et peX ().

Démonstration: Soit f, = (zﬁ + z,.2,, zi + 24 .25, zz +1t.29.27). On
vérifie que si ¢ # —1, f, définit bien une application de PC? dans lui-
méme. Le lieu singulier de f, a pour équation

Zo.21.2,. (842 — 2t.(2542) — 2z, = 0.

On vérifie que si ¢ # 0 et ¢ # 8 ce lieu est une cubique non singuliére; on
montrera sous 3.1. qu’il s’en suit que f, est générique. On calcule que
i = (1, 1, 0) est un point d’inflexion de ) (f) et que les points p, g, et g,
correspondants ont pour coordonnées: p = (1/2,1/2,1),q, = (= (s+1)71,
—(+D7L 1), g, = (—D L -7 1), ou s = (1+1)"? la racine
ayant une détermination quelconque (changer de détermination revient a
échanger ¢, et ¢g,). En prenant s # 0, -1, +3 on s’assure que ¢ # —1,0
et 8. On se propose de mettre 'équation de ). (f) en coordonnées inhomo-
génes (z, = 1) sous la forme

zt = zy.(zo—1).(zg—B), ou B #0,1,

1

avec p = (0,0,1), ¢q, =(,0,1), g, =(B,0,1).

Si t = —4, I’équation devient: 823 + 82? e 222 = 0. Aprés le change-
ment de coordonnées

2y = Zy, — 273 Zy = Z, + 213 Zy = Z{,.(iﬁ—S) +22;,
en omettant les primes, I’équation devient
A.2 = 2. (20=1). (20— 1/2.(iy/3+1)), oh A #0.

Aprés un changement de coordonnées évident, 4 est remplacée par 1.

Sis # +i \/ 5, on aura t # —4. Pour mettre I’équation sous la forme
voulue, il faut envoyer la tangente & » (f) en i sur la droite z, = 0 et les
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points p, q, et g, respectivement sur (0, 0, 1), (1, 0, 1) et (B, 0, 1). Pour cela,
il faut effectuer le changement de coordonnees

22
, (s=3)".(s+1) (zy—z,—20); 21 =1/2.(z;—2o);

T (543).(52+3)

. 3(s*=1)

7, = ———= (zo+2y) + 2,.
2 & + 3 (zo 1) 2

Aprés omission des primes, ’équation de ) (f) devient
B (s+1).(s=3)°
o (s=1D.(s+3)?

On peut supposer que I’équation de la cubique C donnée soit 77 =
Zo. (2= 1) . (zo—=b), o b # 0,1, et que p = (0,0, 1). Les valeurs inter-

A.z2 =z2y.(zg—1).(zo—B), ou B

dites de s sont s = 0, quidonne B = 1;s = —1,dou B = Oets = i\/3,
dou B=".(0 \/3+1). Ce dernier cas se raméne au cas out = —4.

Sinon, on peut résoudre par rapport a s dans I’équation

(s +1).(s=3)
o (s=1).(s+3)*’

puis on pose ¢ = s> — 1 et f, est alors 'application cherchée.

Ainsi, d’aprés 2.5 et 2.6, la cubique non singuliére C détermine ’orbite
de I’application f telle que Y (f) = C, au choix prés de pe Y, "' (f) parmi
les points ry, r, et r3 de C.

b

2.7. Remarque. Soit C la cubique d’équation zi = z,.(zo—1). (zo—b);
’automorphisme de PC? : (zy, z4, 2,) = (2o, —24, Z,) laisse C invariante.
On obtient de maniére analogue d’autres tels automorphismes en envoyant
chacun des neuf points d’inflexion de C sur (0, 1, 0); on engendre ainsi un
groupe G a 18 éléments. Il est bien connu qu’en général ce groupe est celui
de tous les automorphismes de PC? qui laissent C invariante, & deux
exceptions prés. La premicre, c’est lorsque les points 0, 1 et b € C peuvent
étre envoyés, par une transformation du type z — az + A, sur les trois

racines troisiemes de I'unité, ce qui équivaut a dire que b = % . (i \/5 +1);

c’était le cas de ) (fy) pour ¢ = —4. Dans ce cas il faut ajouter a G le
groupe d’ordre 3 engendré par '

1 _
(20,21, 25) = (Zo . i . (i\/3 —1), z4, Zz)
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(ce qui équivaut aux permutations cycliques des racines troisiéme de
I'unité), et cela donne en tout un groupe d’ordre 54. La deuxiéme exception
est lorsque b = —1; dans ce cas, auquel appartient ) (f,) lorsque

t = —10 + \/ 108, il faut ajouter & G le groupe d’ordre deux engendré par
(zo> 2y, 23) = (— 2z, 1.2, z,) €t On obtient en tout un groupe d’ordre 36.

