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THE LIE BRACKET AND THE CURVATURE TENSOR

by Richard L. FABER

1. INTRODUCTION

The purpose of this paper is to present simple, coordinate-free proofs
of well-known geometric interpretations (Theorems 1 and 2) of the Lie
bracket and curvature tensor (in a C* -manifold with affine connection ).
These pertain to the traversal of “parallelogram-like” circuits. The standard
demonstrations of these interpretations usually make use of finite Taylor
expansions in some special coordinate systems (cf. [1, pp. 135-138] for the
Lie bracket; [5, pp. 106-108] for the curvature tensor), or repeated appli-
cation of the multivariable chain rule (cf. [2, pp. 18-19] and [6, pp. 5-38 to
5-42] for the bracket). Spivak ([6, pp. 5-41]) refers to his proof as “an
horrendous, but clever, calculation.” An application to Lie group theory
1s given in Corollary 1.

All functions, curves, and vector fields are C ® on a C ® manifold M.
If X is a vector field on M, then an integral curve of X is a curve y (or yy)
satisfying y" (t) = X (y (2)), for all ¢ in domain (y). If, in addition, y (0) = p,
we say that y is an integral curve starting at p. We shall use X, to denote the
Jlow of X, so that X, (p) = y (¢), where y is an integral curve of X starting
at p.

2. THE LiE BRACKET

If fis a function on M, the following is immediate from applying
Taylor’s Theorem for functions of a real variable to the composition f - 7y,
and observing that (f-9)*® = X*f-vy. Throughout this paper, O (n)
(n a positive integer) denotes a quantity for which O (1) /¢" is bounded
for small ¢.

LEMMA 1. (Taylor’s Theorem for integral curves). If y is an integral
curve of a vector field X and if f is a real-valued function defined in a

neighborhood of image (y), then
Kk

FO@) =SGO) = T,0 0 KN (O) + 0@+
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THEOREM 1. Let X and Y be C ® vector fields on the C ® manifold M.
Let p € M and let o be the curve difined by

o(u =YX, Y_X_,p
for u sufficiently small. Then for any C ® function f on M,

fe®) = f(a(0) = ?[X, Y],f+00@).
Accordingly,

1 /(2 (/1) t—f(g O) _ x,v], 1

and the curve § (1) = o (/u) satisfies §' (0) = [X, Y],

Proof : In the figure, the four solid arcs are integral curves of X or Y,
as depicted by the arrows, and all are parameterized on the interval [0, 7],
for ¢ sufficiently small. E.g., p, = yx(0), p5; = yx (t) = X, (p,), etc. Sub-
scripts denote the point of evaluation: f; means f(p,); Xf; or X, f means
(Xf)(p;). The point p in the statement of Theorem 1 coincides with p; in
the figure. We compute f, — f; by applying Lemma 1 to each arc.

2

(D) fo— f1 = tYf, + % Y2 f; +0(3)

2

(2) Ji = Jo =tXfo+£2“X2fo+O(3)
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2

3) fomfo= Xfs b 5 X2 f, 4003

2

(@) fo = fo = 1Yy + 52— Y2 fy +0(3)

Subtracting (3) and (4) from the sum of (1) and (2), and applying Lemma 1

again (up to O (2) only), we obtain
3

fo—fy = EXY = YX[)o + = (X Y =YX f)g + 0(3),

or

(5) fo—=f =X, Y]of +003)

The meaning of this is that [X, Y] measures the degree to which the
circuit p3 = p, = p, = p; — P4 fails to be closed. Indeed, if [X, Y] = 0,
then py; = p, (cf. [1, pp. 134-135]).

If we think of p = p; as the starting point, and (see figure) define
gy =Y,X,Y_,X_,p (so that p, = ¢ (¢)), we may re-express (5) as

fle@®) =f(@) =[X,Y]of +0Q3) = X, Y], f+0(0),

since switching to p changes [X, Y ] f by an amount which is only of
order O (1).

3. A PARTICULAR CASE

As a special case, assume X and Y are left invariant vector fields on a
Lie group G, i.e., elements of L (G), the Lie algebra of G; and take p to be e,
the identity element of the group. Since, in this context, X, (p) = p exp (tX),
for p in G, we have

o(t) =exp (—tX)exp (—tY) exp (tX) exp (tY).
If we assume f(e) = 0, Theorem 1 yields
f(exp (—1X) exp (—1Y) exp (1X) exp (tY))
=t*[X,Y].f +0(3)

= f(exp {*[X, Y] +0(3)})
and so

exp (—1X) exp (—tY) exp (¢tX) exp (tY) = exp (P [X, Y] + 0(3)).
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This formula is involved in proving that if H is (algebraically) a subgroup
of a Lie group G and if H is a closed subset of G, then H is a topological
Lie subgroup of G ([3, pp. 96, 105]). Specifically, it implies that { V in
L(G) ] exp (¢V) is in H, for all ¢ real } is closed under the bracket. The
formula also provides the following geometric interpretation of the bracket
[X, Y] on the Lie algebra L (G) of a Lie group G.

