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résulte de x"™™ = y". (Card C divise m.) Comme les classes des EC-
modules simples engendrent R (EC), il en résulte

lI/n+m = TnR(EC) -—)R(EC),

puis (5) en général par la réduction faite ci-dessus.

Pour {6), on se sert des mémes remarques. On a

Y (E) = E(x)

comme on vient de le voir. Il reste a vérifier que o (E,) = E(x°), c.-a-d.
que C opere sur g (E,) par

x.0z =) (x)oz, zeE,, xeC.
Or,
x.0z=0(0""(x).2) =0(x.2) =0(x(x)z) =0 (x(x).0z,
et
a(x(®) = 2,

puisque y (x) est racine m-iéme de 'unité.

La propriété (7) est un corollaire facile de (6). Soit E une cloture algé-
brique de F,, le corps a g éléments et soit ¢ € Aut (E/F ) 'automorphisme
de Frobenius, i.e. o (a) = a? pour tout a € E. Comme i : R(F,G) - R(EG)
est injectif et commute a ¥, il est suffisant de voir que ¥, i = i. Or, d’aprés
(6), ¥, = of pour tout f € R(EG). Si B = ix on vérifie facilement que
of = f. (C’est trivial sur la forme matricielle d’une représentation.) Donc,
Y, iow = io, et ¥, a = o en résulte.

Remargque. Si ¢ appartient au sous-groupe des commutateurs de
Aut (F), son action sur R (FG) est triviale.

§ 5. ACTION DE ¥, DANS LE GROUPE DES CLASSES DE PROJECTIFS

Il existe un analogue K (FG) de R (FG) construit a l'aide des FG-
modules projectifs. Soit L’ le groupe abélien libre sur ’ensemble des
classes d’isomorphie de FG-modules projectifs de dimension finie. On
considére le sous-groupe L, de L’ engendré par les éléments P — P’ — P”
s’il existe une suite exacte 0 - P’ - P - P” — 0. (On a alors nécessai-
rement P =~ P’ @ P".)
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DEFINITION. K (FG) = L'/L,.

K (FG) est également un foncteur covariant en F. Si f:G — G est
un homomorphisme de groupes, on a toujours un homomorphisme induit
fe :K(FG) - K (FG’) déterminé par P —» FG' @ ¢ P, mais la restriction
n’existe que si FG' est projectif de type fini sur FG ce qui a lieu (G et G’
étant finis) si G est sous-groupe de G'. (FG' est méme alors FG-libre).
Dans ce cas, f: G = G’ (finis), on a donc un homomorphisme de restric-
tion /* : K (FG') —» K (FG).

Il est évident que I’on a un homomorphisme de groupes abéliens

¢: K(FG) - R(FG)

appelé homomorphisme de Cartan.
On va voir que K (FG) est également muni d’opérations d’Adams qui
sont compatibles, via ¢, avec les opérations sur R (FG).

Remargue. K (FG) n’a en général pas de A-structure compatible via ¢
avec celle de R (FG). Exemple: Soient F'le corps a 2 éléments et G le groupe
cyclique d’ordre 2. On constate que K (FG) = Z engendré par [FG], et
R (FG) = Z engendré par la classe de F. L’application ¢ : K (FG) — R (FG)
envoie [FG] sur 2 fois le générateur [F] de R(FG). Or, A, (FG)
F ¢ cK (FG).

La définition des ¥, du § 3 est donc inapplicable pour K (FG).

On va donner une nouvelle définition des ¥, inspirée par une construc-
tion analogue en topologie due & M. Atiyah. (Quart. Journal of Math. 17
(1966), 165-193. Cf. formule (2.7).)

Le point essentiel est la définition de ¥, pour / premier, / # caract (F).
La définition ci-dessous fonctionne aussi bien pour K (FG) que pour
R (FG).

Soient ¥ un FG-module et V' la [-idéme puissance tensorielle de V. Le
groupe S; de permutations des indices {1, ..., /} opére sur V! par

. (v ®... Qv =7, ®...
ol

ip = a ' (k),neS,,k=1,..1.

