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class number formula for Sq; (%_,) is due to Lerch [44, p. 403], and those
for Ss, (x4) and Sg; (x,) are also due to Lerch [44, p. 414]. In the terminology
of class numbers, Holden [36] has established (6.4)-(6.6) in the associated
special cases. Some results related to (6.1)-(6.3) were also found by
Holden [39].

7. SUMS OVER INTERVALS OF LENGTH k/8.

THEOREM 7.1. Let y be even, let y4. = xax, and let ys. = Yaxsx. Then

(7.1) Sg; = (X) { (2) L(1, jq1) + 2112 L(1, XSk)}
Sg, = (X) { [2 —X (2)] L(1, j4) — 2112 L(1, 7g) }
(X) 1/2
Sg3 = { = [24+7 @] LA, 74 + 272 L1, Zaw) }
and
Sgq = (X) { (2) L(1, Zap) — 21172 L(1, 78k)}

Let ¥ be odd and let yg, = ysx. Then

| G 1
(7.2) Sg; = —2—%){[2 + 3 1®{1 -7 }] L(1, ) — 22 L(I,ZSR)} ,

3 1
Sgz = 27(;:){ (2) |:1 —5%(2) +5 X(4)] L(1,7) +2'2 L(1>X8k)}

G 3 1 ‘
Sg3 = 2(X){ (2)[—1 +§2(2)—§X(4)jl L(1,%) +2'? L(LZSk)} ;
and
1
S84 = ? {[2 ——2(4)] [1 _)—6(2)] L(la Z) — 212 L(l, )—CSk)} .
i 2

We need only prove (7.1) and (7.2), for the remaining formulae can
then be deduced from (7.1), (7.2), Theorem 3.2, Theorem 3.7, and elemen-
tary considerations. Since the proofs are similar to those in previous sections,
we omit them. For the same reasons, proofs in sections 8-11 will not be
given.
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COROLLARY 7.2. If d > 0, we have

s e T R B

S81 >0, if X(z) =1 or O,

Sgs <0, if y(2) = —1 or 0,

| Sga | < Sg1, If x(2) = 15

| Sg1 | < = Sg4 if x(2) = — L
Sg1 > Sg3, if 2(2) = 13

Sgy > — Sg3, if x(2) = — 15
Sg, < — Sg3, If x(2) = 1;

Sgz > Sg4, 1f X(Q) = —1;

Ss1 = Sg3, If x(2) = — 13

and
Sg2 = Sss, If 2(2) = 1.

If d < 0, we have
SSZ > 0, lf X(z) == 1 or 0;

Sgz > 0;

Sgqa <0, if x(2) = 1;

| Sgz | < Sg3, if 2(2) = — 15

Sg1 > — Sg3;

Sg1 = — Sgp = Sgg, If 1(2) = — 1;
and

Sgs = Sg3 = — Sgy, if 3(2) = 1.

Theorem 7.1 yields 8 formulae for class numbers. We shall list just
those that we need to derive congruences.

CoROLLARY 7.3. Let d be odd. If d > 0, then
1/d 1
: (7.3) Sg1 (Xa) =z<§>h(—4d) +Zh(_8d)
':; and
1/d 1
(7.4) Sga (o) =z<*2“>h(—4d)~zh(—8d).

If d < 0, then
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1.5 Ser (-d) = i—{s _ @} h(d) — 3 h(8d)
o

(1.6) Sus (- = {1 _ (g)} h(@) + 3 h ()

and : o

(7.7 Spu (10 = {1 - @} hd) — 3 h(84).

COROLLARY 7.4. We have
h(—8p) = h(—4p) (mod 8), if p = 1,5 (mod 16),
h(—=8p) =4 + h(—4p) (mod 8), if p = 9,13 (mod 16),
h(—8p) =0 (mod 8), if p =15 (mod 16),
h(—8p) =4 (mod 8), if p =7 (mod 16),

h(—8p) = 2h(—p) (mod 8), if p = 11 (mod 16),
and
h(—8p) = — 2h(—p) (mod 8), if p =3 (mod 16).

Proof. If p = j(mod 16), 1 =j = 15, then
(7.8) Ss1 = [Jj/8] (mod 2).

Let p = 1(mod 4). Then the first two congruences follow from (7.3),
(7.8), and Corollary 3.10. Let p = 3 (mod 4). Then the latter four congru-
ences follow from (7.5), (7.8), and the fact that 4 (—p) 1s odd.

COROLLARY 7.5. We have

h(—8p) =0 (mod 4), if p = 1,7 (mod 8)
and
h(—8p) =2 (mod 4), if p = 3,5 (mod 8).

Proof. Let p = 1 (mod 4), and suppose that p = j(mod 16), 1 =j = 15.
Then

(7.9) Sg1 — Sga = [j/8] — [J/2] + [3j/8] (mod 2).

The congruences for p = 1 (mod 4) follow from (7.3), (7.4), and (7.9).
Let p = 3 (mod 4), and suppose that p = j(mod 8), 1 =j = 7. Then

(7.10) Ss3 — Sgq = — [j/2] — [j/4] (mod 2).
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The congruences for p = 3 (mod 4) follow from (7.6), (7.7), and (7.10).

CorOLLARY 7.6. We have

h(—40p) =0 (mod 8), if p =1,9, 31,39 (mod 40)
and ‘
h(—40p) = 4 (mod 8), if p = 11,19, 21,29 (mod 40).

Proof. The congruences follow from (5.13) and Corollary 7.5.

The character sums of this section were studied in great detail from an
elementary viewpoint by Osborn [50] and Glaisher [27], [28], [29]. Some of
the class number formulas in this section can be traced back to Gauss [26]
with the proofs given by Dedekind [21]. The formulas

1
(7.11) "2‘ h(—=8d) = Sg1 (xa) — Ss4 ()
and

1
(7.12) 5 h(8d) = Sgy(x-a) + Ss3(x-a)

are due to Dirichlet [23]. Proofs of (7.11) and (7.12) were also given by
Lerch [44, pp. 407, 409]. Pepin [51], Hurwitz [40], Glaisher [29], Holden [39],
Karpinski [42], and Rédei [57] have also derived class number formulas
in terms of Sg;, | =i =4.

For p = 1 (mod 8), Corollary 7.5 was first established by Lerch [45,
p. 225]. Brown [14] has proven Corollary 7.5 and all the congruences of
Corollary 7.4 involving a single class number. He has also pointed out
(personal communication) that the remaining congruences of Corollary 7.4
may be deduced from his work [14] and a paper of Hasse [35]. The latter
author [32] has also proved Corollary 7.5 for p = 7 (mod 8). As indicated
in the Introduction, Corollaries 7.4 and 7.5 have also been proven by
Pizer [52]. The special case of Corollary 7.5 when p = 19 (mod 24) was
brought into prominence by Stark [59]. See also [13].

8. SUMS OVER INTERVALS OF LENGTH k/10.

As with intervals of length k/5, we are able to establish theorems about
positive sums for odd y only.

THEOREM 8.1. Let y be odd and put x5, (n) = (g> x (n) . Then

/
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