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FACTORISATION SUR UN CORPS FINI F,,
DES POLYNOMES COMPOSES f(X*)
LORSQUE f(X) EST UN POLYNOME IRREDUCTIBLE DE F,, [X]

par Simon AGOU

Soient p un entier premier, ¢ un élément non nul algébrique sur F,,
de degré m et s un entier > 1 et étranger a p.
On pose ¢ = p™; on a donc F, = F, ().

§ 0. Rappels.

Pour lire ce qui suit il convient de garder présentes a ’esprit les propriétés
suivantes des corps finis.

Les démonstrations détaillées de ces propriétés peuvent €tre trouvées
dans I’article de J. R. JoLy intitulé « Equations et varié¢tés algébriques sur
un corps fini » (Enseignement Mathématique 19, pp. 1-118).

Soient F, et ¥, deux corps finis.

i) Le groupe multiplicatif ¥, est cyclique d’ordre q — 1.
1) L'inclusion ¥, < ¥, équivaut a q' est une puissance de q.
iii) Sionpose K=F,K' =F,,q=p',q =p" ona:

KnK = FP

pgcd (')
Le plus petit corps fini qui contient K et K' est le corps Fpppcm (1, 17)
iv) Soit ae¥,. Pour que a soit une puissance s-iéme dans F, il

faut et il suffit que:
(1) g -1 /pgedisqg~-1) 1
(Indiquons briévement la démonstration de ce dernier point.
Si
a GF; , a = b’ et q@~D/pged(s,g'=1) _ (bq’—l)s/pgcd (s, ¢'=1) — 1.
Réciproquement, la relation de Bezout montre qu’il existe u € Z tel que:

us/pgecd(s,qg'—1) =1 mod ((q’—l)/pgcd(s,q’——l)).

L’Enseignement mathém., t. XXII, fasc. 3-4. 20
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Sia = y% ouy est un générateur du groupe F,:, est tel que (1) soit satisfaite
alors o = 0 mod (p gc d (s, ¢’ — 1)). Par suite

(ou/pged(s,q"—1))s =« mod ((«/pgcd(s,q'—1))(qg' —1)).

Il en résulte que a = y*€F,).

On se propose, d’abord, d’étudier la décomposition du bindme X° — a
en facteurs irréductibles sur F,, puis d’étudier celle de f(X*) ol f est un
polynéme monique ') et irréductible de F,, [X].

NoTATIONS. Pour ce faire, nous utiliserons les notations suivantes.
On désigne par O ’ensemble des ordres de p dans les groupes (Z/dZ)*,
ol d est un diviseur de s.

Pour p € 0, on note 4, ’ensemble des diviseurs d de s tels que p soit
d’ordre p dans (Z/dZ.)*.

§ 1. On désigne par F, une cloture algébrique de F,.
Soit ¢ eF, une racine de X* — a; on note 4 (&) = [F, (£):F,] son
degré sur F,, on désigne par % le plus petit des entiers 4 (£).

1.1. LEMME. a) & est le plus petit des entiers > 1 tels que

q@=1)/pged(s,gh-1) _ 1

b) Soit &, €F, uneracine de X* — a, de degré h sur F, Pour toute
racine & de X° —a ona:

th = Fq(fo) = Fq(é) .

Preuve. 11 est clair qu’il existe des entiers 4, tels que:

qP-1) /pged (s, ph1-1) _ 1

Comme F, (@) = F,n et qu’il existe une racine s-ieme de a dans F
on a hy € mZ, puisque a € F ;. Soit donc / le plus petit entier > 1 tel que

g@—1)/pged(sgh-1) _ 1

Il existe par conséquent un €lément &, de F, tel que a = £,°. Mais
F, (&) = F,u et a est une puissance s-iéme dans F, (¢o), par suite puisque /4
est minimal, on a F, ({) = Fa.