Soit y la permutation circulaire des indices 1, ...,/ ie. y (i) =
i + 1 mod /. On notera C; le sous-groupe (cyclique) de S, engendré par 7.
Soit enfin E le corps des racines sur F du polyndme X* — 1. Comme on a
supposé [ # caract (F), le EC,-module EV' se décompose en une somme
directe
EV' = @y (EV,
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olt y; est le groupe des racines de X' — 1 dans E et (EV'"); est le sous-espace
propre de EV' pour la valeur propre ¢ de v, ie. (EVY), = Ker (y—9).

Il est évident que (EV'); est sous EG-module de EV'.

Ona (E Vl),g >~ EQpV(E), ou V(E) estun FG-module univoquement
déterminé.

Ceci va résulter du lemme classique suivant.

LEMME. Soient W un EG-module et © un groupe fini d ’automorphismes
de E avec corps fixe F. Supposons que m opére sur W par automorphismes
semi-linéaires, 1.e.

g(aw) = o(a)o(w),

pour tout aeE, we W, cen et que les actions de m et G commutent.
Soit S : W - W définie par S(W) = > o0 W). Alors, S(W) est
un sous-FG-module de W et W =~ E®;S (W).

Remarque. Si, par ailleurs, on dispose déja d’un FG-module U tel que
W =FEQ®pU, etsil ® U est stable pour I'action de =, alors U = S (W),
comme FG-modules.

En effet, soit {¢ a},., une base normale de E/F. On définith : U — S (W)
par h(u) = Y ,cn0 (@ ® u). Il est clair que & commute a l'action de G.
D’autre part £ est injectif car

Zaena(a @U) = Zaeﬂd(a).a(l ®u) =0

entraine # = 0 puisque {o (a)} est une F-base de Eet c (1 @ u)el ® U
par hypothése. Comme dim,; U = dimy W = dim; S (W), il en résulte
que 4 est un isomorphisme.

Pour démontrer le lemme, on construit un EG-homomorphisme
FiEQrS(W)— W par fO,a;®@w;) = Y ;a;w;. On voit que f est
surjectif en prenant une forme ¢ € Homg (W, E) dont on suppose qu’elle
s’annule sur f(E ® ¢ S (W)) et en utilisant le théoréme de I'indépendance
des automorphismes pour démontrer que ¢ = 0. On constate ’injectivité
de f en écrivant les éléments de E ® y S (W) sous la forme ) .., 0a ® w,,
ol {0d},., est une base normale de E/F et en observant que les éléments
de S (W) sont invariants par I’action de 7.

On va appliquer ce lemme avec W = (EV'), et © = Gal (E/F).

On fait opérer 7 = Gal (E/F) sur V! comme suit:

On a linjection # = Gal (E/F) — U (Z/IZ) donnée par

cg—smodlsic(é) = &°
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pour tout & € u,. D’autre part, & s € U (Z/IZ) on associe la permutation o

donnée par
a,(i+1) =1is + 1 mod [.

La composition n — U(Z/IZ) — S,, notée o — 2, suivie.de l'action
de S, sur V! fournit une action de n sur V"

On pose alors

g(a®v) = 0(a) ® u,(v)

poura e E,ve V%

11 est clair que cette formule définit une action semi-linéaire de 7 sur
EV' qui commute & I'action de G et laisse stable 1 ® V.

On vérifie que #,.7y = y°. %, pour tout s € U (Z//Z). On a donc

cy(@) = ya(v),veE V!

et o & = & pour tout ¢ € y, et par suite I'action de © préserve (EV').. En
effet,
yo(@ = (V) =0 ({°v) = a (&)o@ = Lo (),

ouss’ = 1 mod L
En vertu du lemme, on a donc

12

(EV): 2 E®rV(),

avec
V(&) = S(EVY,,
ou
S(W) = Y seno(w), we(E VY.