CoOROLLARY 1. If X and Y belong to L (G), then the curve

t —> exp (—\/;X) exp (——\/;Y) exp (thX) exp (\/;Y)
has velocity vector [X, Y] at ¢t = 0.

4, THE CURVATURE TENSOR

Now assume M 1is furnished with an affine connection (covariant
differentiation operator) p.

The curvature tensor R on M is the (é)-tensor (equivalently, the linear-
transformation-valued bilinear mapping) R defined by

R(X,Y)A =pxpyA —vyVxA —Vixn4
= (Fx> Py] = Vx4

for X, Y, and A4 vector fields on M. The relationship between this tensor
and the Riemann curvature (in a Riemannian manifold) may be found in
[4, pp. 72-73], [2, Chapter 9], and [5, pp. 125-127]. Here we shall show its
relationship to parallel translation.

Consider the figure again, and let 4 be any vector field on M. We shall
compare parallel translation along p, — p; — p4 with that along p, — p,
— p5. Then, by adding the curve o () = Y, X, Y_, X_,p; defined
previously (the dotted curve in the figure), we obtain a closed circuit. We
shall need the following.

LemMMA 2. (Taylor’s Theorem for parallel translation). Let X be a vector
field defined in a neighborhood of a curve y, let T = 9y’ (0), and for any
t in domain (y), let 7, denote parallel translation along y to y (¢). Then

k

X (y ()~ X (y(0)) = ZkZI%!VTkX + 0(n+1).
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Proof. Apply the real-variable Taylor’s Theorem to the function (1)
=10 X (7 (¢)) which has values in a finite dimensional vector space.

im To X (P (t+h) — 70 X (y(1)

f (t) = h-0 h
T X (D) =X (O
=Ty h]—+0 : ( ) ( ) = To Py X-

h
Inductively, £ (t) = 1o (P, "X) and £ @ (0) = pr"X.

THEOREM 2. Let X, Y, and 4 be C ® vector fields on the C * manifold
M with affine connection p. Let p belong to M and consider parallel trans-
lation of 4, around the closed circuit consisting of (in order) the integral
#  curves of =X, — Y, X, and Y (each parameterized on [0, ¢], # small), and
_ (backwards along) the curve o ()= Y, X, Y_, X_,p, 0 <<u <1t (see
5; figure). If 4 A4 is the change in A, produced by parallel translation around
; this circuit, then
AA =1*R(Y,X)A4, +0(3)
and hence |

limAA
t—>0_t“2" = R(Y)X)Ap

Proof. The calculation is similar to that for the Lie bracket in Theorem 1,
except that we must use parallel translation to compare vectors at different
points. 7; denotes parallel translation to p; along the arc to p; from the
location of the tangent vector in question. Elsewhere, subscripts denote
point of evaluation, as before. From Lemma 2, we have

P TRRE T gy B AR PR

2

(6) TlA4—A1ZtVYA1+§VY2A1+O(3)
2

(7) T0A1_AothXAo+—2‘VX2Ao+O(3)
12

(8) T2A3_A2=tVXA2+EVX2A2+O(3)
2

9 ToAz“A():tVYA0+—2‘I7Y2A0+O(3)

Apply 7, to both sides of (6) and (8), obtaining (6") and (8"), respectively.
Subtracting (8') and (9) from the sum of (6") and (7), we obtain (via Lemma 2),
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(10) ToT1 Ay — 0T, A3 = 1 [y, vy] Ao + O (3)

As before, let f(u) = o (\Ju), 0 <u <% Using f'(0) = [X, Y],
(from Theorem 1), we may, as in the proof of Lemma 2, show that

(11) T3 A4 - A3 - tz V[X,Y] A3 + 0(4) .

Now apply 74 to (11) and 7, 7, to (10). Taking the difference of the resulting
equations and then applying 75 to both sides, we obtain

AA == T3T411‘L'0T2A3 - A3
= (73 T4 Vixy1As — 737471 [VXa VY] Ao) + 0 (3)
= (V[X,Y] — [vx ry]) As + 0(3) = — *R(X,Y) A, +0(Q),

since the change produced by dropping the 7’s and switching to p; may be
absorbed in O (3). Thus the theorem follows since — R (X, Y) = R (Y, X).
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