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9. Sums over intervals of length 12.

Theorem 8.1. Let % be even,

U («) I(«)•Then

Xm(n) (0 X(")> and X4k

and

G(x)
s12.1 =^{[l+z(3)]L(l,z4fc)

Z7T

+ - 31/2 x (2) [1 +x(2)] ^(1, X3k)} '

^12,2 —Z {"[!+% (2)] ^(15 X4/c)
2n

+ ^ 31/2 E2+z(2)-z(4)]

G(y)
$12,3 ~~z { 2L(1, ^4/c) 21/2 [1 + x (2)] £(1? X3&)}>

Z7C

Gfy)
Si2'4 {~2L(1' *4fc) + 31/2 L(1' *3Ù}'

Si2,5 ^{[1+Z(3)] L(
in

-S1'2 [2 + x (2) + x(4)] L(l, >

Si2,6 =^{-[l+z(3)]L(l,z«)

+ ^ 31/2 x(2) [1 +x (2)] L(l, x3fc)} •

Let x be odd and let XnM X* («) x(«)- Then

(9-1) S12il =^|l[4-x(2){l-z(2)}{l-z(3)}]L(l,x)

— 31/2 L(l, Xi2t)l
>
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S12>2 ^ ^ Z (2) - l] [1 -*(2)] [1 — (3)] L(1, /")

+ 31/2 L(l,z1M)j,

G(y)
512.3 -^r- [1-Z(2)][1+Z(2)-x(3)]L(1,X),

G(y)
512.4 =^~{z(2)[x(2)-l] + 1 -jf(3)}L(l,jD,

G(y) fl
512.5 ~rh[* (3) " 1] [2 + z (2) - (4)] L( 1, y)

+ 31/2 L(l, y12jt)j*

and

G(/) fl
512.6 "2^ I2 [! -Z(2)] [4 + x(2) { 1 — y (3)} ] L(l, j)

-my).
Corollary 9.2. If J > 0, we have

^12,1 > 0 if X (2) 1, or if X(3) # - 1;

^12,1 — 0 if X(2)^l and X(3) -1;
^12,2 ^ 0

5 if X(2) ^ - 1 and /(3) - 1 ;

^12,2 0 if rHIIIco"XIIR

^12,2 < 0 if %(2) - 1 and y(3) - 1 ;

^12,3 > 0 if z(2) - l;
^12,5 < 0 if LO II 1 t—i^

^12,6 > 0 if X (2) 1 and Z(3) - 1;

$12,6 0 if Z(2) # 1 and y(3) - 1 ;

and

^12,6 ^ 0 if 1(2) ^ 1 and y(3) ^ - 1

If d < 0, we have

^12,2 > 0, if Z(2) 1, or if y(3) 1 ;
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S12,3 >0, if X(2)Z(3) - 1, or if x(2) 0

and x(3)# 1 ;

S12.3 0, if x(2) 1, or if 0 and z(3) 1,

or if x (2) - 1 and x (3) 0

*12,3 < 0 if x (2) - 1 and X (3) 1 ;

and

and

S12A > 0, if x(2)- 1, or if x(2) # - 1 and

z(3)^i;
s12(4 0, if x (2) ^ - 1 and x (3) 1 ;

512.5 >0, if x(2) - 1, or if X(3) 1 ;

512.6 <0, if X(2) 1 •

Corollary 9.3. We have

h(— 12p) 0 (mod 8), if (mod 24),

h(— 12p)4 (mod 8), if' s 7,11,19 (mod 24)

Proof. From (9.1) and (2.4),

(9.2) S12>1(Xp) ^{4+[1_ 1- h(-p)--h(-Up).

If p =j(mod 24), 1 —j—23, then

(9.3) S12il(Xp)^[j712] (mod 2).

From (9.2) and (9.3) we deduce that

4D/12] s M + 1- ^ — p) — h —12p) (mod 8)

The desired congruences now readily follow.
The special case, p= 19 (mod 24), of Corollary 9.3 was important in

Stark's work [59]. Brown [13], [14] has also given proofs of this special case.

Some of the class number formulas arising from Theorem 9.1 were
actually stated by Gauss [26] with the proofs given by Dedekind [21].
Several class number formulas involving the sums S12,b 1 — i — 6, were
discovered by Lerch [44, pp. 407, 408, 414], Holden [36], [38], [39], Kar-
pinski [42], and Rédei [57].
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