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FACTORISATION SUR UN CORPS FINI Fpn

DES POLYNÔMES COMPOSÉS f(Xs)
LORSQUE f{X) EST UN POLYNÔME IRRÉDUCTIBLE DE. Fpn [X]

par Simon Agou

Soient p un entier premier, a un élément non nul algébrique sur Fp,

de degré m et s un entier > 1 et étranger à p.
On pose q pm\ on a donc Fq Fp (a).

§ 0. Rappels.
Pour lire ce qui suit il convient de garder présentes à l'esprit les propriétés

suivantes des corps finis.
Les démonstrations détaillées de ces propriétés peuvent être trouvées

dans l'article de J. R. Joly intitulé « Equations et variétés algébriques sur
un corps fini» (.Enseignement Mathématique 19, pp. 1-118).

Soient Fq et Fq> deux corps finis.

i) Le groupe multiplicatif F* est cyclique d'ordre q — 1.

ii) L'inclusion ¥q a J?q> équivaut à q' est une puissance de q.

iii) Si on pose K Fq, K' F^, q p\ q' — p1' on a:

X n Kf F^p g c d (lj

Le plus petit corps fini qui contient K et K' est le corps F^ppcm {l>

iv) Soit a e Pour que a soit une puissance s-ième dans Fq> il
faut et il suffit que :

(q) fl(g'-l) / p g c d (s, q'-l) __ -j^

(Indiquons brièvement la démonstration de ce dernier point.
Si

ae F*,, a bs et aiq'~iyl P8cd(^g'-D ^ ^

Réciproquement, la relation de Bezout montre qu'il existe u e Z tel que :

«s / p gc d (s, g' — 1) 1 mod - 1) /p gcd(s, 1)).

L'Enseignement mathém., t. XXII, fasc. 3-4. 20
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Si a y", où y est un générateur du groupe F*/, est tel que (1) soit satisfaite
alors a 0 mod (p g c d (s, q' - 1)). Par suite

(au\ p g c d (s, qf -1)) s a mod ((a/ p g c d (5, q' - 1)) (q' - 1))

Il en résulte que a ya e F£).
On se propose, d'abord, d'étudier la décomposition du binôme Xs — a

en facteurs irréductibles sur ~Fq, puis d'étudier celle de f(Xs) où / est un
polynôme monique 2) et irréductible de Fpn [X].

Notations. Pour ce faire, nous utiliserons les notations suivantes.

On désigne par (9 l'ensemble des ordres de p dans les groupes (Z/JZ)X,
où d est un diviseur de s.

Pour peO, on note Ap l'ensemble des diviseurs d de s tels que p soit
d'ordre p dans (Z/dZ)x.

§ 1. On désigne par Fp une clôture algébrique de Fp.

Soit f gFp une racine de Xs — a; on note h(Ç) [Fg(£):FJ son

degré sur Fg, on désigne par h le plus petit des entiers h (£).

1.1. Lemme. a) h est le plus petit des entiers > 1 tels que

a(^-l)/pgcd(s, ^-1) _ 1

b) Soit £0eFp une racine de Xs — a, de degré h sur Fr Pour toute
racine £, de Xs — a on a:

Fs„ F,ß0)cF,©.
Preuve. Il est clair qu'il existe des entiers h1 tels que:

fl(A-l)/Pgcd(s, /i-l) _ I

Comme Fp (a) Fpm et qu'il existe une racine s-ième de a dans Fpin

on a Ai e mZ, puisque a g FphV Soit donc h le plus petit entier > 1 tel que

a(qh-l) j p g c d (s, qh-l) _ ^

Il existe par conséquent un élément £0 de F^ tel que a £0S. Mais

Fq (£0) c Fqh et a est une puissance j-ième dans Fq (Ç0), par suite puisque h

est minimal, on a Fq (£0) F^.

x) Ou polynôme unitaire: le coefficient du terme de plus haut degré est égal à 1.
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Soit maintenant £ une racine de Xs — a\ a est une puissance j-ième

dans F„ (£,)Posons Fa (0 Fql.

