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the series on the right side of (5.14) may be written in terms of L-functions

of quartic characters. Thus, we are unable to derive any positivity results
for character sums.

6. SUMS OVER INTERVALS OF LENGTH k/6.

THEOREM 6.1. Let y be even and let x5, (n) = <g> x(n). Then

31/2
(6.1) Se1 = o (X) {1+ 1} LA, %30 »
1/2
(6-2) Sez = — ‘3—”&(@ 92(2) L(l, ZSk) >
27
and
312 G
(6.3) So =~ P 11,70
Let ¥ be odd. Then
(6.4) Se1 = (X){1+X(2)+X(3)—x(6)}L(1 0
G
(6.5) 562—’2—(@{2"—(2)—2,{(3)"‘7(6)}];(1 X
and
(x)
(6.6) Sez = i {1 =27+ 23} LL, D -

We shall not give a proof of Theorem 6.1, because all of the formulas
may be deduced from Theorems 3.2 and 4.1 and elementary considerations.

COROLLARY 6.2. If d > 0, we have
S¢; > 0, if d is even, or if x(2) =
Se1 =0, if x(2) = —
Se, >0, if x(2) = —
S¢, = 0, if d is even;
Se, <0, if y(2) =
S¢3 < 0, for all d;
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Se¢; = — Sg3, if d 1is even;

S61 = _2862 = _2563’ lf X(2) = 1;
and

Sez = — Se3, if 2(2) = — 1.

If d < 0, we have
Se; >0, if d is even and x(3) = 1 or 0, or if x(2) = 1,

or if y(2) = —x(3) = -1
S¢; = 0, if d is even and y(3) = — 1, or if x(3) =0
and y(2) = —1;
Se1 <0, if x(2) = x(3) = — 1
Se¢, >0, if d is even and x(3) = — 1, or if x(3) # 1;
S, =0, if x(3) = 1;
Se3 >0, if d is even and 3 (3) # — 1, or if x(2) = — 1;
Se3 =0, if d is even and 3y (3) = — 1, or if ¥ (2) = x(3) = 1;

and

We remark here that the results Sg;; = 0, i = 1, 2, 3, in Corollary 6.2
may be proven in a completely elementary manner. As an illustration, we
prove that S¢; = 0 if y is even and y (2) = —1. (The following argument
was supplied to the author by Thomas Cusick, Ronald J. Evans, and the
author’s students in a graduate course in number theory.) Since y is even
and y (2) = —1, we have

xmy= Y xm+ Y xm

k/3<n<k)2 k/3<n<k]2 k/3<n<k/2
n even n odd
=x@ Y azm+ Y x(k=2n)
k/6<n<k/4 k/4<n<k/3
= - Y xm.
k/6<n<k/3

As S,; = 0, it follows from the above that S¢; = 0.

In the case that y (n) is the Legendre symbol, the equalities of Corol-
lary 6.2 were derived by Johnson and Mitchell [41].

Of course, using (2.4), we may convert (6.1)-(6.6) into formulas involving
class numbers. Since no new, additional congruences for class numbers
may be derived from these formulas, we shall not write them down. The
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class number formula for Sq; (%_,) is due to Lerch [44, p. 403], and those
for Ss, (x4) and Sg; (x,) are also due to Lerch [44, p. 414]. In the terminology
of class numbers, Holden [36] has established (6.4)-(6.6) in the associated
special cases. Some results related to (6.1)-(6.3) were also found by
Holden [39].

7. SUMS OVER INTERVALS OF LENGTH k/8.

THEOREM 7.1. Let y be even, let y4. = xax, and let ys. = Yaxsx. Then

(7.1) Sg; = (X) { (2) L(1, jq1) + 2112 L(1, XSk)}
Sg, = (X) { [2 —X (2)] L(1, j4) — 2112 L(1, 7g) }
(X) 1/2
Sg3 = { = [24+7 @] LA, 74 + 272 L1, Zaw) }
and
Sgq = (X) { (2) L(1, Zap) — 21172 L(1, 78k)}

Let ¥ be odd and let yg, = ysx. Then

| G 1
(7.2) Sg; = —2—%){[2 + 3 1®{1 -7 }] L(1, ) — 22 L(I,ZSR)} ,

3 1
Sgz = 27(;:){ (2) |:1 —5%(2) +5 X(4)] L(1,7) +2'2 L(1>X8k)}

G 3 1 ‘
Sg3 = 2(X){ (2)[—1 +§2(2)—§X(4)jl L(1,%) +2'? L(LZSk)} ;
and
1
S84 = ? {[2 ——2(4)] [1 _)—6(2)] L(la Z) — 212 L(l, )—CSk)} .
i 2

We need only prove (7.1) and (7.2), for the remaining formulae can
then be deduced from (7.1), (7.2), Theorem 3.2, Theorem 3.7, and elemen-
tary considerations. Since the proofs are similar to those in previous sections,
we omit them. For the same reasons, proofs in sections 8-11 will not be
given.




	6. Sums over intervals of length k/6.

