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Theorem 12.5. Let x even, and let m be an arbitrary positive integer.

Then
m-1 3I/2 q( \
E ^3m,3j + 2 ~
j — 0

71

The instances of Theorem 12.5 with m 1, 2, 4 and 8 are consequences

of Theorems 4.1, 6.1, 9.1 and 11.1, respectively.

Theorem 12.6. Let x te odd, and let m be an arbitrary positive integer.

Then

S5m,2 ~~ ^5m,4 + ^5m,7 ^5m,9^ •••+ S5m^5m-2, ~ $5m,5m-l

z'51^2 G (x)- —- x(m) L(l, Xsk) •

71

The special cases of Theorem 12.6 for m — 1 and m 2 follow
immediately from Theorems 5.1 and 8.1, respectively.

Theorem 12.7. Let x be odd, and let m be an arbitrary positive integer.

Then

Sl2m,2 + ^12m,3 + ^12m,4 + ^12w,5 ~~ ^12m,8 ~ ^12m,9 ~~ ^12m,10 ^12m,ll

+ + + H •*'— ^12m, 12m —4 ^12m,12m-3 ~~ ^12m,12m-2 ^12m,12m-l

i(12Y'2G(x),
X(.tn)L(l,Xi2k)

71

The special instances of m 1 and m 2 of Theorem 12.7 yield
results that are easily deduced from Theorems 9.1 and 11.1, respectively.

The class number formula arising from Theorem 12.1 was first proved
by Holden [39]. A less general form of Theorem 12.2 was also established

by Holden [36] who in another paper [37] used his result to derive formulas
for sums of the Legendre-Jacobi symbol over various residue classes. The

special case m 1 of the class number formula deducible from Theorem 12.7

is due to Lerch [44, p. 407]. Otherwise, the results of this section appear to
be new.

13. Sums of quadratic residues and nonresidues

We mentioned in the Introduction the two equivalent formulations of
Dirichlet's theorem for primes that are congruent to 3 modulo 4. In this
section, we state and prove as many theorems as we can that are of the same
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nature as (1.3). In the case that x (n) is the Legendre symbol, we stated our
results in [7, Section 4], For convenience, we put

Sß(X,r)£
(i — l)k/j<n< ik/j

where i, y, and r are natural numbers. Again, x is primitive throughout the
section.

Theorem 13.1. Let x be even. Then

G(x)k 1

S2i(x,l)=- -^-h--x(
Proof. In (12.1), put f(x) x, c 0, and d k/2. Integrating by

parts, we find that

c ^ G(x)k
S21 (x, 1) - 2 L { cos (nn) - 1}

2,71
n i n

and the desired result readily follows.

Corollary 13.2. For any even, real character x, we have S21 (x> 1) < 0.

In view of Corollary 3.8 and the fact that S2i — 0 for even x> Corollary

13.2 is certainly not surprising.

Theorem 13.3. Let x be odd. Then

i G (x) k
s2t (X, 1) { X (2) - 1} 1(1, x).

2%

Proof In (12.2), put f(x) x, c 0, and d kjl. Thus, upon
integrating by parts, we get

ç, -n iG(x)k ic(n)
S2i (X, 1) —x L cos (nn) >

2n n=i n

from which the desired result readily follows.

Corollary 13.4. If x is real and odd, then S2l (x, 1) > 0, if x (2) # 1,

and *$21 (X, 1) 0, otherwise.

In view of Corollary 3.3 and the elementary fact that S41 0 if x (2)
— 1 [8], at least part of Corollary 13.4 is expected. If p is a prime,

Corollary 13.4 shows that the sum of the quadratic residues modulo p
exceeds the sum of the non-residues on (0, pj2) ifp 3 (mod 8), while the
two sums are equal ifp 7 (mod 8).
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Theorem 13.5. Let x be odd. Then

iG(x)k f1
S31(z, !)=-

31/2

_[l_^(3)]L(l,x)+— L(2,xsù

Proof. In (12.2), put /(x) x,c 0, and d 3. The result follows
from the same type of calculation as above.

Corollary 13.6. If % is real and odd, then S31 (x, 1) > 0.

The following theorems are proved in the same manner as above.

Theorem 13.7. Let x be odd. Then

iGflS32ix,1)
ji/2

-[jj(3)-l]L(l,jD+ — L(2,xik)

Corollary 13.8. If x is real and °dd and if xO) then

S32(Z, 1)<0.

Theorem 13.9. Let x be even. Then

S,2 iX,1) - ~~\L(1,-[2 -x(2)]
4n 71 i-?z(2) L(2,x».

Corollary 13.10. For x real and even, we have S42 (z, 1) < 0.

Theorem 13.11. Let x be odd. Then

S41 (X, 1) - iG(x)k fl
271 IZ(2)[l-z(2)]L(l,jD+-L(2,x44)4 71

and

S43(z, 1) ^2^<J[z(2)-1]
4

Z (2) — 1 L{l,x)+-L{2,ûd\

Corollary 13.12. Let xbereal and odd. If y (2) f -1, then
S41 ix,1) > 0; in any case, S43 (x, 1) < 0.

Theorem 13.13. Let z be even. Then

and

G(x)k2
Snix,2)= 2 k(2, y)

71

G (y) k2
S21 ix, 2) { X (2) - 2 } L(2,
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Corollary 13.14. If % is even and real, then S11(x,2)>0 and

S21(x,2)<0.

Theorem 13.15. Let x be odd. Then

iG (x) k2
(13.1) ^ii (x? 2) — — L(l, x)

and

iG(x)k2(lr.^ _x
1

Su (x,2) —- - ]-[Z(2) -1] 1, x)+-2
71 4

1-1^(2) L(3,X)L

Corollary 13.16. Let % be odd and real. Then in all cases,

Su (x, 2) < 0; if x (2) 1, then S21 (x, 2) < 0.

If x is real, the class number formula corresponding to (13.1) is due to
Cauchy [17]. Pepin [51, p. 205], Lerch [44, p. 395], and Ayoub, Chowla,
and Walum [3] have also given proofs of (13.1). Of course, any number of
formulas could be proven for £ x (n) > where r is a positive integer

a^Ln^-b
and a and b are rational multiples of k. However we are unable to make

any more non trivial deductions about the positivity (or negativity) of such

character sums. In this connection, see [3] and [25].

14. Some questions and problems

In the foregoing work, in order to determine if is of constant sign
for classes of real, primitive characters, we expressed Sjt as a linear
combination of L-functions of real characters evaluated as s 1, and then we
inspected the coefficients in this linear combination to determine if all were
either non-negative or non-positive. In fact, Sjt may always be expressed

as a linear combination of L-functions evaluated at s 1. However, in
the general situation, the L-functions are associated with complex characters.

When non-real characters arise in the representation of Sji9 we are
unable to say anything about the sign of 6^. We have attempted to find all
instances when Sji can be expressed in terms of L-functions of real characters.

It is natural to ask if these cases are the only instances when theorems

about the non-negativity or non-positivity of Sjt are possible. Results of
P. D. T. A. Elliott (written communication) appear to indicate that this,
indeed, is the case. For example, he has proved the following result. Consider
the set of primes p in any residue class, e.g., p 1 (mod 8), and the as-
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