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4. SUMS OVER INTERVALS OF LENGTH k/3.

THEOREM 4.1. If y is even and y;, (n) = <§> ¥ (n), then

312G (y)
(4.1) S31 = ——— L(1, i31) ;
2
if y is odd, then
G ()
(4.2) S3; = —{3 — 13 }L, ).

Proof. First, suppose that y is even. Let

(1, 0< x < 2n/3,
f(x)=! 1/2, x = 2r/3,
0, 2nf3 <x <7

be an even function with period 2n. Then, by an elementary calculation,

31/z <n> cos (nx)

(—o0<x< ).

2
(4.3) ) =- + — Z

n

\

Now, multiply both sides of (2.1) by 31/2 <3) (nn)and sumonn, 1 =n < .

With the use of (4.3), we obtain
k—1
283 = Z x () {f@njlk) —2/3}

31/2 1 31/2
—G(x) Z x(n)< >— TG(X)L(]-a)ZSk)a

which completes the proof of (4.1).
For variety, we shall prove (4.2) by contour integration. Of course, the
method of Fourier series used above works equally well here.
Let
nF (Za X)

z sin n(z+1/3)’

f(2) =

where
F(z,y) =2 >  x(j) sin (nz +n/3 — 6mjz/k)

0<j<k/3

4 e—31tiz Z X(]) e67rijz/k.
k/3<j<2k/3
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Observe that

_mFO,0) .
(44) R(f, O) = m = 27”531
and that
(4.5) R(f,n—1/3) = 3(=1) F(n—1/3, %)
3n—1

3
= —— GBn-1,9=-— 1(3n—=1)G(x),

3n—1 3n—1
by (2.1), where —o0 < n < 0.

We integrate f over the same rectangle Cy as in the proof of Theorem 3.2.
The estimate (3.8) is obtained by the same type of argument as in that
proof. Applying the residue theorem, employing (4.4) and (4.5), and
letting N tend to oo, we deduce that

2 71@Bn—-1)
0 = 2ni S5; — 3G ———
Tl D31 (0 n=§;oo 30— 1
. o ZBn=1) & 1Gn+1)
= 27i S3; — 3G (y b T
. o A & 7(Gn)
=2751531“3G(X){ Z - Z ’
n=1 R n=1 3n

from which (4.2) readily follows.
COROLLARY 4.2. For any real primitive character y with & > 3, S5, > 0.

CorOLLARY 4.3. If d > 0 and 3 ¥ d, then

(4.6) S50 () = 3 h (=34);
if d < 0, then
1 d
4.7) Sur (1) = 5{3 - @ } hd).

COROLLARY 4.4. Let p>3. If p=1(mod12), then #(—3p)
= 0(mod 4), while if p= 5(mod12), then h(—3p)= 2(mod4). If
p=3(mod4), then A(—12p)=0(mod4). For any odd prime D,
h (—24p) = 0 (mod 4).

Proof. Letp = 6m + j, wherej = 1 or 5 and m is a non-negative integer.
The number of summands in S5, (xp) is thus 2m + [}j/3]. The two congru-




— 274 —

ences for 4 (—3p) are then consequences of (4.6). The number of summands
in S3; (X4p) 18 8m + [4j/3]. If p = 7 (mod 12), the number of non-zero
summands 1s 4m; if p = 11 (mod 12), the number of non-zero summands
i1s 4m + 2. In cither case, the number of non-zero summands is even, and
so it follows from (4.6) that 4 (—12p) = 0 (mod 4) when p = 3 (mod 4).
Lastly, the number of summands in Ssq (xg,) is 16m + [8j/3]. If j = 1,
there are 8m non-zero summands; if j = 5, there are 8 + 6 non-zero
summands. In either case, S3; (ys,) is even, and we deduce from (4.6)
that 2 (—24p) = 0 (mod 4).

COROLLARY 4.5. Let p and ¢ be distinct primes with p,g¢ > 3 and
p = q (mod 4). Then A2 (—3pg) = 0 (mod 4).

Proof. Let p = 6m + jand ¢ = 6m’ + j’, where j,j" = 1 or 5 and m
and m’ are non-negative integers. The number of summands in S3; (3,,)
is [pq/3], and we observe that [pg/3] = [jj’/3] (mod 2). Of these summands,
[¢/3] = 2m’" + [j'/3] are multiples of p, and [p/3] = 2m + [j/3] are
multiples of g. Thus,

By examining all of the possibilities for the pair j, j, we find that S35 (3,,)
is always even. The result now follows from (4.6).

It is clear that the same type of argument yields congruences from
h (—12pq) and h (—24pq).

The class number formulae (4.6) and (4.7) appear to be due originally
to Lerch [44, pp. 402, 408]. Holden [36] has also given a proof of (4.7).

5. SuMS OVER INTERVALS OF LENGTH k/5.

n

THEOREM 5.1. Let ¥ be odd and let x5, (n) = <—5—> ¥y (). Then

1
(5.1) Ss1 = A G(X){(S"Z(S)) L(1,%) — 5'/2 L(1, %se) } |
and

1 _
(5.2) Ss; = 2—7” 51/ G () L(1, 7s1) -




	4. SUMS OVER INTERVALS OF LENGTH k/3.

