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9. SUMS OVER INTERVALS OF LENGTH k/12.

THEOREM 8.1. Let y be even, ys(n)= (g) y (n), and 4 (n)
= X4 (n) x (n). Then

Siz2,1 = (X) {[1+7% (3] L, ja0)
1
+3 312 71+ 7] LA, 730} >
(x)
Si22 = {=[1+7 (3] LA, 7ap)
1
+ 5 3121247 (=7 (®H] L, 30} »
. (X) 1/2
512,3 = { 2L(1, jap) — 3 [1 + (2)] L(1, X3k)}
B (x) 12
Si24 = { —2L(1, 74 + 32 L(1, 730}
Siz,5 = (X) {[1 + 7% (3] L1, ja)
1
P47 +T@] LA, T}
and
G
Si2,6 = (X) { = [1+2B3]T LA, Far)

1
5 3231+ 7 (D] L1, 730} -

n
Let y be odd and let y,,,(n) = <§> x4 (n) x(n). Then
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S G (%) _
12,2 = o 1 —-1[[1-%2)] [1-%(3)] L1, 7))
+ 312 L(1, Zle)} 3
(x)
Sia3=—[1=-1I[1+7(D-2B3)] LA, D),
G (1)
Si2,4 ————{ (2)[9((2)—1] + 1 —7(3)}L(1 X

Siz2,5 = 2(%){ X3 —-11[2+72 (-7 (D] L1, )

+ 31/2 L(la ile)} ’
and

G
Sise = G0 5 =1 @I 442 (1 =13} LA, D

- 312 L(1, Zle)} :
CoRrROLLARY 9.2. If d > 0, we have

Si2010>0, if x(2)=1,o0rif y(3)# —1;
S0 =0, if x(2)#1 and y(3) = —

S122 >0, if ¥(2)# —1 and y(3) = —1;
S12,2 =0, if (2 =x03) = —
S122 <0, if ¥(2) = —1and y(3)# —1;

512’3 > O, lf X(z) = —
512,5 <0 5 if X(3) =
Si26>0, if x(2)=1and x(3) = —

S1206 =0, if x(2)#1 and x(3) = —
and
Siz26 <0, if x(2)#1 and x(3) # — 1.

If d < 0, we have
S22 >0, if x(2 =1, orif y(3) =
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Siz3 >0, if ¥ =23 =—1,0r if x(2) =0
and x(3) #1;
Si23 =0, if x(2) =1, or if ¥(2) =0 and x(3) =1,

or if y(2) = —1 and x(3) = 0;
Si23 <0, if x(2)= -1 and y(3) = 1;
Siza>0, if x(2 = —1,o0rif y(2) # — 1 and
2(3) #1;
Si4=0, if x(2) # —1 and y(3) =1;
Si,s >0, if (2 = —1,o0rif x(3) =1;

and
812,6 < O, if X(Z) = 1.

COROLLARY 9.3. We have

h(—12p) =0 (mod 8), if p =23 (mod 24),
and
h(—12p) =4 (mod 8), if p =7,11,19 (mod 24).

Proof. From (9.1) and (2.4),

1 2 3 1
(9.2) Si51(xp) = 2 {4+ [1 — <p>:| [1 — <E>}} h(—p) — 7 h(—12p) .

If p = j (mod 24), 1 =j = 23, then

(9.3) Si12,1 (xp) = [j/12] (mod 2).
From (9.2) and (9.3) we deduce that

Aj12] = {4+ [1_<;>] [1— (;)]} h(=p) — h(—12p) (mod 8).

The desired congruences now readily follow.
The special case, p = 19 (mod 24), of Corollary 9.3 was important in
Stark’s work [59]. Brown [13], [14] has also given proofs of this special case.
Some of the class number formulas arising from Theorem 9.1 were
actually stated by Gauss [26] with the proofs given by Dedekind [21].
Several class number formulas involving the sums Sy, ;, 1 =i =6, were

discovered by Lerch [44, pp. 407, 408, 414], Holden [36], [38], [39], Kar-
pinski [42], and Rédei [57].
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