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CoroLLARY 13.14. If y is even and real, then S;; (x,2) > 0 and
S21 (6, 2) < 0.

THEOREM 13.15. Let y be odd. Then

iG (y) k?
and |
G (y) k% (1 1 1
S22 = O BE {Z [7Q)—11L(L D) + 7—;[1 - gm] LG, yt)} .

CoOROLLARY 13.16. Let y be odd and real. Then in all cases,
Si1 (6, 2) < 0;if x(2) = 1, then S,; (3, 2) < O.

If x is real, the class number formula corresponding to (13.1) is due to
Cauchy [17]. Pepin [51, p. 205], Lerch [44, p. 395], and Ayoub, Chowla,
and Walum [3] have also given proofs of (13.1). Of course, any number of
formulas could be proven for ) y(n)n", where r is a positive integer

a<n=>b
and a and b are rational multiples of k. However we are unable to make
any more non trivial deductions about the positivity (or negativity) of such
character sums. In this connection, see [3] and [25].

14. SOME QUESTIONS AND PROBLEMS

In the foregoing work, in order to determine if S;; is of constant sign
for classes of real, primitive characters, we expressed S;; as a linear com-
bination of L-functions of real characters evaluated as s = 1, and then we
inspected the coefficients in this linear combination to determine if all were
either non-negative or non-positive. In fact, S;; may always- be expressed
as a linear combination of L-functions evaluated at s = 1. However, In
the general situation, the L-functions are associated with complex charac-
ters. When non-real characters arise in the representation of S;;, we are
unable to say anything about the sign of S;;. We have attempted to find all
instances when §; can be expressed in terms of L-functions of real charac-
ters. It is natural to ask if these cases are the only instances when theorems
about the non-negativity or non-positivity of S;; are possible. Results of
P. D. T. A. Elliott (written communication) appear to indicate that this,
indeed, is the case. For example, he has proved the following result. Consider

the set of primes p in any residue class, e.g., p = 1 (mod 8), and the as-
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sociated characters y, of a given fixed order. Then the values of arg L (1, xp)s
as p varies, are everywhere dense modulo 27.

Let us look at just one example where the admittedly scant, numerical
evidence seems to suggest otherwise. Let y (n) denote the Legendre symbol
modulo p, where p = 1 (mod 4). Then S5; cannot be expressed in terms of
L-functions with real characters. However, for p=1(mod8) and
p = 30,000, computations show that Ss; > 0. Sufficient conditions for
the positivity of S5, are that the two series on the right side of (5.14) are
positive. For p = 1 (mod 8), are these two series always positive ?

There are a few instances for which we are able to express S;; in terms
of L-functions of real characters and for which we are unable to deduce
any theorems on the sign of S;;, but for which numerical computations

7N

n . :
suggest a constant sign. Again, let y(n) = ( ~) . For primes p with
N2
p = 7 (mod 8) and p = 200,000, calculations of Duncan Buell show that
/5
h(—5p) < {5 — (—-)} h(—p), or, equivalently, by Corollary 5.3, that
D,

S5y > 0. Is this true for all p with p = 7 (mod 8) ?

There are 7 additional cases for intervals of length p/24 in which numeri-
cal calculations for p = 30,000 suggest that S,,; may possibly have a
constant sign. For p = 11 (mod 24), S, 3, Sy4,11 > 0; for p= 17 (mod 24),
S24,8, 24,9 < 0; forp = 19 (mod 24), S,, ¢ > 0; and for p = 23 (mod 24),
Sr4.2 = —834,12 > 0. It can be shown that the above inequalities have
the following implications, which we very tenuously conjecture hold for
all primes in the given residue classes. If p = 11 (mod 12), then 4 (—12p)
< 2h(—8p) + h(—24p); if p= 11 (mod24), then i (—8p) < 2h(—p)
+ h(—12p); if p = 17 (mod 24), then 2k (—3p) < 2h (—8p) + h (—24p)
and & (—8p) < 2h(—3p) + h(—4p); and if p = 19 (mod 24), then 44 (—p)
< h(—12p) + h(—24p).

S. Chowla has conjectured that if p is a prime with p = 3 (mod 8),
then §,; assumes every value that is a positive, odd multiple of 3. He has
also conjectured that if p = 7 (mod 8), then S,; assumes every positive,
odd integral value. In other words, Chowla has conjectured that 4 (—p)
assumes every possible odd value for each of the sets of primes p with
p = 3 (mod 8) and p = 7 (mod 8). Samuel Wagstaff has done some cal-
culations to test Chowla’s conjectures and similar conjectures of the author.
All of the calculational data are for p = 30,000. For p = 3 (mod 8), the
largest value for S,; is 297. There are only two omissions, 249 and 291.
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For p = 7 (mod 8), the largest value for S,; is 259. The smallest value not
assumed 1s 163. There are several other values between 163 and 259 that
are not assumed. The calculations also strongly support the following
conjectures. S,; and S3;, for p = 1(mod4); Ss,, for p= 3 (mod 4);
Sg1, for p = 1 (mod 8); Sg,, for p = 7 (mod 8); —Sg,, for p = 5 (mod 8);
and Sy, ,, for p = 7 (mod 8) and for p = 11 (mod 12), each assumes all
positive, integral values. We refer the reader to the foregoing work here
for the translations of these conjectures into conjectures about class
numbers.
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