Pour la détermination du groupe des automorphismes qui laissent
invariante une cubique, on peut consulter [2], pages 84 et 85.

3. CLASSIFICATION

Considérons la famille d’applications

2 2
fr(zo,21,25) = (20+1ty . 21 . 25, 27+t . 2. 2y, Z§+t2'20°zl)a

Ol‘l T = (to, tl,tz);

on vérifie que fr définit bien une application de PC?* dans lui-méme 2
condition que #, . #; . %, # —1. On va distinguer dans cette famille quatre
cas:

I) to,t;ett, #0ett,.t,.1, # 8 Aprés changement de coordonnées

; 1 r 1 2 , %
alasource: zo = t¢/3. 1% . 2o, 2y = to/2 . 13 . 2y, z, = z,, et au but:

wo = o3 713 Lwg, wy = t23 . t7%3 . w,, w, = w,, en omettant
les primes et en posant t = t, .1, . t,, on retrouve la famille 1% (z,, z4, z,)
= (z50+2,.2,, 21 +29.25, 22+ 1.24.2,) déja vue dans la démonstration
de 2.6. Puisque ¢ # — 1,0, 8, le lieu singulier de f? est une cubique non
singulicre.

I ¢z, = 0, t; et t, # 0. Aprés un changement de coordonnées on est
ramené a la forme [ (z, 2z, z,) = (25,25 +24.2,, 25+ 24.24). Le lieu
singulier a pour équation 2z, . (4z,.z,—zg) = 0; c’est l'intersection d’une
droite et d’une conique qui lui est transverse. Aux points d’intersection,
le noyau de df est de dimension un et paralléle a la droite z, = 0. Signalons
que le cas 7y, ty et t, # 0,2, .7; .1, = &, qui a été exclu sous I, se ramene
au cas II aprés un changement de coordonnées convenable.

III) t, = 0,t;, = 0,¢, # 0. Seramene a
T 3 3
fHI(Zm Z1,23) = (20, 21,23+ 20 - Z9) -

Le lieu singulier a pour équation z,.z,.z, = 0; c’est la réunion des
trois droites d,, d,, d, d’équation respectivement z, = 0, z; = 0, z, = 0.
En d, n d, ker (df) est de dimension deux; en d, N d, il est de dimen-
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sion un, paralléle a d,, en d; N d, il est aussi de dimension un, parallele
ad.

V) to = t; = ts [ (2o, 21, 2,) = (25, 21, 23). Le lieu singulier est le
méme que sous III mais aux points d’intersection d; N d;, i # ], ker (df)
est toujours de dimension deux.

Allure des lieux singuliers: Les traits // ou les petits carrés E) indiquent les noyaux.

3.1. THEOREME. Soit f:PC? — PC* une application de degré deux non
constante. f est équivalente a l'une des applications de 1 a 1V.

Démonstration. Remarquons d’abord qu’il ne peut arriver que £~ ! (p)
= courbe, ou p est un point, car alors, si d est une droite ne contenant pas
p, £ =1 (p) et f 1 (d) seraient deux courbes d’intersection vide.

Supposons que Y (f) ait pour équation z2 .z, = z3 et que ker df,),
ou p = (0,0, 1), soit de dimension un et distinct de la droite z; = 0.
Soit p, = (1/n?, 1/n* 1), q, = (1/n*, —1/n*,1); on a que p, = p, g, = p
ker (dj;,n) — ker (df,), ker (dfqn) — ker (df,). On en déduit facilement que

L’Enseignement mathém., t. XXII, fasc. 1-2. 4
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la deuxiéme dérivée de la restriction de f & la droite ker (df,) serait nulle,
donc cette restriction serait elle-méme constante, ce qui est impossible.
Donc ker (df,) doit contenir la droite z; = 0; mais alors cette droite
rencontre Y (f) seulement en p et f | ker (df,) aurait p comme seul point
singulier, ce qui contredit le lemme 2.2.

On déduit de ce qui précéde que le lieu singulier de f ne peut pas étre
une cubique avec un point cuspidal. Un raisonnement analogue permet
d’exclure le cas ou f aurait comme lieu singulier une cubique avec point
double, ol encore la réunion d’une conique et d’une droite qui lui est
tangente. |

Cas I. Supposons que Y (f) soit une cubique non singuliére; on va
d’abord en déduire que f est générique. Puisque I’équation de ) (f),

0 f; : o

dét <6——> ij=0,1,, = 0 définit une courbe non singuliére, f est Y 'et ) ?
Zj

transverse. Sip € Y *' (f), la restriction de fa ker (df,) ne peut étre constante

et sa dérivée en p doit donc s’annuller a ordre 1. Ainsi fest Y. 1! — trans-

verse. En résumé, f est générique. Les propositions 2.5. et 2.6. permettent

de conclure que f est équivalente a X pour un ¢ convenable.

