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This formula is involved in proving that if H is (algebraically) a subgroup
of a Lie group G and if H is a closed subset of G, then H is a topological
Lie subgroup of G ([3, pp. 96, 105]). Specifically, it implies that { V in
L (G) I exp (itV) is in H, for all t real} is closed under the bracket. The
formula also provides the following geometric interpretation of the bracket
[X, Y ] on the Lie algebra L (G) of a Lie group G.

Corollary 1. If X and 7 belong to L (G), then the curve

t -> exp - JtX exp exp (ftX) exp (YtY)
has velocity vector [X, Y] at t — 0.

4. The Curvature Tensor

Now assume M is furnished with an affine connection (covariant
differentiation operator) y.

The curvature tensor Ron M h the (^-tensor (equivalently, the linear-
transformation-valued bilinear mapping) R defined by

R{X,Y)A Vx Vy A- Vy FxA

(Ox, Vy] - A

for X, Y, and A vector fields on M. The relationship between this tensor
and the Riemann curvature (in a Riemannian manifold) may be found in
[4, pp. 72-73], [2, Chapter 9], and [5, pp. 125-127]. Here we shall show its

relationship to parallel translation.
Consider the figure again, and let A be any vector field on M. We shall

compare parallel translation along p0-> p i - p± with that along p0 - p2

p3. Then, by adding the curve o (u) Yu Xu Y_uX-up3 defined

previously (the dotted curve in the figure), we obtain a closed circuit. We
shall need the following.

Lemma 2. (Taylor's Theorem for parallel translation). Let Xbe a vector
field defined in a neighborhood of a curve y, let T y' (0), and for any
t in domain (y), let xt denote parallel translation along y to y (t). Then

T0X(y(t))~X(y(0)) +
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Proof. Apply the real-variable Taylor's Theorem to the function /(0
to X (y (*)) which has values in a finite dimensional vector space.

lim T0 X(y(t+- t0X (y (f))
' ~

r
nmTtX(y(t +h))-X(y(t))

— T0 /,->o j
' ~ T0 Ky'CO A*

h

Inductively,/00 (0 (F/(o "^0 and/<n)(0) pr"X.

Theorem 2. Let X, Y, and Abe C00vector fields on the C 00 manifold

M with affine connection y. Let p belong to M and consider parallel translation

of Ap around the closed circuit consisting of (in order) the integral

curves of - X, - Y, X, and Y (each parameterized on [0, t], t small), and

(backwards along) the curve g («) YUXU Y_uX-up, 0 < u < t (see

figure). If A A is the change in Ap produced by parallel translation around
this circuit, then

A A t2 R(Y,X) Ap + 0(3)
and hence

r A A
t% — - R(Y,X) A

r
Proof. The calculation is similar to that for the Lie bracket in Theorem 1,

except that we must use parallel translation to compare vectors at different
points, ti denotes parallel translation to pt along the arc to pt from the
location of the tangent vector in question. Elsewhere, subscripts denote

point of evaluation, as before. From Lemma 2, we have

t2
(6) Tt A4 - A1tJ7rAy + - At +0 (3)

(7) x0 A1 - A0 t Vx A0+ - Fx2 (3)

t2
(8) t2 A3 — A2 t yx A2 + — yx2 A2 -h O (3)

(9) Tq A2— A0 tf/y^40+ — J7y2 Aq + O (3)

Apply t0 to both sides of (6) and (8), obtaining (6') and (8'), respectively.
Subtracting (8') and (9) from the sum of (6') and (7), we obtain (via Lemma 2),
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(10) TqtxA4 - T0 T2 A3 py] (3)

As before, let ß(u) a(fu),0 < < Using [A, F]3
(from Theorem 1), we may, as in the proof of Lemma 2, show that

(11) t3 — A3 — t2 Vix,y~\ ^3 + ^ (4) •

Now apply t4 to (11) and t4 t1 to (10). Taking the difference of the resulting
equations and then applying t3 to both sides, we obtain

d ,4 T3 T4 Ti Tq T2 A3 - A3

t2 (T3 T4 P[X,Y] ^3 — T3 T4 T1 [FZ? Vy\ ^O) + O (3)

t2 (v&,n - [Lz, VyD A3 +0 (3) — t2 R (X, 7) Ap + O (3),

since the change produced by dropping the t's and switching to p3 may be

absorbed in O (3). Thus the theorem follows since - R (X, 7) R(Y, X).
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