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ences for 4 (—3p) are then consequences of (4.6). The number of summands
in S3; (X4p) 18 8m + [4j/3]. If p = 7 (mod 12), the number of non-zero
summands 1s 4m; if p = 11 (mod 12), the number of non-zero summands
i1s 4m + 2. In cither case, the number of non-zero summands is even, and
so it follows from (4.6) that 4 (—12p) = 0 (mod 4) when p = 3 (mod 4).
Lastly, the number of summands in Ssq (xg,) is 16m + [8j/3]. If j = 1,
there are 8m non-zero summands; if j = 5, there are 8 + 6 non-zero
summands. In either case, S3; (ys,) is even, and we deduce from (4.6)
that 2 (—24p) = 0 (mod 4).

COROLLARY 4.5. Let p and ¢ be distinct primes with p,g¢ > 3 and
p = q (mod 4). Then A2 (—3pg) = 0 (mod 4).

Proof. Let p = 6m + jand ¢ = 6m’ + j’, where j,j" = 1 or 5 and m
and m’ are non-negative integers. The number of summands in S3; (3,,)
is [pq/3], and we observe that [pg/3] = [jj’/3] (mod 2). Of these summands,
[¢/3] = 2m’" + [j'/3] are multiples of p, and [p/3] = 2m + [j/3] are
multiples of g. Thus,

By examining all of the possibilities for the pair j, j, we find that S35 (3,,)
is always even. The result now follows from (4.6).

It is clear that the same type of argument yields congruences from
h (—12pq) and h (—24pq).

The class number formulae (4.6) and (4.7) appear to be due originally
to Lerch [44, pp. 402, 408]. Holden [36] has also given a proof of (4.7).

5. SuMS OVER INTERVALS OF LENGTH k/5.

n

THEOREM 5.1. Let ¥ be odd and let x5, (n) = <—5—> ¥y (). Then

1
(5.1) Ss1 = A G(X){(S"Z(S)) L(1,%) — 5'/2 L(1, %se) } |
and

1 _
(5.2) Ss; = 2—7” 51/ G () L(1, 7s1) -
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Proof. Let
1, 0<x<27n/5,

fG) =1 12, x =21/5,
0, 2n/5 < x <=,

be an odd function of period 2z. Calculating the Fourier series of f, we find
that, for all x,

(5.3) fx) =

* sin (nx) 2 2 sin (5nx)

)

ne 1  5n n=1 n
sin (nx 2 ® sin (nx
( ) _ —cos (2n/5) Y. (nx)
T n=1 n
n=2 5) n=1,4 (mod 5)

Msa

2

T

2 o0

+ — cos (n/5) Z
T n=

5 m

2

T 4,

sin (nx) 2 2 sin (Snx)
e

II

1 n=

+ —l-cos (77:/5 { — ﬁ)} Sin (nx)
T - 5

s o 5 o+ (1)} 229

n

+ —5—17; { cos(2n/5) — cos(n/5)} i Sin (Snx)
1 2 sin (52 x)

=i % 5_51/2(> sm(nx) 5
2n .= 3 n 2nn=1 n ’

since cos (n/5) = (5'/2+1)/4 and cos (21/5) = (5'/2—1)/4.
Now, multiply both sides of (2.1) by {5 — 51/2(7—51>} /(2rn) and sum

on n, 1 =n < co. Next, replace n by 5z in (2.1) and then multiply both
sides of (2.1) by —1/(2nn) and sum on n, 1 =n < 0. Adding the resulting
two equations and using (5.3), we get

k-1
21851 =10, 1 (DS @njlk)
=

G(p (& ) 2 7 (5
- 2; {n;{s 51/<5>}X(’1) ;X( n)}

_ __(L) {5L(1,7) = 52 L1, 75) — 7() L(L, D) },

from which (5.1) follows immediately.
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The proof of (5.2) is similar. In this case, we let

j 0, 0<x <2n/5 4n/5<x<m,
fx) =4 1/2, x = 2rn/5,4n/5,
1, 2n/5<x <4n/s,

be an odd function with period 2z. The Fourier series of fis given by

_ SHR 20 /) sin (nx)
- 3 (57

(—oo<x<o).

We then proceed in the same fashion as above.
COROLLARY 5.2. If y is real and odd, then S5, > 0.

COROLLARY 5.3. If d < 0 and 5 } d, then

1 d 1
(5.4) Ss1 (x-a) = 4 {5 - <’5‘>} h(d) — 4 h(5d)
and
1
(5.5) Ss2 (X-a) = 5 h(5d) .

