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résulte de xn+m iC• (Card C divise m.) Comme les classes des EC-
modules simples engendrent R(EC), il en résulte

Pn+m Vn:R(EC)->R(EC),
puis (5) en général par la réduction faite ci-dessus.

Pour (6), on se sert des mêmes remarques. On a

WS(EX) E(f)
comme on vient de le voir. Il reste à vérifier que a(Ex) E (xs), c.-à-d.

que C opère sur a (Ex) par

x.az /s(x)<7z, zeEx, xeC.
Or,

x.az a (a~1 (x) z) a (x.z) — a (x M z) ° (x (x)) • ü z >

et

(z 00) zs w >

puisque x (x) est racine m-ième de l'unité.
La propriété (7) est un corollaire facile de (6). Soit E une clôture

algébrique de Fq, le corps à q éléments et soit a e Aut (E/¥q) l'automorphisme
de Frobenius, i.e. a (a) aq pour tout aeE. Comme i : R (FÇG) R (EG)
est injectif et commute à Wq, il est suffisant de voir que Wq i i. Or, d'après
(6), Wq ß aß pour tout ß e R{EG). Si ß ia on vérifie facilement que
aß ß. (C'est trivial sur la forme matricielle d'une représentation.) Donc,
Wq ia ia, et Wq a a en résulte.

Remarque. Si a appartient au sous-groupe des commutateurs de

Aut (i7), son action sur R (FG) est triviale.

§ 5. Action de Wn dans le groupe des classes de projectifs

Il existe un analogue K {FG) de R (FG) construit à l'aide des FG-
modules projectifs. Soit L' le groupe abélien libre sur l'ensemble des

classes d'isomorphie de FG-modules projectifs de dimension finie. On
considère le sous-groupe L0 de L' engendré par les éléments P — P' — P"
s'il existe une suite exacte ->0. (On a alors nécessairement

P ^ P' © P".)
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Définition. K(FG) L'/L0.
K (.F G) est également un foncteur covariant en F. Si / : G -> G' est

un homomorphisme de groupes, on a toujours un homomorphisme induit

/* : K(FG) -» K(FG') déterminé par P -» PG' ®FGP, mais la restriction
n'existe que si FG' est projectif de type fini sur FG ce qui a lieu (G et G'

étant finis) si G est sous-groupe de G'. (FG' est même alors PG-libre).
Dans ce cas, / : G c G' (finis), on a donc un homomorphisme de restriction/*

\K(FG')-+K(FG).
Il est évident que l'on a un homomorphisme de groupes abéliens

c : K (F G) R (F G)

appelé homomorphisme de Cartan.
On va voir que K (FG) est également muni d'opérations d'Adams qui

sont compatibles, via c, avec les opérations sur R (FG).

Remarque. K(FG) n'a en général pas de A-structure compatible via c

avec celle de R {FG). Exemple: Soient Pie corps à 2 éléments et G le groupe
cyclique d'ordre 2. On constate que K(FG) Z engendré par [FG], et
R (FG) Z engendré par la classe de P. L'application c : K {FG) -> R {FG)
envoie [PG] sur 2 fois le générateur [P] de R (FG). Or, X2 (FG)
F$cK (PG).

La définition des Wn du § 3 est donc inapplicable pour K (PG).
On va donner une nouvelle définition des Wn inspirée par une construction

analogue en topologie due à M. Atiyah. (Quart. Journal of Math. 17

(1966), 165-193. Cf. formule (2.7).)
Le point essentiel est la définition de Wx pour / premier, / A caract (P).

La définition ci-dessous fonctionne aussi bien pour K (PG) que pour
R (PG).

Soient V un PG-module et V1 la /-ième puissance tensorielle de V. Le
groupe Si de permutations des indices {1,...,/} opère sur V1 par

cc.(v1 0 ®vt) Vh 0
où

h oc^1 (k),ae St> k 1, ...,/.
Soit y la permutation circulaire des indices 1, ...,/, i.e. y (z)

i + 1 mod /. On notera Cx le sous-groupe (cyclique) de St engendré par y.
Soit enfin P le corps des racines sur P du polynôme X1 - 1. Comme on a
supposé / ^ caract (P), le PCz-module EVl se décompose en une somme
directe

EVl©ÇeMi(£F%,
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où Jjl1 est le groupe des racines de X1 — 1 dans F et (EVl)ç est le sous-espace

propre de EVl pour la valeur propre £ de y, i.e. (.EV= Ker(y-£).
Il est évident que (EV1)^ est sous FG-module de EV1.
On a (EVl)ç E ®F V(£)> où V(fi) est un FG-module univoquement

déterminé.

