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Proof. The desired congruences follow from Corollaries 7.5, 9.3, and

11.6.

Lerch [44, pp. 409, 410] has derived some class number formulas in

terms of the sums S24j, 1 — i — 12. Karpinski [42] and Rédei [57] have

also established class number relations of this sort.

12. Sums over several intervals of equal length

In this section, it will be convenient to use the following character

analogues of the Poisson summation formula [6, Theorem 2.3], [7,

equations (4.1), (4.2)]. Let /be continuous and of bounded variation on
[c, d\ Let x be a primitive character of modulus k. If % is even, then

2G(y) 00 Cd

(12.1) L x(n)f(n)——E x/(*) cos (Innxjk) dx \

c^n^d k n 1 Jc

if x is odd, then

2iG(y)œC
(12.2) E' X(n)f(n)= —- E X(n)\f(x) sin

c^-n^d K n 1 Jc

The primes ' on the summation signs on the left sides of (12.1) and (12.2)
indicate that if c or d is an integer, then the associated summands must be

halved.

Throughout the section, it is assumed that x is a primitive character of
modulus k. For each of the theorems below, deductions concerning the
signs of the pertinent character sums are trivial. Likewise, the corresponding
formulas for class numbers are immediate from (2.4). Thus, none of these

obvious corollaries shall be explicitly stated.

Theorem 12.1. Let x be even, and let m be any positive integer. Then

(12.3) S4m,l ^4m,4 4" ^4m,5 4" ^ + ^4m,9 4" ••• 4~ ^4m,4fn

2G(x) X(m)l,x4fc).71

Proof. Apply (12.1) several times with f{x)= 1 in each case and with
(c, d) (0, k/4m), (3/c/4m, 5/t/4m), {Ik/Am, 9/c/4m),..., ((4m-1) k/4m, k).
We then get
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G ix) Z X(n)
-)4m,l —

n n 1 n

G(X) £ Z(n) r

sin {Inn!Am),

^4m,4 + ^4m,5 ~ X! { sin (107ra/4m) — sin (6nnl4m)}
TT « 1 n

c G(Z) £ X(n)_(/l ^S4m,4m Z I ~ sm (2xcn(4m-l)/4m)}
71 „ 1 ^

Adding the above equations, we find that

(12-4) ^4m,l + ^4m,4 + ^4m5+ ••• + ^4m,4m

G(Z) v *(")2 v1 ^X Z - ly sin (2 (2; +1) jtn/4m).
71

n l n j=0
Now an elementary calculation shows that

2m— 1

(12.5) Yj —iy sin (2 (2j +1) nnJAm)
j= o

2m — 1)^, if n (2/j + l)m,
0 otherwise.

Putting (12.5) into (12.4), we conclude that

^4m,l + ^4m,4 + ^4m,5 + ••• + ^4m,4m

_2G« £
n n=o 2/1+1 7C

which completes the proof.
Observe that if m 1, Theorem 12.1 reduces to Theorem 3.7. If

m 2, 3, 4, and 6, then Theorem 12.1 reduces to results that can be derived

from Theorems 7.1, 9.1, 10.1, and 11.1, respectively.

Theorem 12.2. Let % be odd, and let m be a positive integer. If m is

odd, then

(12.6) Z ~ j) SmJ - x(m)}1,£);
i^j^m/2 \ 2 J 2ni

ifm is even, then
fm + 2 \ G (x)

(12-7) Z (—2 ;jSmJ=^-{m + 2_x(2)-x(m)}L(l,x).
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Proof. Apply (12.2) several times with f(x) 1 in each case and with
(c, d) (0, kjm), (k/m, Ikjm), (([m/2]-1) kjm, [m/2] fc/m). We then get

iG(x) £ X(n)
Sm,i S { cos (2;in/m) - 1}

71 n l ft

c iG(x)" z(") f / mSm2 X { cos (47cn/m) — cos (ZTin/m)},
71 n l n

Sm,tm/2] Z { C0S (2 [m/2] nnlm)
7t n x n

— cos (2 { [m/2] — 1 } Tinjm)}

Multiply the y'-th equation above by [m/2] + 1 — y, 1 y ^ [m/2], and
add the resulting equations to obtain

(12-8) £ {[m/2] + 1

iG(x) £ z(n) f r nn [my2] „ yZ i - [m/2] + £ cos (2
K n=1» j=l J

First, suppose that m is odd. Then (12.8) becomes

v fm+iy iG(Z) « K«)f V „ yE -m; JSmJ—— 2h E cos
l^j^m/2 \ 2 / 271 n=1 H j 0 J

iG(y)
{ - m +x (m)} L(l, £),

from which (12.6) follows.
Suppose next that m is even. Then (12.8) becomes

E (XJ2 _ j\SmJ

iG(x) " xOOf
1VI V „X <-m- + (-!)+ X cos (27tnj/m)

2n

from which (12.7) follows.

