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4. Sums over intervals of length kj3.

Theorem 4.1. If % is even and X3k(n) — (-) Z W, then

3"'CW
(4.1) S31 =——— L(l)Z-3,);

2n

if % is odd, then

(4-2) s31 =^{3-*(3)}L(l,*).
Proof. First, suppose that % is even. Let

1 0 < x < 27C/3

/(x) 1/2 x 27t/3

0 27l/3 < x < 71

be an even function with period 2tt. Then, by an elementary calculation,

2 31/2 2Ü, fn\cos(nx)
(4.3) /(*) -+ Zu (-co<x<oo).

3 71 n 1

Now, multiply both sides of (2.1) by 31/2 ^-j/(7in) and sum on n, 1 < oo.

With the use of (4.3), we obtain

2S3i Z XÜ) {f(2wlk) - 2/3}
j=1

31/2 /n\ 1 31/2

— G(/) Z z(») L " — G L(T '
7i n 1 \3/ n n

which completes the proof of (4.1).
For variety, we shall prove (4.2) by contour integration. Of course, the

method of Fourier series used above works equally well here.

Let
7lF(z,x)

f(z): 7 -7777 »

z sin n (z +1/3)
where

F(z,x) =2iLx(J) sin
0< j<k/3

+ g-3*.Z £
k/3<j<2k/3
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Observe that
nF(0,x)

(4.4) R{f>0) -^~^ 2niS3i
sm (71/3)

and that

(4.5) R(f,n-l/3)*=
377 — 1

-—3—G(3t7-1?X)= - -!_*(3n-l)G(/),
377 — 1 377 — 1

by (2.1), where — oo < n < oo.

We integrate/over the same rectangle CN as in the proof of Theorem 3.2.

The estimate (3.8) is obtained by the same type of argument as in that
proof. Applying the residue theorem, employing (4.4) and (4.5), and

letting N tend to oo, we deduce that

£ X0n-1)
0 27t! S31— 3G(x) Z ^

n-x3n— 1

2,iSîI-3C«(ïî^+l.-i 3/1 — 1 „ti 3n +1

2,^3.-3^)1 £
ln i 77 n 1 3 77 J

from which (4.2) readily follows.

Corollary 4.2. For any real primitive character % with k > 3, > 0.

Corollary 4.3. If d > 0 and 3 X d, then

(4-6) S31(/J lh(-3d);
if d < 0, then

(4-7) S31(Z_d) 11 3 - 0 jh(d).

Corollary 4.4. Let p> 3. If p 1 (mod 12), then A (-3
0 (mod 4), while if p5 (mod 12), then (~3p) 2 (mod 4). If

p 3 (mod 4), then h(— 12/?) 0 (mod 4). For any odd prime p,
h (—24 p)= 0 (mod 4).

Proof Let p6m + j, where y 1 or 5 and m is a non-negative integer.
The number of summands in S31 (xP)is thus 2m + 3]. The two congru-
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ences for h — 3p) are then consequences of (4.6). The number of summands

in S3l (x4p) is 8m + [4//3]. If p 7 (mod 12), the number of non-zero
summands is 4m; if p 11 (mod 12), the number of non-zero summands
is 4m + 2. In either case, the number of non-zero summands is even, and

so it follows from (4.6) that h (— 12p) 0 (mod 4) when p 3 (mod 4).

Lastly, the number of summands in S31 (x8p) is 16m + [8//3]. If j 1,

there are 8m non-zero summands; if j 5, there are 8m + 6 non-zero
summands. In either case, S31 (x8p) is even, and we deduce from (4.6)
that h — 24p) 0 (mod 4).

Corollary 4.5. Let p and q be distinct primes with p, q > 3 and

p q (mod 4). Then h — 3pq) 0 (mod 4).

Proof\ Let p 6m + j and q 6m' + j\ where j\j' 1 or 5 and m
and m' are non-negative integers. The number of summands in S31 (xpq)

is [pq/3], and we observe that [pq/3] [jf/3] (mod 2). Of these summands,
[q/3] 2m' + [j73] are multiples of p, and [p/3] 2m + [j/3] are

multiples of q. Thus,

s31 (zM) - [j'/3] - [j/3] (mod 2).

By examining all of the possibilities for the pair j, j\ we find that S31 (xpq)

is always even. The result now follows from (4.6).

It is clear that the same type of argument yields congruences from
h (— 12pq) and h (-24pq).

The class number formulae (4.6) and (4.7) appear to be due originally
to Lerch [44, pp. 402, 408]. Holden [36] has also given a proof of (4.7).

5. Sums over intervals of length k/5.

Theorem 5.1. Let % be odd and let Xsuip) x(n) • Then

(5.1) Ssl— G(x){(S-x(5))L(l,x) - }
47TI

and

(5.2) S52 =2_5i/2G(/)L(1,^)-
2711
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