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THEOREM 12.5. Let y be even, and let m be an arbitrary positive integer.
Then

m-—1 31/2
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j=0
The instances of Theorem 12.5 with m = 1, 2, 4 and 8 are consequences
of Theorems 4.1, 6.1, 9.1 and 11.1, respectively.

THEOREM 12.6. Let x be odd, and let m be an arbitrary positive integer.
Then

Ssmaz — Ssma + Ssm7 — Ssmo+ — F Ssmsm—3 — Ssmsm—1

i5'2G(y) _ _
= — ————;— X(n’l)L(l, XSk) .

The special cases of Theorem 12.6 for m = 1 and m = 2 follow im-
mediately from Theorems 5.1 and 8.1, respectively.

THEOREM 12.7. Let x be odd, and let m be an arbitrary positive integer.
Then

Siomz+S12m3+Stoma+Si2ms —St2ms —S12mo — St2m10 — Siami11

++++-———"=Smiom-a—Stomizm-3— St1amizm-2" St2m12m—1
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The special instances of m = 1 and m = 2 of Theorem 12.7 yield
results that are easily deduced from Theorems 9.1 and 11.1, respectively.

The class number formula arising from Theorem 12.1 was first proved
by Holden [39]. A less general form of Theorem 12.2 was also established
by Holden [36] who in another paper [37] used his result to derive formulas
for sums of the Legendre-Jacobi symbol over various residue classes. The
special case m = 1 of the class number formula deducible from Theorem 12.7
is due to Lerch [44, p. 407]. Otherwise, the results of this section appear to
be new.

13. SUMS OF QUADRATIC RESIDUES AND NONRESIDUES
We mentioned in the Introduction the two equivalent formulations of

Dirichlet’s theorem for primes that are congruent to 3 modulo 4. In this
section, we state and prove as many theorems as we can that are of the same
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nature as (1.3). In the case that y (n) is the Legendre symbol, we stated our
results in [7, Section 4]. For convenience, we put

S;i(x,r) = Y yx(n)yn",

(i—1)k/j<n<ik/j
where i, j, and r are natural numbers. Again, y is primitive throughout the

section.

THEOREM 13.1. Let y be even. Then
G (x)

1
S (X, 1) =— {1 -~ _(2)} L(2,7%).

Proof. In (12.1), put f(x) = x, ¢ = 0, and d = k/2. Integrating by
parts, we find that

k 0
S, (1. 1) = G (%) x(n)

2

2
27 n=1

{cos (nn) — 1},

and the desired result readily follows.

CoroLLARY 13.2. For any even, real character y, we have S, (x, 1) < O.
In view of Corollary 3.8 and the fact that S,; = 0 for even y, Corol-
lary 13.2 is certainly not surprising.

THEOREM 13.3. Let y be odd. Then
iG(ypk
2n

Proof. In (12.2), put f(x) = x, ¢ = 0, and d = k/2. Thus, upon inte-
grating by parts, we get

S,1 (1) =

SZI(Xa 1)= {)?(2)“1}14(1»}?)-

G(x)k x(n)

os (mn),

P
from which the desired result readily follows.

CorOLLARY 13.4. If y is real and odd, then S, (3, 1) > 0,if y (2) # 1,
and S, (x, 1) = 0, otherwise.

In view of Corollary 3.3 and the elementary fact that S,; = 0 if ¥ (2)
= —1 [8], at least part of Corollary 13.4 1s expected. If p is a prime,
Corollary 13.4 shows that the sum of the quadratic residues modulo p
exceeds the sum of the non-residues on (0, p/2) if p = 3 (mod 8), while the
two sums are equal if p = 7 (mod 8).
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THEOREM 13.5. Let y be odd. Then

k 31/2
Sy (2, 1) = — ’Gi") { [1-F®T LD+ L2, x3k>}

Proof. In (12.2), put f(x) = x, ¢ = 0, and d = k/3. The result follows
from the same type of calculation as above.

COROLLARY 13.6. If y is real and odd, then S5; (3, 1) > 0.
The following theorems are proved in the same manner as above.

THEOREM 13.7. Let x be odd. Then

G (x)k 3i/2
Ss2 (1) = - iX) { [% (3)_1]L(1’X)+TL(2 Xsk)}

CoroLLARY 13.8. If y is real and odd and if yx(3) = 1, then
S32 (X: 1) < 0

THEOREM 13.9. Let y be even. Then

1
Sa2 (1, D) = — —47?(—) {L(l, Xa) + = [2 7(2)] [1 - -X(2)] L(2, X)}

CoroLLARY 13.10. For yx real and even, we have S, (3, 1) < 0.

THEOREM 13.11. Let y be odd. Then

k
Su(p =00 { TN -ZQ] LA, D+ L, x4k>}
and
Saz (2, 1) = (X) {[ (2)—1][ X(2)—1]L(1,x)+ 1L(2 )m)}

COROLLARY 13.12. Let yx be real and odd. If x(2) % —1, then
S41 (x, 1) > 0; in any case, S,5 (3, 1) < 0.

THEOREM 13.13. Let y be even. Then
(x) k*

Si1(x,2) = L(2, y)

and

(x) K
| S21 (1, 2) = A2

{1 -2} L2, 7).
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CoroLLARY 13.14. If y is even and real, then S;; (x,2) > 0 and
S21 (6, 2) < 0.

THEOREM 13.15. Let y be odd. Then

iG (y) k?
and |
G (y) k% (1 1 1
S22 = O BE {Z [7Q)—11L(L D) + 7—;[1 - gm] LG, yt)} .

CoOROLLARY 13.16. Let y be odd and real. Then in all cases,
Si1 (6, 2) < 0;if x(2) = 1, then S,; (3, 2) < O.

If x is real, the class number formula corresponding to (13.1) is due to
Cauchy [17]. Pepin [51, p. 205], Lerch [44, p. 395], and Ayoub, Chowla,
and Walum [3] have also given proofs of (13.1). Of course, any number of
formulas could be proven for ) y(n)n", where r is a positive integer

a<n=>b
and a and b are rational multiples of k. However we are unable to make
any more non trivial deductions about the positivity (or negativity) of such
character sums. In this connection, see [3] and [25].

14. SOME QUESTIONS AND PROBLEMS

In the foregoing work, in order to determine if S;; is of constant sign
for classes of real, primitive characters, we expressed S;; as a linear com-
bination of L-functions of real characters evaluated as s = 1, and then we
inspected the coefficients in this linear combination to determine if all were
either non-negative or non-positive. In fact, S;; may always- be expressed
as a linear combination of L-functions evaluated at s = 1. However, In
the general situation, the L-functions are associated with complex charac-
ters. When non-real characters arise in the representation of S;;, we are
unable to say anything about the sign of S;;. We have attempted to find all
instances when §; can be expressed in terms of L-functions of real charac-
ters. It is natural to ask if these cases are the only instances when theorems
about the non-negativity or non-positivity of S;; are possible. Results of
P. D. T. A. Elliott (written communication) appear to indicate that this,
indeed, is the case. For example, he has proved the following result. Consider

the set of primes p in any residue class, e.g., p = 1 (mod 8), and the as-
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