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§ 4. PROPRIETES ELEMENTAIRES DES OPERATIONS D’ADAMS.

Il est clair tout d’abord que les ¥, sont fonctorielles, i.e. si f: G — G’
est un homomorphisme de groupes finis, et f*: R(FG') — R(FG)
homomorphisme de restriction, on a

I =f*¥,,

pour tout entier n. De méme pour une extension de corps F — E, on a
i¥, = ¥, avec i: R(FG) - R(EG) I'homomorphisme d’extension de
scalaires.

Ceci résulte du fait que f* et 7/ sont des homomorphismes de A-anneaux,
1.e. commutent avec les opérations A,

Par contre ¥, ne commute pas en général aux homomorphismes
induits. Exemple: Prendre f: {1} - C,, ou C, est cyclique d’ordre 2 et
calculer ¥, f,. — f.. ¥, sur I’élément unité de R (FC,), ou F est de carac-
téristique # 2. On trouve 2 — [FC,] # 0.

Nous commengons une liste des propriétés des ¥, : R(FG) - R(FG),
ou comme ci-dessus, G est un groupe fini et F un corps commutatif.

(1) Les opérations ¥, sont des homomorphismes de A-anneaux, i.e.
Yy(.p) = ¥, (). ¥, (p), et ¥, A, =21, ¥,.
(2) Pour m, n entiers quelconques, on a
Yyr,=v,. v, =Y,.%,.
(3) Si o est la classe d’un FG-module de dimension 1 sur F, on a
V,(x) = o", o =™ = (a*)" pour m > 0.
(4) Pour tout p premier et tout x € R(FG), on a
¥Y,(x) = o mod pR(FG).

Ces propriétés sont les analogues des propriétés des opérations d’Adams
en topologie. On a en outre quelques propriétés plus typiquement algé-
briques qui proviennent de relations entre les opérations ¥, et ’action des
automorphismes du corps de base sur ’anneau des représentations vir-
tuelles.

Soient E un corps commutatif et ¢ € Aut (F) un automorphisme de E.
A tout EG-module V on associe un nouveau £G-module ¢V obtenu comme
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suit. En tant que groupes abéliens oV et V sont égaux. L’élément veV
considéré comme élément de o) sera noté ogv. L’action de EG sur o} est
définie par

a.o(v) =a(c""(a)v),
ol

ot (a) = ZseG ot (ay)s,
si

a =) cdsS.

Dans cette formule, ¢~ (a) v est défini par ’action de EG sur V, et
o (67! (a) v) est 'élément de oV correspondant 2 6~ (@) ve V.

Il est facile de voir que si 0 > V' — V' — V" — 0 est une suite exacte
de EG-modules, la suite 0 —» oV’ — oV — oV" — 0 est également une
suite exacte de EG-modules. Il en résulte que ¢ induit un automorphisme
o : R (EG) > R(EG). Cest un automorphisme d’anneau.

On vérifie sans difficulté que o commute aux homomorphismes de
restriction, induits, d’extension de scalaires, a I'involution, aux puissances
extérieures et opérations d’Adams.

Exercice. Si p (s) = (S;;) est la forme matricielle de V" associée a la
base ey, ..., e, de V, alors la forme matricielle de oV par rapport a geq, ..., ge,
est donnée par (op) (s) = (65;)).

DEFINITIONS. Soient G un groupe fini et p un nombre premier. On dira
que s € G est p-régulier si 'ordre de s est premier a p. Par convention tout
¢lément de G est O-régulier.

Le p.p.c.m. des ordres des éléments p-réguliers de G sera appelé I’exposant
p-régulier de G. L’exposant O-régulier est donc simplement I’exposant de G.

Nous pouvons continuer la liste des propriétés des ¥

ne

(5) Les opérations ¥, sont périodiques, i.e. si m est I’exposant p-
régulier de G, ou p = caract (F), on a

Tn+m = Tn : R(F G) ¥ R(F G)
pour tout entier n.

(6) Si F contient les racines du polynéme X™ — 1, ou m est I’exposant
p-régulier de G,p = caract (F), etsi oceAut (F) et seZ sont liés par
o (¢) = &¥ pour toute racine & de X™ — 1, alors ¥, (x) = o (x) pour
tout o« € R (FQG).

Remarque. 11 existe un théoréme de périodicité des opérations d’Adams
en topologie. (Cf. J.F. Adams, On the groups J(X)—III, Topology, Vol. 3
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(1965), 193-222, en particulier le § 5.) Mais il ne semble pas y avoir de rapport
entre ce théoréme et la propriété (5) ci-dessus.

Enfin, en considérant I'injection de F, (le corps fini & g éléments) dans
une cloture algébrique et en prenant ¢ = automorphisme de Frobenius,
on obtient comme corollaire la propriété suivante:

(7) L’opération ¥, :R(F,G) —» R(F,G) est 'identité.

Toutes ces propriétés sont faciles a démontrer en tenant compte des
théorémes I et II du § 1.

Les propriétés (3) et (4) se vérifient comme en topologie.

Démonstration de (3). Si V est un FG-module de dimension 1 sur F,
il s’agit de voir que ¥, (V) = V". Or, 'hypothése entraine que

12V= 13V= ves = O.
Donc pour # positif, on a

Y,V =20,4,V,0,..,00 = (4, V) = V".
On en déduit immédiatement la propriété (3).