Ceci va résulter du lemme classique suivant.

LemmEc Soient W un EG-module et n un groupe fini d'automorphismes
de E avec corpsfixe F. Supposons que n opère sur W par automorphismes
semi-linéaires, i.e.

<r (a w) <7 (a) a (w),

pour tout a e E, w e W, g e n et que les actions de n et G commutent.
Soit S : W -> W définie par S (W) £aen ° (H0- Alors, S (W) est

un sous-FG-module de W et W E ®F S (W).

Remarque. Si, par ailleurs, on dispose déjà d'un FG-module U tel que
W E 0F U, et si 1 ® U est stable pour l'action de n, alors U ^ S W),
comme FG-modules.

En effet, soit {<7 a}aeit une base normale de F/F. On définit h : U -> S (W)
par h (iu) G (a ® u)• H esl clair <Iue ^ commute à l'action de G.

D'autre part h est injectif car

®u) ^aeJla(0 m) 0

entraîne u 0 puisque {g (a)} est une F-base de E et g (1 ® u) e 1 ® U

par hypothèse. Comme dimF U dim£ W dim£ S (W), il en résulte

que h est un isomorphisme.
Pour démontrer le lemme, on construit un FG-homomorphisme

/ : F ®F S (W) -> W par f(Yjiai®wd °n vclue f est

surjectif en prenant une forme <j> e Hom£ (W, E) dont on suppose qu'elle
s'annule sur f(E ®FS(W)) et en utilisant le théorème de l'indépendance
des automorphismes pour démontrer que </> 0. On constate l'injectivité
de / en écrivant les éléments de E ®F S (W) sous la forme YJ(TeKGa ® wç9

où {Ga}aeK est une base normale de F/F et en observant que les éléments

do S (W) sont invariants par l'action de n.

On va appliquer ce lemme avec W (EVl)ç et n Gai (F/F).
On fait opérer n - Gai (F/F) sur V1 comme suit:
On a l'injection n Gai (F/F) -> U (Z//Z) donnée par

g -» 5 mod Z si <t(£) 0
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pour tout £ e /q. D'autre part, à s e U (Z//Z) on associe la permutation <xs

donnée par
as (i + 1) is + 1 mod I.

La composition n -> U(Z/IZ) ô), notée cr -» aff5 suivie.de l'action
de sur F1 fournit une action de n sur V1.

On pose alors
<7 (a ® v) a (a) 0 aff (v)

pour a e E,v e V1.

Il est clair que cette formule définit une action semi-linéaire de n sur

EVl qui commute à l'action de G et laisse stable I ® V1.

On vérifie que as. y ys. as pour tout s e U (Z//Z). On a donc

cr y (V) / cr (ft), z; G £ V1

et cr £ pour tout £ g /q et par suite l'action de 7r préserve (EV1)^. En

effet,

yG(v) a (ys'v) ct(£sV)

où 55-' 1 mod L

En vertu du lemme, on a donc

(E V% ^E®F V(ç),
avec

7(0 S(EV%,
où

S(w) ^raff(w),we(£F\,

Définition. Wt (F) [F(1)] - [F (Q], où ; est un générateur
(quelconque) du groupe jà1 <=z E' des racines de X1 - 1 et [ ] désigne la classe

du module entre crochets dans le groupe de Grothendieck K(FG),
resp. R (FG).

Cette définition exige de vérifier

(1) que F (1) et F (Q sont EG-projectifs si c'est le cas pour F,

(2) que [F (Q] est indépendant du générateur choisi £ g /q.

Pour contrôler (1), on observe que

S{EVl) ®,eßlS(EV% 7(0-
Comme V1 est stable par n, la remarque qui suit le lemme ci-dessus entraîne

V1 s S(EVl)0^7(0



— 22 —

ce qui montre bien que V (£) est projectif si c'est le cas pour V, et donc

pour V1.

Pour démontrer (2) on va en fait exhiber un isomorphisme de FG-
modules V (Q V (rj) pour deux générateurs quelconques £, rj e /q.
Puisque rj sont des générateurs de /q, il existe un entier n premier à / et
tel que t] Ç1. Soit, comme ci-dessus, ocn e St la permutation donnée par
la formule

ocn (i + 1) — in + 1 mod l.
On a vu que an y yn. ocrr II en résulte que l'on a un £G-homomorphisme
an : (EVl\ -» (EVl)ç. C'est évidemment un isomorphisme, par symétrie
de la construction. D'autre part ccn commute à l'action de n et fournit donc

un FG-isomorphisme an : S (EVl\ -> S (EVl)ç.
La définition a donc un sens. Pour démontrer que XF\ induit une

opération (additive) sur K {FG), resp. R (FG), il suffit de vérifier que si 0 -*F0
-> V1 -> V -> 0 est une suite exacte de FG-modules, projectifs si l'on
s'intéresse à K (FG), on a

% V1 V0 + V.