DEFINITION. ¥, (V) = [V (1)] = [V (0], ol { est un générateur (quel-
conque) du groupe u, = E' des racines de X' — 1 et [ ] désigne la classe
du module entre crochets dans le groupe de Grothendieck K (FG),
resp. R (FG).

Cette définition exige de vérifier

(1) que V(1) et V' ({) sont FG-projectifs si c’est le cas pour V,
(2) que [V (0] est indépendant du générateur choisi { € p,.

Pour contrdler (1), on observe que
S(E Vl) = @g’eul S(E Vl)r: = ®§eul V(é) .
Comme V! est stable par «, la remarque qui suit le lemme ci-dessus entraine

V' SEVY = @y V(O
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ce qui montre bien que V (§) est projectif si c’est le cas pour V, et donc
pour V'

Pour démontrer (2) on va en fait exhiber un isomorphisme de FG-
modules V ({) = V(n) pour deux générateurs quelconques {, 7€ .
Puisque {,  sont des générateurs de u,, il existe un entier » premier a / et
tel que n = {". Soit, comme ci-dessus, a, € S, la permutation donnée par
la formule

o,(i+1) =in + 1 mod I.

Onavuquea,.y = y".q, Il en résulte que I’on a un £EG-homomorphisme
o, : (EV'), > (EV'),. Cest évidemment un isomorphisme, par symétrie
de la construction. D’autre part o, commute a ’action de n et fournit donc
un FG-isomorphisme o, : S (EV?Y), - S(EV?),.

La définition a donc un sens. Pour démontrer que ¥, induit une opé-
ration (additive) sur K (FG), resp. R (FG), il suffit de vérifier que si 0 =V,
— ¥V, —> V — 0 est une suite exacte de FG-modules, projectifs si I'on
s’intéresse a K (FG), on a

VY, =WV, + P V.
Soit Q le FG-module défini par la suite exacte
0-0->Vi->V -0.

Comme ci-dessus, on a des opérations semi-linéaires de n = Gal (E/F)
sur EVi, EV' et donc sur EQ, ainsi que des actions de S, sur ces modules.
Il est clair que EVy = EQ et EV; est stable par G, n, S;. On va démontrer
que

[S(EQIE V)] = [S(EQIE V)]

pour tout & e y,;, ou 'indice ¢ signifie que ’on prend I’espace propre pour
la valeur propre ¢ de y, la permutation circulaire (y (i) =i + 1 mod /),
et S est définie comme ci-dessus S = ) .. 0.

La suite exacte

0>EQIEV)-SEVIEV)—>EV' -0
se décompose en somme directe de suites

0~ (EQ/E V) = (EVIEVo)e > (EV) >0
exactes pour chaque ¢ € ;. D’ou

0> S(EQIEVY, »SEVHEVYH: » SEVH, »0.
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On a évidemment aussi les suites exactes
0= S(EVY: > SEV): > SEVEVy:—0.

A condition d’avoir démontré que les modules considérés sont pro-
jectifs si Vy, V', et V' le sont, on a alors

[SEV):] = [SEVD:] —[SEV:] — [SEQE V)] -

En soustrayant membre 4 membre ces égalités pour & = 1 et £ = (,
un générateur de y,;, on obtient

YV =V, -V, V,.

Reste donc & démontrer que [S(EQ/E Vé)é] a un sens dans K (FG),
resp. R (FG) et ne dépend pas de & € p,.

Pour toute suite & = (¢4, ...,¢) avec ¢ =0 ou 1, posons V,
=Vy ®Vy ®...® V. Cest un sous FG-module de Vi. On note |¢|
=g, + ...+ ¢. Les égalités | e| = 0 et | ¢| = [ caractérisent les suites
0, ...,0) et (1, ..., 1) respectivement. D’autre part, les V, avec |e| = A,
constant, sont permutés entre eux par S;. De méme, les £V, sont permutés
entre eux par 7. On voit que

Q = Z|s|<l Va .
Les FG-modules V, fournissent une filtration de Q. Pour tout A tel que
0<41=1[-1,onpose

Q, = Z|£|_4_/l Fe »
Les Q, sont des sous FG-modules de Q et

Q=Qt~13---3Q1DQ0=V(I)-

De méme £Q = EQ,_; > ... D EQ, 2 EQ, = EV}, et les groupes =
et S; préservent la filtration.