La relation de Bezout montre qu'il existe Z tels que :

utf-l) +v(qh-l)g"««=*<'•*> - 1;

d'où en divisant par p g c d (s,qpgc d (!' -1) <5

(ql-1) qh-li
+ ~

5
'

On a alors

A

B

ql -1 ql -1
_

p g c d (s, q' — 1)

d pgcd(s,q'-l) d

qh — 1 qh — 1

ö pgcd(s,qh — 1) d

donc a'4 1 et aB1.

Il en résulte que a<îP 8 c d (I> V-il/t— j
Comme h est minimal, p g c d (Z, h)h et donc Fa (£0) <= F4 (£).

1.2. Lemme. Soient £0, qeFp, £0 ^ 0- On suppose que F4(£0)

c F, (^0)|) et on note p le degré [Fp(q):Fp] et A le degré [Fs (£0): F9].

^fori /e degré [Fa Fp] est P P c m p).
Comme F4(^0) <= F, (£0î7),en posant F? (£0q) on a:

De plus (£0 rj)pkÇ0pkqpk <Ü01 donc et donc p \

Ainsi p p c m (hm, p) \ k.

Enfin h^^pppcm(/im, p)' donc F4 ^ ^pP P c m p) ^ |

p p c m (hm, p).
C.Q.F.D.

§2. On pose D { p p c m (hm,p)/m }pe®, où h est l'entier défini

au §1. Si Le D, on note (9kl'ensembledes tels que ppcm
km. Enfin, si k e D, on pose

v(k) yZ Z (0)
K

peOk J

(où cp est l'indicateur d'Euler).

2.1. Proposition. Dans Fq [X] le binôme Xs — a est un produit de

facteurs irréductibles distincts dont les degrés sont les éléments de D. Pour
chaque k e D, le nombre de facteurs irréductibles de degré k est v (Je).
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Dans le lemme 1.1, on a établi qu'il existait dans Fqh une racine £0
de Xs - a telle que F^ (£0) F^.

Les racines de Xs — a, sont donc les Ç0rj, où est une racine de Xs — 1.

Mais, dans Fp [X], on a Xs - 1 cj)d (X). Chaque polynôme cyclo-
d | s

tomique <j)d (X) se décompose en polynômes irréductibles en nombre
cp (d) / p, où p est l'ordre de p dans le groupe (Z/drZ)x. Par suite, si 77 est

une racine de Xs — 1 telle que Fp (rj) ¥pP, les lemmes 1.1 et 1.2 montrent
que Fs (£„»/) F,ppcm(„mjp).

Ainsi les racines de Xs — a ont sur des polynômes minimaux de

degrés p p c m (hm, p) / m, où p parcourt (P.

Pour chaque diviseur ^ de v, tel que l'ordre de p dans (Z/dZ)x soit p,
il y a cp (d) racines.

Le nombre de racines dont les polynômes minimaux ont pour degrés
k (keD) est donc J] X! 9 (/0) '> Par su^e il y a v (k) polynômes irréduc-

ps&k deAp
tibles factorisant Xs — a dans F^ [X].

Il est évident qu'ils sont distincts, puisque 5 est étranger à p. Comme
Xs - a a p g c d (s, qh-1) racines dans EqJl, il en résulte que /z|pgcd
<s,qh- 1).

C.Q.F.D.

2.2. Exemples.

(2.2.1) p 5 5 12, m 1 a 3 X12 - 3 g F5 [X]

On trouve h 4. (P { 1, 2 }, d t {1,2}, zl2 { 3, 4, 6, 12 } et

D {4}. Les polynômes irréductibles de F5 [X] divisant X12 — 3 sont

donc de degrés 4. On a v (4) - cp(d) 3
4 d [12

On a en effet X12 - 3 (X4-2) (X4+ 2X2 + 3) (X4 + 3X2+ 3).

(2.2.2) p 5 5 9, m 1 a 3 X9 - 3 gF5 [X]

On trouve h 1.

© {1,2,6} {1}, d2 {3}, d6 {9},
D {1,2,6} {1}, ©2 {2}, 06 {6}.
v(l) v (2) v (6) 1.

On a donc trois polynômes irréductibles de degrés 1, 2, 6, divisant
X9 - 3 dans F5 [X].
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On trouve en effet X9 — 3 (X— 3) (X2 + 3X+4) (X6 + 2X3 + 4),

avec X6 + 2X3 + 4 /(X3) et f(X) X2 + 2X + 4, que l'on peut

tester à l'aide de [I] ou de ce qui suit (cf. Proposition 2.3).