Soit Q le FG-module défini par la suite exacte

0 Q V[ V1 -> 0.

Comme ci-dessus, on a des opérations semi-linéaires de n Gal (E/F)
sur £F{, 2s F* et donc sur EQ, ainsi que des actions de St sur ces modules.

Il est clair que EVl0 c: EQ çt ZsFq est stable par G, 7i, S). On va démontrer

que
[SiEQ/EVl),] [,S(EQ/EVl0\]

pour tout Ç e ixi, où l'indice ^ signifie que l'on prend l'espace propre pour
la valeur propre £ de y, la permutation circulaire (y (z) z + 1 mod /),
et S est définie comme ci-dessus S J>e7r cr.

La suite exacte

0 -+EQIEVl0->E V\\E vl0-+EVl-+ 0

se décompose en somme directe de suites

0 - (E Q/E Vl0\->(£ V\\EVl0\- (E 0

exactes pour chaque £ e jxt. D'où

0 - S (EQ/EV'ok -> S (EV'JE-+S(E V% -> 0.
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On a évidemment aussi les suites exactes

0 - S(EVlo)(S(E V[)s-* SV'JE 0

A condition d'avoir démontré que les modules considérés sont pro-
jectifs si V0, V1 et V le sont, on a alors

[S(E [S(E - [S(E Vl0)J - \_S(EQ/E Vl0)J

En soustrayant membre à membre ces égalités pour f 1 et £

un générateur de /q, on obtient

y 'iV W[ V1 - W[ V0

Reste donc à démontrer que \S (EQ/EVo)J a un sens dans K(FG),
resp. R (FG) et ne dépend pas de £ e /q.

Pour toute suite e (el5 8/) avec sk 0 ou 1, posons Vs

Vn ® F£2 ® (x) Kgr C'est un sous .FG-module de V[. On note | e |

81 + + Sj. Les égalités | e | 0 et | e | / caractérisent les suites

(0, 0) et (1, 1) respectivement. D'autre part, les VE avec | s | /,
constant, sont permutés entre eux par Sh De même, les EVe sont permutés
entre eux par n. On voit que

G ii8i«n-
Les .FG-modules Vs fournissent une filtration de Q. Pour tout X tel que

0 ^ À g / - 1, on pose
ÔA Zle^

Les QÀ sont des sous EG-modules de Q et

ô Qi-i=> => ôx =» Qo

De même EQ EQi-i3 3 E Q, 3 EQ0 EVl0, et les groupes n
et Si préservent la filtration.

On va expliciter la structure de E Q1) pour
Notation. Soit We le produit tensoriel obtenu en remplaçant par V

chaque facteur V1dansVs.E.g.si / 5, s(1, 1, 0, 0, 1), on a

KEi ® ® V0®V00Vt
et

WeV ® V (x) F0 (x) V0 ® F.

On a une application évidente surjective F8 ->• 1Ee qui commute à l'action
de G. Remarquons aussi que tous les We sont projectifs si V et V0 le sont.
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Il est commode de faire opérer Sx sur les suites s (e1? 8X) par
permutation des indices. Le fait essentiel est que Cx opère sans point fixe sur
l'ensemble des suites s telles que | e | # 0, /. Il en résulte que les Crorbites
de ces suites ont toutes la même cardinalité / (qui est premier). Rappelons
d'autre part que à a e n tel que on a associé la permutation
GcaeSl donnée par &a (/ +1) is + 1 mod/. Comme les aff normalisent
Cz, il en résulte que n opère sur les orbites de Cz. Comme de plus n est

abelien, il est facile de voir qu'il existe un système Rx de représentants des

Crorbites dans l'ensemble des suites s telles que \ e\ X ^ 0, qui est

stable par l 'action de n.
Ces remarques permettent d'expliciter la structure de E (QJQX~ x).

Je dis que
E (QaIQa-i) E Cx ®E(® eeràE We)

par un isomorphisme qui commute avec les actions de G sur le deuxième
facteur et de Cz sur le premier (dans le membre de droite). On s'occupera
plus tard de l'action de n.

On définit fx : ECt ®E (®eeRxEW£) -+ E (QJQx-i) comme suit. Soit
z y1 ® w avec w wt ® ® wt e WE et y le générateur choisi de Cz.