Cas I1. Supposons que le lieu singulier de f soit constitué d’une conique
C et d’une droite d qui lui est transverse. Posons C nd = {q4, q,}. On
doit avoir que ker (dﬂ) = d, i = 1, 2, sans quoi on en concluerait que
f ] ker (df4) serait constante. Pour presque tout red — {q4, q,} ker (df,)
recoupe C en deux points distincts s, et s,, qu’on numérote de sorte que
ker (dfs ) = ker (df,) = (s¢, 5,). Soit f’ une autre application ayant pour
lieu smguher la réunion d’une droite et d’une conique, et soient ¢, g,, ',
s; et s, les points construits de maniére analogue pour f’. Soit /4 I’auto-
morphisme de PC? qui envoit g; sur g; et s; sur s;, et soit H l’automor-
phisme qui envoit £’ (g;) sur £(g,) et f'(s;) sur f(s,); f = H.f" .h™*
f coincident sur les droites d et (sq, s,). Les fibrés ker (df) et ker (df")
coincident sur d, car ils coincident en r, g, et g,; alors, siped — {q4, q,},
f [ ker (df,) et [~ | ker (df,) coincident aux deux points de ker (df,) n C,
ainsi que leur dérivées en p. D’aprés 2.4., elles doivent coincider sur
ker (df,); il s’en suit que f = f". En particulier, f est équivalente a /7',

Cas IIT et IV. Si le lieu singulier de f est composé de trois droites dis-
tinctes d,, d, et d,, ces droites ne peuvent se rencontrer en un seul point p.
Car alors f serait constante sur toute droite passant par p distincte de d,,
d; ou d,. Posons: dy nd{ = p,,dy nd, = pgetdy nd, = p;. On se
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convainc facilement que pour les noyaux en p,, p; ou p, les seules possi-
bilités sont celles rencontrées pour 71 ou . On montre I’équivalence de
Fet 1T ou £V en faisant coincider les lieux singuliers et leurs images. Dans
ces cas pour le choix de I’équivalence on a un degré de liberté dans le cas III,
deux degrés dans le cas IV. B

Il est clair que si f est équivalente & I'une des applications du type I
a IV, elle ne peut étre équivalente a une application d’un autre type. Cela
a donc un sens de dire que fest de type I, 11, TII ou IV.

3.2. Définition. Les applications f, et f, : PC* — PC?* sont dites C-
équivalentes s’il existe une famille d’applications f, : PC* — PC?, ol s est
un nombre réel compris entre 0 et 1, faisant passer de f, a f;, f, (z) étant
polynoémiale par rapport & z et différentiable par rapport a s, la famille
étant différentiablement triviale. C’est dire qu’il existe des familles de
difféomorphismes A, et H, 0 < s < 1, de PC?* en tant que variété C%,
tels que fy, = H,. f, . h1, 0 <<s <.

3.3. THEOREME. Si f et g sont des applications de degré deux de PC* dans
PC? de méme type 11, 11 ou 1V, elles sont équivalentes. Si elles sont de
type 1, elles sont C*-équivalentes.

Démonstration: Si fest de type II, III ou 1V I'affirmation suit de la démon-
stration de 3.1.

Si f est de type I, désignons par & (PC?) et @ (f)" respectivement les
champs de vecteurs C* sur PC? et les champs de vecteurs holomorphes
le long de f; @ (PC?), et & ()" désignent les germes de tels champs en x.
On a:

(i) df (@ (PC?),) + f* (D (PCjixy) 2 @ (f)}f(x) pour tout x € PC?
(ii) /| Y (f) est injective.

(1) suit du fait que f est générique et donc localement stable (on pourrait
mettre partout des champs holomorphes). (if) suit du fait que, Y (f) étant
une cubique, f ] Y. (f) doit avoir 9 points doubles, qui en Poccurence sont
dégénérés en les 9 points de Y *** (f), et pas plus.

