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THE LIE BRACKET AND THE CURVATURE TENSOR

by Richard L. Faber

1. Introduction

The purpose of this paper is to present simple, coordinate-free proofs
of well-known geometric interpretations (Theorems 1 and 2) of the Lie
bracket and curvature tensor (in a C00 -manifold with affine connection p).
These pertain to the traversal of "parallelogram-like" circuits. The standard
demonstrations of these interpretations usually make use of finite Taylor
expansions in some special coordinate systems (cf. [1, pp. 135-138] for the
Lie bracket; [5, pp. 106-108] for the curvature tensor), or repeated
application of the multivariable chain rule (cf. [2, pp. 18-19] and [6, pp. 5-38 to
5-42] for the bracket). Spivak ([6, pp. 5-41]) refers to his proof as "an
horrendous, but clever, calculation." An application to Lie group theory
is given in Corollary 1.

All functions, curves, and vector fields are C 00 on a C 00 manifold M.
If A is a vector field on M, then an integral curve of A is a curve y (or yx)
satisfying y' (t) X (y (t)), for all t in domain (y). If, in addition, y (0) p,
we say that y is an integral curve starting at p. We shall use Xt to denote the
flow of X, so that Xt (p) y /), where y is an integral curve of X starting
at p.

2. The Lie Bracket

If / is a function on M, the following is immediate from applying
Taylor's Theorem for functions of a real variable to the composition / - y,
and observing that (/ • y)(k) Xkf-y. Throughout this paper, O (n)
(n a positive integer) denotes a quantity for which O (n) / tn is bounded
for small t.

Lemma 1. (Taylor's Theorem for integral curves). If y is an integral
curve of a vector field X and if / is a real-valued function defined in a
neighborhood of image (y), then

f(y (0) -f(y(0))Z^ ~V)(y (0)) 1)
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Theorem 1. Let X and Y be C 00 vector fields on the C 00 manifold M.
Let p e M and let cr be the curve difined by

cr (u)YuXuY_uX_uV

for u sufficiently small. Then for any C 00 function/on M,

-/(<r(0)) +0(3).
Accordingly,

I, /(ff(VO) -/(ff(0)) _ r'->0 LA> rJP/

and the curve ß (w) cr (^/m) satisfies ß' (0) [X, 7]p.

Proof: In the figure, the four solid arcs are integral curves of X or Y,

as depicted by the arrows, and all are parameterized on the interval [0, t],
for t sufficiently small. E.g., p2 yx (0), p$ yx (0 (Pi)> etc-

Subscripts denote the point of evaluation: f-x means /(/?,); Xf or Xtf means

{Xf) (pi). The point p in the statement of Theorem 1 coincides with p3 in
the figure. We compute /4 — f3 by applying Lemma 1 to each arc.

(1) h -fx tYh + *- Y2/! +0(3)

(2) fx-fo tXf0 + +0(3)
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t2

(3) f2> f2 tXfi +
2

X 2 fi + ^ (3)

t2
(4) f2 -fotYf0 +- Y2f0 +0(3)

Subtracting (3) and (4) from the sum of (1) and (2), and applying Lemma 1

again (up to O (2) only), we obtain

U-h t1 (XYf - YXf)0+t-(X - YX 2/)o + 0 (3),

or

(5) h-h t2[X, Y]o/ + 0(3)

The meaning of this is that [X, Y] measures the degree to which the

circuit p3 -» p2 Po -> Pi -» p4 fails to be closed. Indeed, if [Z, 7] 0,

then p3 pA (cf. [1, pp. 134-135]).

If we think of p p3 as the starting point, and (see figure) define

a (u) YUXU Y-u X_up (so that p4 a (0), we may re-express (5) as

-/(<j(0)) r2[x, Y]0/ + O(3) r2[X, 7],/ + 0(3),

since switching to p changes [.X, 7 ] / by an amount which is only of
order O (1).

3. A Particular Case

As a special case, assume X and 7 are left invariant vector fields on a

Lie group G, i.e., elements of L (G), the Lie algebra of G; and takep to be e,

the identity element of the group. Since, in this context, Xt (p) p exp (tX)f
for p in G, we have

<r(t) exp — tX) exp (-tY) exp (tX) exp (tY)

If we assume / {e) 0, Theorem 1 yields

/(exp — tX) exp (-tY) exp (tX) exp (tY))

t2[x, y],/ + 0(3)
— / (exp {/2[X, y] +0(3)})

and so

exp (-Of) exp (-tY) exp (f2f) exp (fF) exp (r2 7] + 0(3))
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