Pour ek 1, on a wk e V et pour 8k 0, wk e V0. Pour chaque indice k
tel que 8k 1, on choisit un élément vk e V1 se projettant sur wk par la
flèche donnée V± -> V. Si 8k 0, on définit vk par vk wkeV0. On pose

f)Xt®w) y'.(vt ® ®vl)eEQJQÀ.1.

Il est facile de voir que fx est bien définie sur les éléments de la forme
y1 ® w. On l'étend à ECt ®)E {®eeRxEW^ tout entier par linéarité.

Il est clair que fx commute à l'action de G naturelle sur ®eeRx EWS et

triviale sur ECt. Il est également évident que fx est surjective. Pourvoir que

fx est un isomorphisme, on compare les dimension sur E des deux membres.

dim££ C, ®e(@s,rxEWe)/ .1(1) .(dimF F)A(dimA F0)!"A

On utilise ici le fait que Cx opère sans point fixe sur {e, | e | ^0, /} pour

dénombrer Card Rx -. ([). Chacune de ces dimensions est supérieure

ou égale à dimF QJQX-X Or,

Ei=î (a) • (^im VY (dim V0)l~x (dim V + dim V0)1 - dim V1 — dimFo
dim V[ — dim V1 — dim Vl0

dim ZlZi dim QJQ^.
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Donc, chaque/A, k 1, 1 est un isomorphisme.
Comme fx commute à l'action de Q, on a

E(.QxlQx-i\ s (£ C; ®£(®£eR;i£
(E (©eefl^ E ^e)

puisque l'action de Ct dans le deuxième membre se réduit à l'action sur le

premier facteur
En outre, on remarque que le membre de droite est EU-isomorphe à

®EeRxE We puisque (.E Ct)ç est de dimension 1 et que G y opère trivialement.
Le EU-module E (QJQx~i)ç est donc finalement isomorphe à

®eeRxEWE qui est indépendant de £ g /q.
Reste à voir comment ces isomorphismes se comportent pour l'action

de n Gal (.E/F). On fait agir a en sur ECt par

f d««;/) I; («i)

où £ mod / est déterminé par cr (£) pour tout £ g /q. On prend
l'action diagonale de % sur EC{ ®E (®EeRÀ E We), en observant que n

opère bien sur le deuxième facteur car Rx est stable par n. On vérifie alors
sans difficulté que fk a ofk.

Un choix de vecteur base pour (EC^ est

« 7 L r' y'

et cet élément est invariant par n. Donc,

fx : (E C,){ ®e(®ssRàE WJ ^E(Qà/Qà_^
commute à l'action de n, et il en est de même de l'isomorphisme

gx:(E C,)( ®E(®eeRxE W£

puisque n opère trivialement sur u.

Ainsi,

9x'f~xl-E( QJQz-i\^®sSrxEWs
est un isomorphisme de £G-modules qui commute à l'action de n et il
en résulte :

SE(QJQ^t)( s S(®KRiEWJ ^ ®seRxWs.

(Le deuxième isomorphisme en vertu de la remarque qui suit le lemme.)
On conclut que

S£(ÔA/ÔA-1 \ ®seRxW
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est indépendant de £ à jFG-isomorphisme près et est un FG-module pro-
jectif si V09 V et donc W£ le sont.

On considère les suites exactes

o -+E(QJV1O) -E^ÔA-I) -, 0

qui fournissent les suites exactes

0 -> SEiQ^itVbf -> SE(QJVlo\-*SE(QJQt.t)( - 0

On voit alors par récurrence sur A 1,...,/- 1 que SE (QJVl0)^ est

EG-projectif si V0, Vie sont, et que sa classe [Sis (QJVl0)J est indépendante
de £. Explicitement, on obtient

[sE(Qivi0)d
On a donc démontré

V'iiVi) F[(V0) + F\ (V).
Il reste à vérifier que le diagramme

K(FG) 1?(FG)

^ 1 ^
X(FG) __!> Ä(FG)

commute. Ceci est facile. Il est suffisant de vérifier res i (cFx— Ftc) 0,

avec res i : R (FG) -, R(LG) ^ °ù ^ est une clôture
algébrique de F et ^ est la famille des sous-groupes cycliques p-réguliers de G.

On sait que xFl commute à res z. Pour F' le même résultat est de

vérification facile. On est donc ramené à démontrer c FtV — Ftc V 0

dans le cas où F est algébriquement clos et G est cyclique (d'ordre premier
à caract (F)). On peut même supposer que V est un EG-module simple,
donc de dimension 1, puisque F\ et F x sont toutes deux additives.