Remarque. On a donc en fait ¥, (o) = " dés que A; & = 0 pour { > 1.
Cependant cette formulation n’est pas plus générale que la précédente.
En effet, si « € R (FG) satisfait & 4;« = 0 pour i > 1, alors « est la classe
d’un FG-module de dimension 1. Pour le voir, il suffit de remarquer que
les classes de FG-modules de dimension 1 sont inversibles dans ’anneau
R (FG),i.e.sidim V = 1, le produit VV ® V* est isomorphe au FG-module
trivial F. (Ceci justifie la convention [V']™' = [F'*] pour dim V' = 1 faite
précédemment.) L’isomorphisme est donné par v ® v* — v* (v). Si alors
o =U-—Vetlda=0pouri > 1, on compare les termes de plus haut
degré en ¢ dans lidentit¢ A(x).A (V) = A(U). On trouve o .dét (V)
= dét (U), ou dét (V) = Ay, v (V) est de dimension 1. Donc, « est la
classe dans R (FG) de dét (U) . {dét (V)}~! = dét (U) . dét (V'*).

D’une maniére générale, pour que o« € R (FG) soit la classe d’une
représentation il est évidemment nécessaire que A (x) soit un polyndome.
Mais cette condition n’est pas suffisante.

Exemple. Soient G = S,, le groupe des permutations de {1, 2, 3, 4}
et F = C. Il existe un CS,-module simple 7 de dimension 3 avec la forme
matricielle

[ 0 —1 ol 01 —1
p(12) =4 =1 0 0¢, p(12)(34) =410 -1 ¢,
| 0 o0-1] 00 —1 |
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(001 Ir 0 011
p(123)=! 100i,p(1234)= —~1 01},
010 | ] 0—11JI

(C’est le produit de la représentation signe par la composante, simple de
degré 3 dans la représentation de permutation naturelle.)

En calculant les valeurs propres, on vérifie sans difficult¢é que AV
=1+ Vt+ Ve*+ 13 Donc, A(V—1)=1+ ¥—=1¢t+t? un poly-
nome. Cependant V' — 1 est strictement virtuelle.

La propriété (4), i.e. ¥, (x) = o mod pR (FG) résulte immediatement
de l'identité Q,, (sy, ..., 5,) = s;? mod pZ [s4, ..., 5,], elle-mEme consequence
directe de

t? + oo+ 1,7 = (t +...+1,)? mod pZ[ty,....t,].

Pour démontrer les propriétés (1) et (2), on utilise les théorémes I et II.
Puisque ¥, commute aux homomorphismes i : R(FG) - R(EG) d’ex-
tension de scalaires et commute également aux homomorphismes de
restrictions R (FG) - R (FC), il suffit de démontrer (1) et (2) dans le cas
d’un groupe cyclique et avec un corps de base algébriquement clos E.

Comme d’autre part R(EC) est engendré par les classes des EC-
modules simples, il est suffisant de vérifier (1) et (2) lorsque les variables
sont les classes de EC-modules simples. (On observera toutefois que cette
réduction pour la formule ¥, 4, = 4, ¥, exige de savoir déja que ¥,
est w = homomorphisme d’anneau. La démonstration de ¥, (a.f)
= ¥, (x). ¥, () doit donc précéder celle de ¥, 4,, = 4, ¥,.)

Or, on a vu au § 1 que tous les EC-modules simples sont de dimension
I sur E. Pour un EC-module de dimension 1, la vérification de (1) et (2)
par calcul direct est immédiate.

Pour démontrer (5) et (6) il est également suffisant, en vertu du théo-
reme II, de se borner au cas d’'un groupe cyclique C dont I’ordre divise
exposant p-régulier m du groupe donné G. (p = caract (F).) On peut
aussi supposer pour démontrer (5) que le corps de base E contient les
racines du polynéme X™ — 1.

Tout EC-module simple est alors de dimension 1 sur E et de la forme
E,, ou y e Hom (C, E*), 'action de C sur E, étant donnée par

s.z =y(s)z, seC, z€E,.
On a donc

Tn(Ex) = E(Xn)a et Tn-l-mEx — TnE

X

L’Enseignement mathém., t. XXII, fasc. 1-2. )
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résulte de x"™™ = y". (Card C divise m.) Comme les classes des EC-
modules simples engendrent R (EC), il en résulte

lI/n+m = TnR(EC) -—)R(EC),

puis (5) en général par la réduction faite ci-dessus.

Pour {6), on se sert des mémes remarques. On a

Y (E) = E(x)

comme on vient de le voir. Il reste a vérifier que o (E,) = E(x°), c.-a-d.
que C opere sur g (E,) par

x.0z =) (x)oz, zeE,, xeC.
Or,
x.0z=0(0""(x).2) =0(x.2) =0(x(x)z) =0 (x(x).0z,
et
a(x(®) = 2,

puisque y (x) est racine m-iéme de 'unité.

La propriété (7) est un corollaire facile de (6). Soit E une cloture algé-
brique de F,, le corps a g éléments et soit ¢ € Aut (E/F ) 'automorphisme
de Frobenius, i.e. o (a) = a? pour tout a € E. Comme i : R(F,G) - R(EG)
est injectif et commute a ¥, il est suffisant de voir que ¥, i = i. Or, d’aprés
(6), ¥, = of pour tout f € R(EG). Si B = ix on vérifie facilement que
of = f. (C’est trivial sur la forme matricielle d’une représentation.) Donc,
Y, iow = io, et ¥, a = o en résulte.

Remargque. Si ¢ appartient au sous-groupe des commutateurs de
Aut (F), son action sur R (FG) est triviale.

§ 5. ACTION DE ¥, DANS LE GROUPE DES CLASSES DE PROJECTIFS

Il existe un analogue K (FG) de R (FG) construit a l'aide des FG-
modules projectifs. Soit L’ le groupe abélien libre sur ’ensemble des
classes d’isomorphie de FG-modules projectifs de dimension finie. On
considére le sous-groupe L, de L’ engendré par les éléments P — P’ — P”
s’il existe une suite exacte 0 - P’ - P - P” — 0. (On a alors nécessai-
rement P =~ P’ @ P".)
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