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the series on the right side of (5.14) may be written in terms of L-functions
of quartic characters. Thus, we are unable to derive any positivity results
for character sums.

6. Sums over intervals of length kj6.

Theorem 6.1. Let x be even and let x?>k (ri) x(n) • Then

31/2 G(y)
(6.1) S61 - 0 — {1 +x(2)}L(1,X3J,In

31/2 G (y)
(6.2) S62 —^ z (2) L(1, x3k),

2n

and
G (y)

(6.3) S63 — 1.(1, %3k)
2n

Let x be odd. Then

(6.4) S61 =^${1+Z(2) +X(3)
2711

(6.5) S62 ^ { 2 - x (2) - 2z (3) + z (6) } 1(1, z)
2ni

and

(6.6) S63 =-^{1 - 2z(2) + z(3)}L(l,z)
27n

We shall not give a proof of Theorem 6.1, because all of the formulas

may be deduced from Theorems 3.2 and 4.1 and elementary considerations.

Corollary 6.2. If d>0,we have

S61 > 0, if diseven, or if z(2) 1;

561 0, if z(2) - l;
S62>0,if z(2) - l;

562 0, if diseven;

562 < 0, if z(2) l;
563 < 0, for all d;
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Sei - S63, if d is even;

561-2S62-2S63,if y (2)
and

562- S63, if x(2)- 1.

If d < 0, we have

S61 > 0, if diseven and y (3) 1 or or if X (-)

or if y (2) - X (3) ~ 1;

S61 0, if diseven and y (3) — 1, or if y (3) =0
and y (2) ~ 1;

561 <0, if x(2)X(3) - 1;

562 >0, if diseven and %(3) — 1, or if xO) ¥= 1;

562 0, if x(3) 1;

563 > 0, if diseven and x(3) ¥> — 1, or if x(2) — 1;

S63 0, if diseven and %(3) - 1, or if %(2) x(3) 1;

and

S63 < 0, if x(2) 1 and %(3) # 1.

We remark here that the results S6i 0, 1, 2, 3, in Corollary 6.2

may be proven in a completely elementary manner. As an illustration, we

prove that S6x0 if y is even and y (2) —1. (The following argument
was supplied to the author by Thomas Cusick, Ronald J. Evans, and the
author's students in a graduate course in number theory.) Since y is even
and x(2) -1, we have

£ 7-(n) £ y (n) + £ y (n)
k/3<n<kJ2 k/3<«<fe/2 kl3<n<k/2

n even « odd

x(2) £ y(n) + £ x(k-2n)
kf6 <n<k/4- &/4<n</c/3

- £ xO).
k/6<n<k/3

As S2i 0, it follows from the above that S61 =0.
In the case that x (n) is the Legendre symbol, the equalities of Corollary

6.2 were derived by Johnson and Mitchell [41].
Of course, using (2.4), we may convert (6.1)-(6.6) into formulas involving

class numbers. Since no new, additional congruences for class numbers

may be derived from these formulas, we shall not write them down. The
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class number formula for S6l (x~d) is due to Lerch [44, p. 403], and those

for S62 (Xd) and ^63 (id) are also due to Lerch [44, p. 414]. In the terminology
of class numbers, Holden [36] has established (6.4)-(6.6) in the associated

special cases. Some results related to (6.1)-(6.3) were also found by
Holden [39].

7. Sums over intervals of length k/S.

Theorem 7.1. Let x be even, let x4/c xa> and let Xsk XtXsX• Then

G(x)
(7.1) S81

$82

$83

and

S84 —

2n

Gil)
2n

G(x)
2n

G(X)
271

{x(2)m,ûk) + 21'2

{[2 - x (2)] L(1, nk) L(l, )}

{ -[2+z(2)]L(l,z«) + 21'2L(l,xSk)},

{x(2)L(l,ûk) -2112 L(l,xSk)}.

Let x be odd and let Xsk XaX- Then

j^2 + 1 (4) { 1 - (2)}
G(x) f

(7.2) S81 =_Wj
27TÏ

G(z)f.
2ni

G(X)

L
{-

2) + 1X (4)

S83 =^f^(2)l -1 +1ZC2)-~x(4)

L(l,x)-21/2 L(l, z8t)|

T(l, z) + 21/2 L(l, f8fc)|,

L(1,z) + 21/2 L(l,xsk)\,

and

s84 ^{[^2-lz(4)J[l-z(2)]L(l,z) -21/2L(1, Z8/c)r

We need only prove (7.1) and (7.2), for the remaining formulae can
then be deduced from (7.1), (7.2), Theorem 3.2, Theorem 3.7, and elementary

considerations. Since the proofs are similar to those in previous sections,

we omit them. For the same reasons, proofs in sections 8-11 will not be

given.
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