Le groupe cyclique Cx opère alors trivialement sur V1 comme on le

voit en identifiant V à F (comme E-espace vectoriel) puis V1 à F par

x± 0 ® xx -, xt... xx e F
Dans ce cas, on a donc

Ker (y —1) V\ et Ker (y—Ç) 0.

Comme n {1} puisque Lest algébriquement clos, on obtient

%(V) [F!]
Donc,

c%{V) c[VllYtc(V).
On notera également Wt l'endomorphisme lI', : -*
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Résumé. Soient F un corps de caractéristique et G un groupe fini.

Pour tout nombre premier lA p,ilexiste une opération d'Adams

Wl : K(FG) -> K(FG) telle que le diagramme

K(FG) 4.

I ^ I ^K(FG)4 F G)

commute.

Remarques. On peut maintenant définir xFm : K (FG) —> K {FG) pour
tout m premier à pcaract (F) par

4, Iii 0M m Eli H1 •

(Avant de savoir que c est injectif, prendre les facteurs Wti dans un ordre

fixé, par exemple celui prescrit par lt < l2 <....)
On a ¥m c c ¥m pour tout m premier à p.
Soit en particulier m l'exposant /»-régulier de G. Par définition m est

premier à p. Pour tout PG-module projectif P, on a par périodicité

(dimFP). 1 W0 c (P) Wm c (P) c ¥m(P) e c K(F G).

Il en résulte facilement que R(FG)/c K{FG) a pour exposant exact le

p.g.c.d. des dimensions des PG-modules projectifs.
Cet exposant est évidemment un diviseur de Card G dimF FG.
Comme R(FG) est de génération finie, R(FG)/cK(FG) est un groupe fini.
On voit assez facilement que K (FG) et R (FG) sont abéliens libres de

même rang. On retrouve donc le fait que c est injective. (Cf. [Serre], p. 136,

Cor. 2.)

Il est facile de montrer que l'exposant de Coker c est la plus grande
puissance de p divisant Card G.

En effet, soient l ^ p un nombre premier et H Hl un /-sous-groupe
de Sylow de G. Puisque / est premier à p, le PiPmodule trivial F est FH-

a
projectif. (La surjection FH -» F admet la section a -> Y,seHs) Donc

[H:\]
Pz FG ®FH F est PG-projectif. On a dimF Pl [G\H]. Il est clair que

p.g.c.d. {[G : H{], pour ^
la plus grande puissance de p divisant Card G. Donc l'exposant de Coker c
divise pn.

Soit maintenant H un ^-sous-groupe de Sylow de G. On a Card H
pn. Si P est PG-projectif, il est aussi PPT-projectif par restriction, et on
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voit facilement que cela implique F/Flibre. Donc dim^ P est un multiple
de [H: 1] pn. (Cf. [Serre], p. 145, Exercice 3.)

L'exposant de Coker c est donc exactement pn.

Il reste encore à définir

VP:K(F G) K (F G),
où p caract (F)

Dans le cas où F est parfait, e.g. algébriquement clos, la définition
est dictée par le fait que F admet l'automorphisme de Frobenius g : F -» F
tel que g (a) ap. D'après la propriété (6) au § 4, Wp (a) g (a) pour
tout oc e R (FG).

On n'a donc pas le choix :

Wp(P) G (P)

où g (P) est évidemment FG-projectif si P l'est.
Pour attraper Wp : K (FG) K (FG) pour F quelconque, on peut

utiliser le fait bien connu que iK : K{FG) -+ K(LG) est une injection
directe, (caract (F) # 0, L une clôture algébrique de F. Cf. [Serre], p. 136.)

Donc, Coker iK est sans torsion.
Le diagramme

K{FG) %

I K I
K(LG) CJ^ (L

nous apprend alors que
cL : Coker iK -» Coker iR

est injectif. (Compte tenu du fait démontré ci-dessus que Coker cF est fini.)
Or, pour tout oceK (FG), on a

cL}¥piK(X — ^/pCL^Ka — ypi<KCF a — lR ^p CF a •

Donc, cL Fp iK oc représente 0 e Coker iR. Il en résulte que Wp iKe iKK(FG)
et il existe un élément ßeK(FG), unique puisque iK est injectif, tel que
Wp iK oc iK ß. On pose Wpoc ß.

La définition de Wn pour n entier quelconque est immédiate et dictée

par les propriétés Wkn Wk. Wn et la périodicité ou la propriété (a)

(Fna)*.
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