On va expliciter la structure de £(Q,/Q,_ ) pour 1 # 0, I.

Notation. Soit W, le produit tensoriel obtenu en remplagant par V
chaque facteur V', dans V. E.g.si/ = 5,¢ = (1,1,0,0, 1), on a

Va:V1®V1®VO®VO®V1
et

We=VRoVRVVeV.

On a une application évidente surjective ¥, » W, qui commute a I’action
de G. Remarquons aussi que tous les W, sont projectifs si ¥ et V, le sont.
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Il est commode de faire opérer S, sur les suites ¢ = (g, ..., &) par
permutation des indices. Le fait essentiel est que C,; opére sans point fixe sur
I’ensemble des suites ¢ telles que | e | # 0, [. Il en résulte que les C,-orbites
de ces suites ont toutes la méme cardinalité / (qui est premier). Rappelons
d’autre part que & gexn tel que o & = £°, on a associé la permutation
oy € S; donnée par o, (i+1) = is + 1 mod . Comme les «, normalisent
C,, 1l en résulte que n opére sur les orbites de C,. Comme de plus 7 est
abelien, il est facile de voir qu’il existe un systéeme R, de représentants des
C-orbites dans I’ensemble des suites & telles que |e| = A # 0, qui est
stable par [’action de .

Ces remarques permettent d’expliciter la structure de E(Q,/Q;_ ).
Je dis que

E(Q;/0:-1) 2 EC, Qp(®eer, EW))

par un isomorphisme qui commute avec les actions de G sur le deuxiéme
facteur et de C; sur le premier (dans le membre de droite). On s’occupera
plus tard de ’action de =.

On définit f; : EC, @p(®cr,EW,) = E(Q;/Q;-1) comme suit. Soit
z=7yQ@wavecw = w; @ ..Q w,e W, et y le générateur choisi de C,.
Pour ¢, = 1, on a w, e V et pour ¢, = 0, w, € VV,. Pour chaque indice k
tel que ¢, = 1, on choisit un élément v, € V/; se projettant sur w, par la
fleche donnée V', — V. Si ¢, = 0, on définit v, par v, = w, e V,. On pose

LG°0wW) =9 (v Q... ®0v)EEQ,/Q;_; .

Il est facile de voir que f; est bien définie sur les éléments de la forme
¥ ® w. On I’étend & EC, ®p (@ ,cr,EW,) tout entier par linéarité.

Il est clair que f; commute a I'action de G naturelle sur @ ,.g, EW, et
triviale sur EC,. 11 est également évident que f, est surjective. Pour voir que
f; est un isomorphisme, on compare les dimension sur £ des deux membres.

1
dimg E C, ®E(@eeRlE W) =1. 7(51) (dimg V)* (dim, Vp)'™* .

On utilise ici le fait que C; opére sans point fixe sur {¢, | | # 0, /} pour
dénombrer Card R; = 7 (}). Chacune de ces dimensions est supérieure

ou égale a dimy Q,/Q,_, . Or,

Y121 () . (dim V)* (dim Vo) ™* = (dim V + dim V)" — dim V! — dimV g
= dim V! - dim V' — dim V}
= dim (Q/Vé) = Z/{;i dim Q;/Q ;- .
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Donc, chaque f;, 4 = 1, ...,/ — 1 est un isomorphisme.
Comme f; commute a I’action de C;, on a

E(Q;/Q:-1) = (E C, ®E(®eeR;hE We))§
= (E C), ®E(®aeRlE We)

puisque ’action de C, dans le deuxiéme membre se réduit a I’action sur le
premier facteur EC,.

En outre, on remarque que le membre de droite est EG-isomorphe a
D e, £ W, puisque (EC), est de dimension 1 et que Gy opere trivialement.