(2.2.3) p 7, s - 15, m 1 a 2, X15 - 2eF7[X] V

On a (g? (15), 15) 1. On trouve h 3.

0 {1,4}, Ax {1,3}, - {5,15},
D {3,12}, {1}> ®i2 {4},
v(3) 1, v (12) 1.

X15 — 2 est donc le produit d'un polynôme irréductible de degré 3 par un
polynôme irréductible de degré 12.

On a X15 - 2 (X3-4) (X12+4X9+ 2X6 + X3+ 4) dans F7 [X]9
le dernier polynôme étant égal à f(X3) avec f(X) X4 + 4X3 + 2X2
+ X + 4 (on peut le tester à l'aide des résultats parus dans [1] ou à l'aide
de ce qui suit, cf. proposition 2.3.).

2.3. Proposition. Soit f (X) un polynôme monique irréductible de

Fpn [X], de degré s', tel que f (0) # 0. On appelle m le plus petit entier

>1 tel que XpTn~1 1 mod f(X) et on désigne par h le plus petit entier

> 1 tel que

Z(«fc-i)/pgCd (5,^-1) _ o mod f(X), où =P".
Alors f(Xs) se décompose dans Fpn [X]9 en un produit de polynômes
irréductibles distincts de degrés s'k / p g c d (k, ns'/nï) où l'entier k décrit D.
Pour chaque entier k il y a p g c d (k9 ns'/m) v (k) polynômes irréductibles
de degrés ks' / p gc d Çk, ns'/m) divisant f(Xs).

Preuve. Il existe 9 e F^JJS/, tel que F^„ (0) Ppns'- Soit m l'entier tel que
Fp (0) Fpm. Il est clair que m est le plus petit entier tel que Xpm es X
mod f{X). De plus on a m / p g c d (m, n) s'. Dans Fq [X] on peut écrire:

/v?) n cxs-epnj).
j=0

La proposition 2.1 permet de décomposer chaque binôme Xs — 6pn3\

pour j 0,..., / - 1, en produit de polynômes irréductibles de F^ [X].
(Il est clair, avec les hypothèses faites que/(Xs) n'a que des racines simples.)

Les degrés de ces polynômes sont les éléments de D. Et pour chaque
entier k e D il y en a v (k).



— 310 —

Par le théorème 48 de [5] on sait comment se décomposent ces

polynômes, dans F^„s, [X]. On remarquera que ns' p p c m (m, n).
Si g est un tel polynôme de degré k, de [X], g se décompose dans

F' „s' [X] en p g c d (k, ns'/m) polynômes de degrés kj p g c d (k, ns'jm).
On sait aussi que /(Xs) se décompose dans Fpn [X] en un produit de

polynômes irréductibles de degrés multiples de s'.
Soit donc s'A un degré d'un tel polynôme, irréductible. Celui-ci se

décompose par le théorème 48 de [5] dans F [X] en p g c d (s'A, s') s'

polynômes irréductibles de degrés s'A/s' A.

On a donc A kj p g c d (k, ns'jm).
Ainsi les degrés des facteurs irréductibles de /(Xs) sur Fpn sont de la

forme s'kj p g c d (k, ns'jm), où ke D. Le produit des s' binômes Xs
— 9pnj (7 0, ...,s' — 1) de F^ [X], pour chaque entier ke D, est divisible

par s'. v (k). p g c d (k, ns'jm) polynômes irréductibles de FpJls> [X] de

degrés kl p g c d (k, ns'jm). Par ailleurs, ces polynômes proviennent de la

décomposition dans Fpns> [X] des facteurs irréductibles sur Fpn de/ (Xs) de

degré s'A, où A kj p g c d (k, ns'jm). Il en résulte que le nombre de

polynômes irréductibles sur Fpn, factorisant/(Xs) est pour chaque entier ke D,
y (k) p g c d (k, ns'jm).

C.Q.F.D.