1) Ou polynéme unitaire: le coefficient du terme de plus haut degré est égal a 1.
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Soit maintenant & une racine de X® — a; @ est une puissance s-1éme
dans F, (£). Posons F, (§) = qu-
La relation de Bezout montre qu’il existe u, v € Z tels que:

u(g =1 +v(g"=1) = ¢°# ¢ — 1
d’ot en divisant par pgecd (s, g2t —1) = 45,

(¢  a'—1_ gPEet B —1

u

5 8 5
On a alors
Lo4-1_ d-1 peed(sg-D
5 pged(s,g'—1) B ’
a1t _  a-1 pged(s,q"=1)
S pgcd(s,g"—1) b ’

donc a? = 1letd® = 1.
Il en résulte que gl &cd BM-D/0 = 1,
Comme 4 est minimal, pgcd (I, ) = h et donc F,(&,) = F, ().

1.2. LemME. Soient &g, neF,, &, #0. On suppose que F, (Co)
c F,(&on) et onnote p le degré [F,(n): F,] et h le degré [F, (o): F,l
Alors le degré [F,(Eqgn): F,] est ppcm (hm,p).

Comme F,(¢o) = F, (&on), en posant F,(on) = Fp on a: hm l k.
De plus (c'fon)pk = éopknl’k = En = fozypk; donc nekF,; et donc p ‘ k.
Ainsi p p cm (hm, p) | k.

Enfin 6017 € Fpppcm(hm, p); donc Fq (5077) < Fpppcm(hm, ) et k l
p p cm (hm, p).

C.Q.F.D.

§2. On pose D = {ppecm (hm, p)[m} . oU h est I'entier défini
au §1. Si ke D, on note O, 'ensemble des p € O tels que ppcm (hm, p)
= km. Enfin, si k € D, on pose

1 \
V() =2 % (Z 0 @)

pe0L \dedp
(ol ¢ est I'indicateur d’Euler).

2.1. PrROPOSITION. Dans ¥, [X] le bindme X° — a est un produit de
facteurs irréductibles distincts dont les degrés sont les éléments de D. Pour
chaque ke D, le nombre de facteurs irréductibles de degré k est v (k).
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Dans le lemme 1.1, on a établi qu’il existait dans F,. une racine &,
de X* — a telle que F, (&) = Fu.

Les racines de X* — a, sont donc les £,n, ou # est une racine de X* — 1.
Mais, dans F, [X], on a X* — 1 = [[ ¢, (X). Chaque polynéme cyclo-

dls

tomique ¢, (X) se décompose en pi)lynémes irréductibles en nombre
¢ (d) | p, ol p est 'ordre de p dans le groupe (Z/dZ)*. Par suite, si n est
une racine de X*° — 1 telle que F, () = FP ,» les lemmes 1.1 et 1.2 montrent
que F, (Eon) = Fpp pcm (hm, p)

Ainsi les racines de X* — a ont sur F, des polyndmes minimaux de
degrés p p c m (hm, p) [ m, ou p parcourt 0.

Pour chaque diviseur d de s, tel que 'ordre de p dans (Z/dZ)* soit p,
il y a ¢ (d) racines.

Le nombre de racines dont les polyndmes minimaux ont pour degrés
k (keD) est donc ), (D, ¢ (d)); par suite il y a v (k) polyndmes irréduc-

pely, deAp
tibles factorisant X* — a dans F, [X].

Il est évident qu’ils sont distincts, puisque s est étranger a p. Comme
XS —aapgcd(s,¢g"—1) racines dans F, 11 en résulte que 7 | pgcd
(s, g"—1).

C.Q.F.D.

2.2. Exemples.

(22.1) p=5,s=12, m=1,a =3, X** —3eF;[X].

On trouve h = 4. 0 = {1,2}, 4, = {1,2}, 4, = {3,4,6,12} et
D = {4)}. Les polyndmes irréductibles de F5 [X] divisant X** — 3 sont
1
7 >, ¢(d) = 3.
|12
On a en effet X'2 —3 = (X*=2)(X* +2X%+3) (X*+3X2+3).

donc de degrés 4. On a v (4) =

(222 p=5,s=9, m=1,a=3, X —3eF;[X].
On trouve & = 1.
0 ={1,2,6} 4, ={1}, 4, = {3}, 4 = {9},
D ={1,2,6} 0, ={1}, 0, ={2}, 05 = {6}.
v(l) =v(2) =v(6) =1.

