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- 21/2 x (2) L(}

Corollary 10.2. If d is odd and positive, then

^16,1 + ^16,8 > Q
* if X (2) — 1

and

^16,4 + ^1 6,5 ^ 0 if X (2) — 1

If d is odd and negative, then

^16,2 ~ $16,7 > 0, if X(2) 1,

S 16,3 ~ $16,6 > 0, if X(2) 1
»

$16,3 ~ $16,6 < o, if X (2) - 1,

$16,4 ~~ $16,5 < 0, if X (2) 1.
and

11. Sums over intervals of length kj24.

For intervals of length kj24, a complete statement of Theorem 11.1 for
both even and odd characters would require 24 formulas. Because of
limitations of space, we state just 2 of the formulas for S24,i (%), where
1 ^ i ^ 12 and x is even or odd.

fn\Theorem 11.1. Let x t>e even- Let Z3k(n) ~ X 07)>

X4 («) X («), Xs* 00 X4 (") Xs 00 X 00, and 00 (^|j Xs 00 X 00-

Then
G (y) f 1

S244 ^ I 2
*(2) [1 +x(3)] L(l, X4*)

+ i 31/2 x (4) [1 +x(2)] L(l, x3k) [jf (3) - 1] L( 1, z8t)

+ (3/2)1/2 L(l, x24jt) r •

L'Enseignement mathém., t. XXII, fasc. 3-4. 19



— 290 —

Let x be odd. Put Xsk00 Xs 00 X 00, 00 r 00 X 00
fn\ ^ '

and %24-k 00
3

^4 00 Xs 00 1 00- Then

G(y) f 1

^24,2 I - X (2) [2 - X (2)] [* (2) - 1] [1 -X (3)] L(hx)

+ 2~1/2 [1 +x(3)] L(l, Xsk) + 31/2

+ (3/2)1/2 L( 1, x24fc)

2Ï(2)-1 T(1, Xi2fc)

The next result gives the deductions about positive and negative character

sums that can be derived from a full statement of Theorem 11.1.

Corollary 11.2. If d > 0, we have

S24,i >°> if *(2) Z(3) 1, or if X(2) 0

and x (3) 1 ;

and

S 24,3-> 0
> if X(2) 0 and x(3) - 1 ;

"^24,5 ^ 0 if X(2) x(3) - l;
^24,10 < 0 if X(2)/ 1 and x(3) — 1, or if

X (2) - 1 and x(3) 0;

^24,12 < 0 if X(2)¥> 1 and %(3) 1

0, we have

S24,4 -> b » if X(2) 1, or if x( 0 and x(3)1 ;

"^24,6 > 0 if X(2) - 0 and x(3) - l;
^24,7 ^ b if X(2) * - 1 and x(3) - i ;

$24,9 ^ b if xO) 1, or if x(2) — 1 and ^(3) 0

and

We next state just two of the 24 different class number formulas

involving $24-, i that can be deduced.

Corollary 11.3. If d > 0, 2 Jf d, and 3 J( d, then

(11.1) 8S24>1(fo) - 1+ - \h(-4d) +1+ - fc(-3d)

+ {(-)-l}h(-8d) +h(-24d).
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If d< 0, 2 X d, and 3 X d, then

(11.2) SWl-J ={2(J)

+ jl + h (id) +10 -2012

Several congruences for class numbers may be deduced from Corollary

11.3. We remark that the consideration of other class number formulas
involving S24,i does not aPPear 1° yield further congruences.

Corollary 11.4. If p ess 1 (mod 4), then

(11.3) h(-24p) + 2h(-4p) + 2h( — 3p) 0 (mod 16),

if p 1 (mod 48),

(11.4) h( — 24p) + 2h( — 4p) + 2h — 3p) 8 (mod 16)

if p 25 (mod 48),

(11.5) h( — 24p) — 2h( — Sp) 0 (mod 16), if p 5 (mod 48),

(11.6) h(-24p) — 2h(-Sp) 8 (mod 16), if p ~ 29 (mod 48),

(11.7) h — 24p) — 2h — 4p) 0 (mod 16), if p 13 (mod 48),

(11.8) /*( —24p) — 2h( — 4p) 8 (mod 16), if p 37 (mod 48),

(11.9) h( — 24p) — 2h — Sp) + 2h( — 3p) 0 (mod 16)

if p EE 17 (mod 48),
and

(11.10) h — 24p) — 2h( — 8p) + 2h( — 3p) — 8 (mod 16),
if p 41 (mod 48).