Le EG-module E(Q;/Q;_;): est donc finalement isomorphe a
D.er, EW, qui est indépendant de ¢ € y,.

Reste a voir comment ces isomorphismes se comportent pour ’action
de m = Gal (E/F). On fait agir o € & sur EC, par

o (Zlaiyi) = Zi o (a;) }’is >

ou smod/ est déterminé par o (&) = &° pour tout &epu,. On prend
I’action diagonale de n sur EC, ®p (@D,er, EW,), en observant que =
opére bien sur le deuxiéme facteur car R; est stable par 7. On vérifie alors
sans difficulté¢ que f;, ¢ = of;.

Un choix de vecteur base pour (EC)); est

1 .
u =72ié—z,})z

et cet élément est invariant par 7. Donc,

S (E Cz)z ®E(®85RAE W, — E(Qz/Qx—Jg

commute a P’action de 7, et il en est de méme de P'isomorphisme

g,:(EC); ®E(@aeRlE W, — Deer, £ W,
puisque 7 opére trivialement sur u.
Ainsi,
9. f;l :E(Q/I/Ql—l)é - ®seRiE W,

est un isomorphisme de EG-modules qui commute 4 Iaction de 7 et il
en résulte:

SE(Q4/Qs-1): = S(@eer, EW,) = Deer, We -

(Le deuxiéme isomorphisme en vertu de la remarque qui suit le lemme.)
On conclut que

SE(QA/Q/I-I){ = @seR,l W,
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est indépendant de &£ a FG-isomorphisme prés et est un FG-module pro-
jectif si V', V et donc W, le sont.
On considere les suites exactes

0—>E (Q1—1/V(l)) —* E(QA/V(I)) - E(Q;/Q;-1) =0

qui fournissent les suites exactes

0— SE(QA—1/V(I))§ — SE(Q,l/V(I))g -* SE(QA/QA—I)& - 0.

On voit alors par récurrence sur A = 1, ...,/ — 1 que SE (Q,/ Vé)6 est
FG-projectif si Vy, V'le sont, et que sa classe [ SE (Q,/ Vé)é] est indépendante
de £. Explicitement, on obtient

[SEQIVo):] = YiZi (=)' [ @k, W]
On a donc démontré ,
(V) = Vi (Vo) + (V).

Il reste a vérifier que le diagramme

K(FG ° R(FG)
IR e
K(FG) ° R(FG)

commute. Ceci est facile. 11 est suffisant de vérifier res. i (¢¥,— ¥,c) = 0,
avec res.i: R(FG)—> R(LG) = [Jcee R(LC), ou L est une cloture
algébrique de F et ¥ est la famille des sous-groupes cycliques p-réguliers de G.

On sait que ¥; commute a res.i. Pour ‘PI le méme résultat est de
vérification facile. On est donc ramené & démontrer ¢ ¥,V — ¥, cV =0
dans le cas ou F est algébriquement clos et G est cyclique (d’ordre premier
a caract (F)). On peut méme supposer que V est un FG-module simple,
donc de dimension 1, puisque ¥, et ¥, sont toutes deux additives.

Le groupe cyclique C; opére alors trivialement sur V' comme on le
voit en identifiant ¥ 4 F (comme F-espace vectoriel) puis V' & F par

X Q... 0x;, »>x,...x,€F.
Dans ce cas, on a donc

Ker (y—1) = V', et Ker (y—=¢) = 0.
Comme n = {1} puisque F est algébriquement clos, on obtient
¥, (V) =[V] = [V]'eK(FG).
cW (V) =c[V] = ¥, c(V).
On notera également ¥, ’'endomorphisme ¥, : K (FG) —» K (FG).

Donc,



27 —

Résumé. Soient F un corps de caractéristique p et G un groupe fini.
Pour tout nombre premier / # p, il existe une opération d’Adams
Y, : K(FG) - K(FQG) telle que le diagramme

K(FG) £ R(FG)
LY LY
K(FG) 5 R(FQG)
commute.