On a donc trois polynomes irréductibles de degrés 1, 2, 6, divisant
X° — 3 dans Fs [X].
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On trouve en effet X° — 3 = (X=3) (X2+3X+4) (X°+2X°+4),
avec X® +2X3 +4 = f(X3) et f(X) = X* +2X + 4, que I'on peut
tester & I’aide de [I] ou de ce qui suit (cf. Proposition 2.3).

(223) p=7,s=15, m=1,a =2, X" —2eF,[X]"
On a (¢ (15), 15) = 1. On trouve & = 3.

(0={1,4}, A1={1,3}, Ay ={5,15},
D={3=12}> (03={1}> (9122{4},
vi3) =1, v(12) =1.

X1° — 2 est donc le produit d’un polyndme irréductible de degré 3 par un
polyndme irréductible de degré 12.

On a X' —2=(X3—4) (X'?+4X°+2X°+X°>+4) dans F, [X],
le dernier polynéme étant égal a f(X3) avec f(X) = X* + 4X° + 2X?
+ X + 4 (on peut le tester a 1’aide des résultats parus dans [1] ou a Paide
de ce qui suit, cf. proposition 2.3.).

2.3. PROPOSITION. Soit f(X) wun polynéome monique irréductible de
F,. [X], dedegré s, tel que f(0) # 0. On appelle m le plus petit entier
> 1 tel que X?™ ' =1 mod f(X) et on désigne par h le plus petit entier
> 1 tel que

x@-1)/pegcd(s,a"-1) _ { = 0 mod f(X), ou g = p".

Alors f(X7) se décompose dans ¥ ,. [X], en un produit de polynomes irré-
ductibles distincts de degrés s'k [ p gcd (k, ns'/m) ou l’entier k décrit D.
Pour chaque entier k il ya pgcd (k,ns'/m)v (k) polynomes irréductibles
de degrés ks’ [pgcd (k,ns'/m) divisant f(X?).

Preuve. 1l existe 0 € FP:S,, tel que F , (8) = F . Soit m Uentier tel que
F,(0) = F,,. I est clair que m est le plus petit entier tel que X "= X
mod f(X). Deplusonam /pgcd (m,n) = s'. Dans F, [X] on peut écrire:

s’—1

F&xy =TI @ -0,

La proposition 2.1 permet de décomposer chaque bindme X* — 6™/,
pour j = 0,..,s" — 1, en produit de polynémes irréductibles de F, [X].
(I1 est clair, avec les hypothéses faites que f(X ) n’a que des racines simples.)

Les degrés de ces polyndmes sont les éléments de D. Et pour chaque
entier k€ D il y en a v (k).
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Par le théoréme 48 de [5] on sait comment se décomposent ces poly-
némes, dans FP,,S, [X]. On remarquera que ns’ = p p ¢ m (m, n).

Si g est un tel polyndme de degré k, de F, [X], g se décompose dans
| [X] en pgcd(k, ns'/m) polyndbmes de degrés k/ p g c d (k, ns'/m).

On sait aussi que f(X*) se décompose dans F,, [X] en un produit de
polynomes irréductibles de degrés multiples de s'.

Soit donc s'A un degré d’un tel polyndéme, irréductible. Celui-ci se
décompose par le théoréme 48 de [5] dans | [X]enpgcd(s'A,s) = s
polyndmes irréductibles de degrés s'A/s" = A.

On a donc A = k/pgcd (k, ns'/m).

Ainsi les degrés des facteurs irréductibles de f(X*®) sur F,, sont de la
forme s'k/pgcd(k,ns’/m), ou ke D. Le produit des s’ bindmes X°
— 0P™ (j=0,...,5'—1) de F, [X], pour chaque entier k € D, est divisible
par s".v(k).pgcd (k, ns’/m) polyndmes irréductibles de | JI [X] de
degrés k/ p gc d (k, ns'/m). Par ailleurs, ces polynémes proviennent de la
décomposition dans FP,,S, [X] des facteurs irréductibles sur F,, de f/(X*) de
degré s'A, ou A= k/p gcd (k, ns’/m). 1l en résulte que le nombre de poly-
nomes irréductibles sur F,,, factorisant f(X*) est pour chaque entier k€ D,
v(k)p gcd(k, ns'/m).

C.Q.F.D.