Proof. Let p ïe= j (mod 48), 0 < j < 48. Then by (11.1), we have

(11.11) 8 D724] =0{l+0}h(-4p)+jl + 00-3p)
+ —1| ft — 8p) + h — 24p) (mod 16)

Congruences (11,3)-(l 1.10) now follow directly from (11.11) by considering
the eight separate cases modulo 48.
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Corollary 11.5. We have

(11.12) h( — 24p) 0 (mod 8), if p 1 (mod 24),

and

(11.13) h{ — 24p) 4 (mod 8), if p 5,13,17 (mod 24).

Proof. Congruence (11.12) is a consequence of (11.3), (11.4), Corollary

3.10, and Corollary 4.4. Secondly, for p 5 (mod 24), (11.13) follows
from (11.5), (11.6), and Corollary 7.5. Thirdly, for p 13 (mod 24),

(11.13) follows from (11.7), (11.8), and Corollary 3.10. Lastly, for

p~ 17 (mod 24), (11.13) follows from (11.9), (11.10), Corollary 4.4, and

Corollary 7.5.

Corollary 11.6. Ifp > 3 and p 3 (mod 4), then

h(-24p) - h(-12p) 0 (mod 16), if p 1 (mod 48),

h( — 24p) — h — 12p) 8 (mod 16), if p 31 (mod 48),

h( — 24p) - 3h( — 12p) + 2h(-8p) 0 (mod 16), if p 11 (mod 48)

h(-24p) - 3h( — 12p) + 2h{ — Sp) 8 (mod 16), if p 35(mod 48),
h — 24p) — 3h — 12p) + 4h —p) 0 (mod 16) if p 19 (mod 48)

h — 24p) — 3h —12p) + 4h —p) 8 (mod 16), if p 43 (mod 48),

h{ — 24p) — h —12p) + 2h — 8p) 8 (mod 16), if p 23 (mod 48),

and

h(-24p) - h (-12p) + 2h(-8p) 0 (mod 16), if p s 47 (mod 48).

Proof. Let p m= j (mod 48), 0 < / < 48. Then (11.2) gives

(11.14) 8{[J712]-[J724]}

{2@ " '} {® " '} {' "G)} H'p) +11 + (;)}"<-8p>

+ - 2J h(-12 p)+ h -24p) (mod 16).

All of the desired congruences are immediate consequences of (11.14).

Corollary 11.7. We have

h( — 24p) 0 (mod 8), if p 11, 19, 23 (mod 24),
and

h — 24p) 4 (mod 8), if p 1 (mod 24).
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Proof. The desired congruences follow from Corollaries 7.5, 9.3, and

11.6.

Lerch [44, pp. 409, 410] has derived some class number formulas in

terms of the sums S24j, 1 — i — 12. Karpinski [42] and Rédei [57] have

also established class number relations of this sort.

12. Sums over several intervals of equal length

In this section, it will be convenient to use the following character

analogues of the Poisson summation formula [6, Theorem 2.3], [7,

equations (4.1), (4.2)]. Let /be continuous and of bounded variation on
[c, d\ Let x be a primitive character of modulus k. If % is even, then

2G(y) 00 Cd

(12.1) L x(n)f(n)——E x/(*) cos (Innxjk) dx \

c^n^d k n 1 Jc

if x is odd, then

2iG(y)œC
(12.2) E' X(n)f(n)= —- E X(n)\f(x) sin

c^-n^d K n 1 Jc

The primes ' on the summation signs on the left sides of (12.1) and (12.2)
indicate that if c or d is an integer, then the associated summands must be

halved.

Throughout the section, it is assumed that x is a primitive character of
modulus k. For each of the theorems below, deductions concerning the
signs of the pertinent character sums are trivial. Likewise, the corresponding
formulas for class numbers are immediate from (2.4). Thus, none of these

obvious corollaries shall be explicitly stated.

Theorem 12.1. Let x be even, and let m be any positive integer. Then

(12.3) S4m,l ^4m,4 4" ^4m,5 4" ^ + ^4m,9 4" ••• 4~ ^4m,4fn

2G(x) X(m)l,x4fc).71

Proof. Apply (12.1) several times with f{x)= 1 in each case and with
(c, d) (0, k/4m), (3/c/4m, 5/t/4m), {Ik/Am, 9/c/4m),..., ((4m-1) k/4m, k).
We then get
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