Formula (5.5) is due to Lerch [44, p. 407]. By combining (5.4) and (5.5),
we can derive a formula for % (d) which is also due to Lerch [44, p. 404].

CoRrROLLARY 5.4. If p # 5, we have the following consequences:
(5.6) h(—5p) =0 (mod 8), if p =19 (mod 20),
(5.7 h(-5p) =4 (mod 8), if p =11 (mod 20),
(5.8) h(—5p) =2h(—p) (mod 8), if p =7 (mod 20), |
(59) h(—=5p) =4+ 2h(—p) (mod 8), if p =3 (mod 20),

(5.10) h(—20p) =0 (mod 8), if p =1,9 (mod 20) or if
p = 13,37 (mod 40),

(5.11) h(—20p) =4 (mod 8), if p = 17,33 (mod 40),
(5.12) h(—40p) =4 (mod 8), if p = 2,3 (mod 5),
and

(5.13) h(—40p) = 2h(—8p) (mod 8), if p = 1,4 (mod 5).
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Proof. If p=j(mod10), 1 =j=09, then Ss; (y,) = [j/5] (mod 2).
With the use of (5.4) and the above, and recalling that 4 (—p) is odd, we
deduce (5.6)-(5.9).

If p=j(mod5), 1 =j=4, the number of non-zero summands in
Ss1 (X4p) is even if j = 1 or 4 and is odd if j = 2 or 3. Using also Corol-
lary 3.10, we readily deduce (5.10) and (5.11) from (5.4).

If p=j(mod5), 1 =j=4, the number of non-zero summands in
Ss1 (xs,) is even if j = 1 or 4 and is odd if j = 2 or 3. Using also the fact
that 4 (—8p) is even, we may deduce (5.12) and (5.13) from (5.4).

COROLLARY 5.5. Let p and ¢ be primes with p,qg # 5 and with
p = q + 2 (mod 4). Then

h(—=5pg) =0 (mod 8), if p =1,9 (mod 20) and g = 11,19 (mod 20),
h(—5pq) =4 (mod 8), if p = 13,17 (mod 20) and ¢ = 3,7 (mod 20),
and
h(—=5pq) = 2h(—pq), if p = 1,9 (mod 20) and g = 3,7 (mod 20),

or if p = 13,17 (mod 20) and ¢ = 11,19 (mod 20).

Of course, the same congruences for 4 (— 5pg) hold if the congruences for p
and g are interchanged.

Proof. Let p = j(mod 10) and ¢ = j' (mod 10), where 1 =j,j =09.
Observe that Ss; (x,,) contains [pg/5] terms of which [g/5] are multiples
of p and [p/5] are multiples of ¢g. From (5.4), we then find that

4Lii'151 = Lils] = Li'l5D

5
- {s - () G)} h(—pa) — h(—5pg) (mod 8).
P/ \4

/

Since h (—pg) is even, each of the desired congruences readily follows.

In the case that y is even, we can state a theorem analogous to
Theorem 5.1. However, the L-functions in the representations of S5; and
S5, involve quartic characters. For example,

0 nt+1 =
(5.14) sy =20 {sin Qus) y ST E®
T n=1 n
n=1,4 (mod 5)
+ sin (m/5) Y (=1 X@}
n=1 n
n=2,3 (mod 5)

2
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the series on the right side of (5.14) may be written in terms of L-functions

of quartic characters. Thus, we are unable to derive any positivity results
for character sums.

6. SUMS OVER INTERVALS OF LENGTH k/6.

THEOREM 6.1. Let y be even and let x5, (n) = <g> x(n). Then

31/2
(6.1) Se1 = o (X) {1+ 1} LA, %30 »
1/2
(6-2) Sez = — ‘3—”&(@ 92(2) L(l, ZSk) >
27
and
312 G
(6.3) So =~ P 11,70
Let ¥ be odd. Then
(6.4) Se1 = (X){1+X(2)+X(3)—x(6)}L(1 0
G
(6.5) 562—’2—(@{2"—(2)—2,{(3)"‘7(6)}];(1 X
and
(x)
(6.6) Sez = i {1 =27+ 23} LL, D -

We shall not give a proof of Theorem 6.1, because all of the formulas
may be deduced from Theorems 3.2 and 4.1 and elementary considerations.

COROLLARY 6.2. If d > 0, we have
S¢; > 0, if d is even, or if x(2) =
Se1 =0, if x(2) = —
Se, >0, if x(2) = —
S¢, = 0, if d is even;
Se, <0, if y(2) =
S¢3 < 0, for all d;
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