Il suit de (i) et (ii), en recollant par partitions de 'unité, que df (& (PC )
+ f* (P (PCz)) > @ (f)". Par un théoréme du type du théoréme de Mather,
qui est élémentaire dans nos circonstances, on en déduit que toute déforma-
tion assez petite de f dans les applications holomorphes est différentiable-
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ment triviale. Donc f est C -équivalente aux applications qui lui sont
proches. L’affirmation que f et g sont C”-équivalentes suit du fait que les
applications de type I forment un ouvert de Zariski, donc connexe, de
PC'7,

4. GROUPES D’ISOTROPIE

Soit f: PC* - PC?. On pose G, = {(h, H) € Aut (PC?) x Aut (PC?)
] H.f.h™" = f}. On va déterminer G, lorsque f est de degré deux; sauf
si f est de type deux, il se trouve que si 4 est un automorphisme qui

laisse invariantes les singularités de f, il existe un unique H tel que
(h, H) € G,.

4.1. PropositioN. I) Si t # —10 + (108)%, le groupe d’isotrophie de f:
est engendré par les paires

100 10 O 0 vO 0920
00utl |; 00 u? |, 2200 |; v 00
Ouo 0u?o 0 01 00 1
et
ut 0 0 u?
010 ; 0 10 ,
u00 u* |

ot u et v sont les solutions de w®> =t et v> = 1. En fait, la troi-
sieme paire s’écrit comme composition des deux premiéres. Ce groupe est
d’ordre 18.

Si t = —10 + (108)*, on peut ajouter la paire (h, H), ou h est
[’automorphisme qui s’écrit, dans les coordonnées introduites sous 2.6.,
(zo, 21, 25) = (20, 1.21, 2,), et H est construit selon le corollaire 2.5.
appliqué a f, . h™1 et f, afin que H.f,.h™' = f,. Legroupe d’isotropie
est ici d’ordre 36.

1) Le groupe d’isotropie de f™ est engendré par :

100 i0 O 100 100
020 . 0220 et 001 |; 001
00 v? 00 v 010 010

onv® = 1. Il est d’ordre 6.
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1Y) Le groupe d’isotropie de f™! est engendré par

10 0 10 O 010 010
0x*0 |; 0x*0 et 100 |; 100
00 x 00 x? 001 001

ot x est un nombre complexe non nul.

IV) Le groupe d’isotropie de f'V est engendré par

100 10 O
0x0 |; 0x20 et (A, A,
00y 00 y?

ol x et y sont des nombres complexes non nuls et Ag(zg, 21, 2,)
= (Zy(0)» Zs(1y> Zs(2))s Ol s parcourt les permutations de (0, 1, 2).
Démonstration: On vérifie que les automorphismes décrits laissent inva-
riantes les applications en question.

I) Sit# —10 + (108)% et t # —4, il ne peut y avoir d’autres auto-
morphismes laissant /7 invariante, puisque la projection du groupe décrit
sur le premier facteur de Aut (PC?) x Aut (PC?) donne tous les auto-
morphismes qui laissent Y (f T invariante (voir remarque 2.7). Si t = —4,
on a des automorphismes supplémentaires, mais ils ne laissent pas
Y 11 (f}) invariant et ne donnent donc rien de nouveau.

Si ¢ = —10 4 (108)* par contre, I’automorphisme qui échange ¢,
et ¢, (notations de 2.7) laisse pe Y *** (f7) fixe et donne lieu, ainsi qu’on
I’a énoncé, a un nouvel élément de Gf){ .

Pour II, III et IV les affirmations se vérifient facilement.

4.2. THEOREME. Soit f: PC*> — PC?* une application de degré deux. Si f est
de type I, elle est C*™-stable. Si elle est de type III ou 1V, elle est stable dans
les applications G ;~équivariantes.

Si elle est de type 11, elle n’est pas G ;-stable.

Démonstration: Les applications de type I forment un ouvert; leur C*-
stabilité suit alors de 3.3.

Si f est de type III, son groupe d’isotropie est de dimension un et son
lieu singulier est la réunion de trois droites d,,, d; et d,. Si g est G r €qui-
variante, son groupe d’isotropie est de dimension un ou deux. Supposons
que dim (ker @dfy)) =1, ol p =dy ndy; si g est assez proche de f,
dim (ker (dg,)) < 1, pour ¢ dans un voisinage de p, donc g ne peut étre
de type IV et doit donc étre de type III.
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Si fest de type IV, son groupe d’isotropie est de dimension deux, de
méme que pour toute autre application g G -équivariante. g doit donc €tre
aussi de type IV.

Si

S (2o 21, 22) = (25, 21 +20.25, 23 +20.2y),
I’application
(z8+1.2.25,25 4 25.25,25 + 2. Z1),

pour ¢ petit, est proche de f et G -équivariante, mais de type I, donc non
équivalente a f.
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