Remarques. 1) Soit s" s pk' un entier avec s et p étrangers. Le
polynôme /(Xs") de F^„ [X] peut s'écrire /(Xs") (g (Xs))Pk\ où g (X) est un
polynôme irréductible de F „ [X]. On peut donc appliquer la proposition 2.3

à g (Xs).
2) Pour que /(Xs) soit irréductible dans FpTl [X], il faut et il suffit que

h s et que p g c d (s, ns'/m) 1.

Illustrons la proposition 2.3.

Il est conseillé d'utiliser les tables [4].

2.4. Exemples.

(2.4.1.) Prenons p 2, n 1, s 15 et soit/(X) le polynôme
irréductible X2 + X + 1 de F2 [X].

On a s' 2, et m 2 car X2 + X + 1 divise X3 - 1 et de plus
3 2m — 1 22 — 1.

Etudions la factorisation de /(X15) X30 + X15 + 1 dans F2 [X].
On a q 2m 4, et h est le plus petit entier tel que :

Z(4fc-i)/Pgcd(i5.4fc-i) _ 1 Q mod (X2 +X +1)
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Il faut donc déterminer le plus petit entier h (nécessairement un diviseur

de p g c d (15, 4''- 1)) tel que:

(4A — 1) / pgcd(15, 4h —1) s 0 mod (22 - 1).

On trouve aisément h — 3.

Les diviseurs d de 15 sont les entiers 1, 3, 5, 15.

Les ordres de 2 dans les groupes (Z/dZ)x sont les entiers 1, 2, 4, car
21 1 mod 1, 22 1 mod 3, 24 1 mod 15.

Ainsi 0 { L 2, 4 }, d j { 1 }, A2 { 3 } et { 5, 15}

L'ensemble 2) est défini par:

D { p p c m (Jim, p)/m}ps(S{ppcm(6,p)/2 }p={1,2,4} {3,6}.
On a donc $3 { 1, 2 }, $6 { 4 }.
Les degrés des polynômes irréductibles qui factorisent X30 + X15

+ 1 dans F2 [X] sont donc les éléments de l'ensemble:

{ s'fe / p g c d (k, ns'l m) }keD {2k}keD {6,12}.
Calculons pour k e 2), les entiers v (fc) p g c d (fc, ns'jrri) v (A:) :

v (3)
2 y x ^(rffi 1 (^'(i)+^(3)) i,

Pe03 \dsAp J *

v(6) \EI 1(.^(5)+^(15)) =2.

X30 + X15 + 1 est donc le produit de trois polynômes irréductibles de

F2 [X]. L'un est de degré 6, les deux autres sont de degré 12. On trouve
en effet:

X30 + X15 + 1 (X6 +X3 + 1) (X12 +X3 + 1) (X12 +X9 + 1).

Profitons de cette décomposition, pour utiliser la remarque 2, sans

recourir aux théorèmes classiques de [5].

(2.4.2). Etude du polynôme X6 +X3 + 1 de F2 [X].

X6 + X3 + 1 /(X3) avec /(X) X2 + X + 1

On a p 2, s' 2, n 1, m ~ 2, s 3. h est le plus petit entier tel

que:
(2lh — 1) / p g c d (3, 22ft — 1) 0 mod (22-l),
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d'où h ~ s 3; la deuxième condition de la remarque 2 est satisfaite.
X6 + X3 + 1 est donc irréductible sur F2.

(2.4.3) Etude du polynôme X12 + X3 + 1 de F2 [X].
X12 + X3 + 1 — f(X3) avec f(X) X4 + X + 1, qui est irréductible

dans F2 [X].
On a p 2, s' 4, n 1, m 4, s 3. h est le plus petit entier

tel que:
(24/l — 1) / p g c d (3, 24ft — 1) 0 mod (24-l),

d'où h s 3; la deuxième condition de la remarque 2 est satisfaite.
X12 + X3 + 1 est donc irréductible sur F2.

(2.4.4) Etude du polynôme X12 + X9 + 1 de F2 [X],
X12 + X9 + 1 f(X3) avecf(X) X4 + X3 + 1, qui est irréductible

dans F2 [X].
On a p 2, s' 4, n 1, m 4, ^ 3 et comme ci-dessus: h s

3; la deuxième condition de la remarque 2 est satisfaite. X12 + X9
+ 1 est donc irréductible sur F2.
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