Remargues. On peut maintenant définir ¥, : K(FG) — K (FG) pour
tout m premier a p = caract (F) par

Y. = [[: 55, ou m = [, 15,

(Avant de savoir que ¢ est injectif, prendre les facteurs ¥,, dans un ordre
fixé, par exemple celui prescrit par /; </, < ....)

Ona¥,c=cY¥, pour tout m premier a p.

Soit en particulier m ’exposant p-régulier de G. Par définition m est
premier a p. Pour tout FG-module projectif P, on a par périodicité

(dimpP).1 = Yoc(P) = ¥, c(P) = c ¥, (P)ec K(FG).

Il en résulte facilement que R (FG)/c K (FG) a pour exposant exact le
p.g.c.d. des dimensions des FG-modules projectifs.

Cet exposant est évidemment un diviseur de Card G = dim; FG.

Comme R (FG) est de génération finie, R(FG)/cK (FG) est un groupe fini.

On voit assez facilement que K (FG) et R (FG) sont abéliens libres de
méme rang. On retrouve donc le fait que ¢ est injective. (Cf.[Serre], p. 136,
Cor. 2.)

Il est facile de montrer que 'exposant de Coker ¢ est la plus grande
puissance de p divisant Card G.

En effet, soient / # p un nombre premier et H = H, un /-sous-groupe
de Sylow de G. Puisque / est premier a p, le FH-module trivial F est FH-

projectif. (La surjection FH — F admet la section a — ff{g_l_] Y sens.) Donc
P, = FG @y F est FG-projectif. On a dimy P, = [G:H]. 1l est clair que

p.gcd. {{G:H], pour Il # p} = p",

la plus grande puissance de p divisant Card G. Donc ’exposant de Coker ¢
divise p".

Soit maintenant H un p-sous-groupe de Sylow de G. On a Card H
= p". Si P est FG-projectif, il est aussi FH-projectif par restriction, et on
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voit facilement que cela implique FH-libre. Donc dimy P est un multiple
de [H:1] = p". (Cf. [Serre], p. 145, Exercice 3.)

L’exposant de Coker ¢ est donc exactement p”.

Il reste encore a définir

Y,:K(FG) > K(FG),
ou p = caract (F)

Dans le cas ou F est parfait, e.g. algébriquement clos, la définition
est dictée par le fait que F admet I’automorphisme de Frobenius ¢ : F — F
tel que o (@) = af. D’aprés la propriété (6) au §4, ¥, (x) = o (x) pour
tout « € R (FG).

On n’a donc pas le choix:

v,(P) = o (P),

ol o (P) est évidemment FG-projectif si P ’est.

Pour attraper ¥, :K(FG) —» K(FG) pour F quelconque, on peut
utiliser le fait bien connu que iy : K (FG)— K(LG) est une injection
directe. (caract (F) # 0, L une cl6ture algébrique de F. Cf. [Serre], p. 136.)
Donc, Coker iy est sans torsion.

Le diagramme

K(FG) °E R(FG)
Lig Lig
K (LG) ° R(LG)
nous apprend alors que
c; . Coker iy — Coker iy

est injectif. (Compte tenu du fait démontré ci-dessus que Coker cj est fini.)
Or, pour tout « € K (FG), on a

CLTlea - Y]chlKa = Tlechx = lR TPCFOC.

Donc, ¢;, ¥, ix o représente 0 € Coker ig. Il en résulte que ¥, igeiyx K(FG)
et il existe un élément f € K(FG), unique puisque ig est injectif, tel que
V,ixa = ixB. Onpose ¥,a = f.

La définition de ¥, pour n entier quelconque est immédiate et dictée
par les propriétés ¥,, = ¥, . ¥, et la périodicité ou la propriété ¥ _, («)
= (¥,0)*.

( Recu le 5 mai 1975)
M. Kervaire
Section de Mathématiques

2-4, rue du Li¢vre
1211 Genéve 24
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