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I1 est évident que la formule
Am(a+p) = Z iz0 (420) . (Ap=i B)
ne fait que traduire I'identité

Al+B) = (Aa) . (4P) .

Remarque. 1,, commute 3 Uinvolution * : R(FG) - R(F () définie au
§ 1. Enfin, A, commute aux homomorphismes de restriction f* : R (FG')
— R(FG) pour f:G — G’, ainsi qu’aux homomorphismes d’extensions
de scalaires.

§ 3. DEFINITION DES OPERATIONS D’ADAMS.

Soient ¢4, ..., ty des indéterminées. Pour tout entier n telquel = n < N,
on considére le polyndme symétrique ¢," + #," + ... + 4" et son expression
unique O (sy, ..., 5,) comme polyndme en les fonctions symétriques ¢lé-
mentaires s, ..., 5, de degré < n des indéterminées ¢4, ..., y. Les fonctions
S1y ey Sps ... sONt définies par I'identité

XV s, XY (=D X Y L+ (= DVsy = [[LE (X 1)

avec les conventions s, = 0 pour k > N et s, = 1. On observe, en faisant

Ine1 = tyrgg = . =ty = 0 (o N' £ N), que
Si(tl, seny tN" O, ) 0) = Si(tlﬁ ceey tN’)
pouri < N'.
Exemples.

Ql (Sl) = Sl: QZ (51532) = 512 - 252 ]
Q5 (515 52, 83) = 81> — 3545, + 353,

4 2 2
Q4(31,82,S3,S4) = 5" — 45" 5, + 25, + 4s; 55 — 4sy,

ot 'on a écrit Q; au lieu de QY pour simplifier I’écriture.

En fait, le polynéme OF (sy, ..., 5,) en tant que polynéme en sy, ..., S,
est indépendant de N pourvu que N = n. Cela résulte d’une identité dont
nous aurons encore besoin plus bas, exprimée par le lemme qui suit.

Soient ty, ..., ty €t ti, ..., ty» deux suites d’intéderminées et 7, ..., y
leur juxtaposition, ie. N = N 4+ N" et t; = t; pour 1 £i < N/, In 4
= t; pour 1 £ j £ N". Soient sy, ..., Sy- €t 51, ..., Sy» les fonctions symé-
triques élémentaires des ¢y, ..., fy- €t 11, ..., Iy~ Tespectivement. Enfin, soient
Sy, ..., Sy les fonctions symétriques élémentaires des 74, ..., Zy.
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LEMME 1. Avec les notations ci-dessus, on a

n ’ ”
Sp = Zi=0 Si e Sp—i-
De plus,

N ’ ’ ’ " ” ”
Qn (519 tees Sn) = QIIY (Sla veey Sn) + Q]Z (Sla seey Sn) .

La premiere formule résulte immédiatement des identités de définition
des s; et s; en calculant leur produit et en le comparant & I'identité de
définition des s,,.

La deuxiéme identité est une trivialité aprés avoir remplacé les poly-
némes Q, par leur expression en fonction des t.

Il résulte tout d’abord du lemme que QO (sq,...,s,) est indépendant
de N pour N = n. En effet, si I’on envoie 71, ..., ty~ sur 0, on obtient s; = s,
pour i = 0,1,..,nsin £ N, comme on I’a observé ci-dessus, et SJ =
pour j > 0. Donc, Q) (s, ...,s,) = O (s4, ..., s,) pourvu que N = N’
= A,

On écrira Q, pour O avecn £ N.

On a aussi

Q=51 Quet + oo + (=150 + ...
+ (=" 510y +(=D'ns, =0

en remplagant successivement X par ¢4, ..., f, dans I'identité de définition
des s; et en sommant membre & membre. Ceci montre par récurrence sur z
que Q, (s4, ..., 5,) est un polyndme a coefficients entiers.

On voit aussi que Q, (54, 0, ..., 0) = s,".

On peut alors définir I’opération d’Adams ¥, n € Z sur un FG-module
V comme suit.

DEFINITION. P V' = (dim V) . 1,
ou 1 est I’élément unité de R (FG);

vV =0, V,AV,..,4V)pourn >0,
le membre de droite étant regardé comme un élément de R (FG);
Y_, V=¥, V* oun>0.

Pour démontrer que ces formules déterminent une opération ¥, : R (FG)
— R (FG) nous aurons besoin du lemme suivant.

LEMME 2. Soient R un anneau commutatif avec élément unité, et {i;},
(A3 et {1},1 = 0,1, ... trois suites d’éléments de R telles que Ay = Ag
= )LO = l, et
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Ay = Zi=m0 Ai+ Am—i
pour tout m = 0. Alors pour tout n = 1, ona

Qn ()"15 o /’{n) = Qn (/1;5 wewy /11;) + Qn ()“Ia ceey A;;) '

Ceci résulte immédiatement de I'indépendance algébrique des fonctions
symétriques élémentaires. Il existe un homomorphisme

h: Z[Sl, vees SNy S ey SN”] — R 5

tel que & (s) = /; et h(s;)) = 1;. Cet homomorphisme envoie s, sur 2,
en vertu du lemme 1 et de ’hypothése

' "l [ ”
j*m = Zi=0 ;{i . ;“m—i .

Il s’ensuit que % envoie Q, (s4, ..., s,) sur Q, (44, ..., A,) et 'assertion résulte
de lidentité 0, = O, + O, du lemme 1.

LeMME 3. Pour tout n entier, ['opération ¥, sur les FG-modules induit
un endomorphisme de groupe additif

Y,:R(FG) > R(FQG).
En outre, pour n > 0, on a

Yo() = Q, (L, ..., 1,0
pour tout « € R (FG).
Si0— V' =V — V"> 0est une suite exacte de FG-modules, le lemme
du paragraphe précédent dit que

}'m V = Zi:O (A’lV,) . ()“m—iVN) .

D’aprés le lemme 2 ci-dessus appliqué avec

J

I = A Ve di =2V, A= A V",
on a donc
v, V="V +¥V,
pour n > O.
Il en résulte immédiatement que ¥, : R (FG) — R (FG) est bien définie
et additive pour tout entier .

La formule
¥, (O() = @, (/{1063 =% Lg )"na)

pour o € R (FG) quelconque est conséquence de 1’additivité de ¥, et de
celle en o de Q, (1,4, ..., 1,0).
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