2ii n= x n ^ j=o
iG(x) {-m-l + x(2)-l + x (m)} L(l, £),
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We indicate some special cases of the previous theorem. If m 2, (12.7)
reduces to Theorem 3.2. If m 3, (12.6) yields Theorem 4.1. If m 5, 6,

8, 10, 12, and 24 in Theorem 12.2, we obtain results deducible from
Theorems 5.1, 6.1, 7.1, 8.1, 9.1 and 11.1, respectively.

Theorem 12.3. Let x he even and let m be an arbitrary positive integer.
Then

(12.9) S8ml — S8m4 — S8m> 5 + S8m,8 + ^8m,9 ^ + ^8m,8m

23/2 G(y)
x(m)L(l,%8*)-

71

Proof. Apply (12.1) several times with f(x)= 1 in each instance and

with (c, 6?) (0, k/Sm), (3k/8m, 5k/8m), (lk/8m, 9k/8m),...,
((8m — 1) &/8m, /:). Accordingly, we find that

^8m,l ^8m,4 ~~ ^»1,5 + ^8m,8 + S8m9 h +•**+ S8ni}8m

G (y) 00
y In) 8m_1

E E Xa-WXsU)sin(2nnjßm)
n n=1 n j 0

G l'y) 00 y in) 7 m_1

- E E ^OOXsO) E sin (8/* + v)/8m)
7C

W 1 n v=0 M==0

G(x) _ v X(n)vs ,,,/0.xOO E E Xa-WXs (y) sin (2xcnv/8).
71 n i n v ~ o

The inner sum above is merely — z'G (n, X4Xs) %4 00 Xs 00 23/2, by (2.2).
Hence, (12.9) immediately follows.

The special cases with m 1, 2 and 3 of Theorem 12.3 may be deduced

from Theorems 7.1, 10.1 and 11.1, respectively.
The proofs of the next four theorems are very similar to the preceding

proofs and so will not be given.

Theorem 12.4. Let % be odd, and let m be an arbitrary positive integer.
Then

^8m,2 "f" ^8m,3 ^8m,6 ^8m,7 4" ~f" " ^8m,8m-2 ^8m,8m-1

z23/2 G(y)
— x(m)L( l,x8/c).

7T

The special cases of Theorem 12.4 with m 1, 2 and 3 are consequences
of Theorems 7.1, 10.1 and 11.1, respectively.
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Theorem 12.5. Let x even, and let m be an arbitrary positive integer.

Then
m-1 3I/2 q( \
E ^3m,3j + 2 ~
j — 0

71

The instances of Theorem 12.5 with m 1, 2, 4 and 8 are consequences

of Theorems 4.1, 6.1, 9.1 and 11.1, respectively.

Theorem 12.6. Let x te odd, and let m be an arbitrary positive integer.

Then

S5m,2 ~~ ^5m,4 + ^5m,7 ^5m,9^ •••+ S5m^5m-2, ~ $5m,5m-l

z'51^2 G (x)- —- x(m) L(l, Xsk) •

71

The special cases of Theorem 12.6 for m — 1 and m 2 follow
immediately from Theorems 5.1 and 8.1, respectively.

Theorem 12.7. Let x be odd, and let m be an arbitrary positive integer.

Then

Sl2m,2 + ^12m,3 + ^12m,4 + ^12w,5 ~~ ^12m,8 ~ ^12m,9 ~~ ^12m,10 ^12m,ll

+ + + H •*'— ^12m, 12m —4 ^12m,12m-3 ~~ ^12m,12m-2 ^12m,12m-l

i(12Y'2G(x),
X(.tn)L(l,Xi2k)

71

The special instances of m 1 and m 2 of Theorem 12.7 yield
results that are easily deduced from Theorems 9.1 and 11.1, respectively.

The class number formula arising from Theorem 12.1 was first proved
by Holden [39]. A less general form of Theorem 12.2 was also established

by Holden [36] who in another paper [37] used his result to derive formulas
for sums of the Legendre-Jacobi symbol over various residue classes. The

special case m 1 of the class number formula deducible from Theorem 12.7

is due to Lerch [44, p. 407]. Otherwise, the results of this section appear to
be new.

13. Sums of quadratic residues and nonresidues

We mentioned in the Introduction the two equivalent formulations of
Dirichlet's theorem for primes that are congruent to 3 modulo 4. In this
section, we state and prove as many theorems as we can that are of the same
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