Remarques. 1) Soit s” = s . p* un entier avec s et p étrangers. Le poly-
noéme f(X*") de F_, [X] peut sécrire f (X ) = (g (X*))P¥, ol g (X) est un
polyndme irréductible de F [X]. On peut donc appliquer la proposition 2.3
a g (Xo).

2) Pour que f(X*) soit irréductible dans F o [X], il faut et il suffit que
h=setquepgcd(s ns'/m) = 1.

Illustrons la proposition 2.3.

11 est conseillé d’utiliser les tables [4].

2.4. Exemples.

(24.1) Prenonsp = 2, n = 1, s = 15 et soit f(X) le polynéme irré-
ductible X% + X + 1 de F, [X].

Onas =2, etm=2car X*+ X+ 1 divise X> — 1 et de plus
3=2"—-1=2%-1,

Etudions la factorisation de f(X1%) = X3° + X' + 1 dans F, [X].

On a g = 2™ = 4, et h est le plus petit entier tel que:

X1 /pecd 15, 4-1) _ 1 =0 mod (X*+X+1).
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Il faut donc déterminer le plus petit entier A (nécessairement un diviseur
de pgcd (15,4"—1)) tel que:

(4"—1)/pgcd(15,4"—1) = 0 mod (2> —1).

On trouve aisément /1 = 3.

Les diviseurs d de 15 sont les entiers 1, 3, 5, 15.

Les ordres de 2 dans les groupes (Z/dZ)* sont les entiers 1, 2, 4, car
2! =1 mod 1,2% =1 mod 3,2* =1 mod 15.

Ainsi 0 = {1,2,4}, 4, ={1}, 4, = {3} et 4, = {515}.
L’ensemble D est défini par:

D = {ppem(hm,p)/m},.o0 = {ppcm(6,0)/2})c(1,2,4) = {3,6}.

On adonc O; = {1,2}, Og = {4}.
Les degrés des polyndmes irréductibles qui factorisent X>° + X1'°
+ 1 dans F, [X] sont donc les éléments de I'ensemble:

{s'kipgcd(k,ns'/m)}ep = {2k }ep = {6,127} .

Calculons pour k € D, les entiers v (k) pgcd (k, ns'/m) = v (k):

1 / Vo
V@A =5 3 (L L@ =5 (FM+s) =1,
,0603 \dEAp /
1 " v
JOESDY ( 3 5”((1)) = - (7()+7(19) =2.
pe(96 _d:—‘Ap 7

X3% + X'° + 1 est donc le produit de trois polyndmes irréductibles de
F, [X]. L’un est de degré 6, les deux autres sont de degré 12. On trouve
en effet:

X3 £+ X5 41 = (X°+X+ D)X+ X3+ D) (X2 +X° +1).
Profitons de cette décomposition, pour utiliser la remarque 2, sans
recourir aux théorémes classiques de [5].
(2.4.2). Etude du polynéme X® + X3 + 1 de F, [X].
X+ X2 +1 =f(X% avec f(X) =X*+X +1.

Onap =25 =2,n=1,m= 2,5 = 3. hest le plus petit entier tel
que:

(22" —1)/pgcd(3,22"—1) = 0 mod (22 —1),
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d’ou & =5 = 3; la deuxiéme condition de la remarque 2 est satisfaite.
X® + X3 + 1 est donc irréductible sur F,.

(2.4.3) Etude du polyndme X*? + X3 + 1 de F, [X].
X2+ X341 =f(X% avec f(X) = X*+ X + 1, qui est irréduc-
tible dans F, [X].
Onap=2s =4, n=1 m =4, s = 3. h est le plus petit entier
tel que:
Q% —1)/pgcd(3,2*—1) =0 mod (2*—-1),

d’oll A = s = 3; la deuxiéme condition de la remarque 2 est satisfaite.
X124+ X3 + 1 est donc irréductible sur F,.

(2.4.4) Etude du polynéme X% + X° + 1 de F, [X].

X2+ X°+1=F(X3 avecf(X) = X* + X3 + 1, qui est irréduc-
tible dans F, [X].

Onap=2,8=4n=1,m=4,s = 3 et comme ci-dessus: z = s
= 3; la deuxiéme condition de la remarque 2 est satisfaite. X2 + X°
+ 1 est donc irréductible sur F,.
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