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3. DIRICHLET’S FUNDAMENTAL THEOREMS

THEOREM 3.1. If p is a prime with p = 3 (mod 4), then (1.3) holds.
Proof. Let M denote the left side of (1.3). We shall first show that

r . ,° ~1 7k
(3.1) M = —p'? Y (—)cot (nk/p).

2 k=1 \P
Formula (3.1) is quite ancient, and several references to it can be found in
Dickson’s history [22, Chapter 6]. For references to more recent proofs
and generalizations, see [7, section 5]. For completeness, we shall reproduce
the following argument of Whiteman [60]. Since

p—1

. 1
(3.2) Y. j sin Qmjk/p) = — 5P cot (nk/p),

ji=1
we have, upon the use of (3.2) and then (2.2),

p—1 ] 2p 1 p-1
Y (—C) cot (mklp) = — — Y j Z ( >sm (2njk/p)

k=1 / ] =1 =
p—1 = -
- > j<i>p“",
and (3.1) immediately follows.
Thus, to show that M is positive, it suffices to show that the right side
of (3.1) is positive. As

p—1

M= Y j—-2 >Yr =pp-1/2=1 (mod?2),

j=1 1l=r=p-1
since p = 3 (mod 4), it suffices to show that the right side of (3.1) is non-

negative.

Using the partial fraction decomposition
N

n cot (nx) = lim Y 1/(m+x),

N—>w m=—N

/

where x is non-integral, we have

p-1 /g 1 Pl g\ N 1
. - kip) = —li - ——
(3.3) Y <p> cot (nk/p) im ) ( ) >

k=1 T N->ewk=1 \P) meeon M + K[p
(N+Dp /4
~Piim Y <1>—_
T N—>w j=—Np p/J

2p
= L(1> Xp) s
i

e —_—e
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where in the penultimate step we put j = mp + k and lastly use the fact

that (ij is an odd function of j. Thus, from (3.3), it suffices to show that
p/
L (1, y,) is non-negative.

Now, for s > 1,
-1

(3.4) L(s, 7,) = H{l - G)q} ,

q b

where the product is over all primes ¢. Each factor on the right side of (3.4)
is positive for s > 1. Thus, L (s, x,) > 0 for s > 1. Since the infinite series
in (2.3) converges uniformly for ¢ = s < oo, where 0 < ¢ < 1, L (s, x,) 18
continuous at s = 1. Hence, L (1, x,) =0, and the proof of Theorem 3.1
1s complete.

Apparently, Chung [19] was the first person to give a proof of Theorem 3.1
that was independent of the consideration of binary quadratic forms
and class numbers. Subsequent proofs of (1.1) and (1.3) were given by
Chowla [18], Whiteman [60], Moser [47] and Carlitz [16]. Moser also
discusses (1.1) in [48]. There is also a nice proof of (1.3) in Davenport’s
book [20, p. 10]. All of these proofs use Fourier series. Now, in fact, the
proofs of Chung, Chowla, Whiteman, Moser, and Carlitz are essentially
no different from the proofs given by Dirichlet [24] in 1840 and later by
Berger [5] in 1884 and Lerch [44] in 1905. The only difference is that the
five aforementioned authors avoid the language of class numbers.

Perhaps our proof above is a modicum more elementary in that it does
not use Fourier series but instead employs the partial fraction decomposition
of cot (nx), which can be derived by quite elementary means [49]. Of course,
our method above is applicable to any odd real primitive character.

Next, we show that very short proofs of (1.1) and (1.3) may be given
by the use of contour integration.

THEOREM 3.2. If y is odd, then

G
Sz1 = l—;t@ {}?(2) - 2} L(lai)'
Proof. Let
fl) = TE@D
z cos (mz)
where
Fad = % 20) cos (uz—dnjz/k)
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Observe that f has a simple pole at z = 0 with
(3.5) R(f,0) =nF(0,y) = 7S,y .

Also, f has simple poles at z = (2n—1)/2, —o0 < n < o0, with

2(—1)
(3.6) R(f,2n-1)2) = 2( ) F((2n—=1)/2,7)
n—1
i
= ZITIGQ"“LX)
i
=57 ¥@n-1)G6Q,
by (2.1).

Let Cy denote the positively oriented rectangle with center at the origin,
horizontal sides of length 2%, and vertical sides of length N'/2, where N is
a positive integer. Applying the residue theorem with the aid of (3.5) and
(3.6), we get

1 Ny @2n-1)
3.7) Iy = — dz =nS G s C,
(3.7 Iy 2m.SCNf(Z') zZ =78 +i (X)F_ZNH o

From the definition of F (z, y), we see that there exists a positive constant A4,
independent of N, such that for all z = x + iy on the horizontal sides
of Cy, | F(z, y)/cos (nz) | = A4 exp (—2n | y |[k). Also, F (z, y)/cos (nz) has
period 2k. Thus, there is a positive constant B, independent of N, such that
for all z on the vertical sides of Cy, I F (z, y)/cos (nz) l = B. Hence we find
that as N tends to oo,

(3.8) Iy = 0(e ™) L O(N~12) = 0(1).

Letting N tend to oo, we deduce from (3.7) and (3.8) that

iG() < 2@n—-1)  2iG(y)

Sy = — —=
2 T n;_:w 2n—1 T

1 _ _
{1 -3 X(Z)} L(1, %),

which completes the proof.
A direct proof of Theorem 3.1, or, more properly, an obvious general-
ization thereof, may also be achieved by contour integration. Integrate

1 .
Z X(]) eZm_)z/p

Z(ezniz'“l) 0<j<p

over a rectangle Cy like that of the previous proof, but with the horizontal
sides of length 2N + 1. |
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A short proof of Theorem 3.2 using the character Poisson formula can
be found in [7, section 4].

From the classical theory of L-functions, it can be shown that if y is a
real primitive character, then L (1, y) > 0 [2, pp. 27-28]. We shall repeatedly
use this fact without comment in the sequel. Hence, the following is im-
mediate from Theorem 3.2.

CoORrROLLARY 3.3. If y is real and odd, then S,; > 0.
The following corollary is an immediate consequence of Theorem 3.2
and (2.4) and is one of Dirichlet’s famous class number formulas [23].

CoORrROLLARY 3.4. If d < 0, then

8, = {2 _ (i)} h(d).

COROLLARY 3.5. If p == 3 (mod 4), then S5, (x,) is odd; if, furthermore,
p = 3 (mod 8), then 3 | S,y (3,).

COROLLARY 3.6. If p = 3 (mod 4), then /4 (—p) is odd.
We now will give two proofs of (1.2) below. The first, in essence, is due
to Dirichlet [24].

THEOREM 3.7. Let y be even. Then if y,, (1) = x4 (n) x, (1),

G (x) _
Sy = T L(1, Zar) -

First proof. Let
1, 0<x<nm/2,
f&x) =41 0, x=n/2,
-1, #72<x<m,

be an even function with period 2z. Calculating the Fourier series of f, we
find that

4 2 (—=1) —
(3.9) f = -2y (—1)" cos 2n—1)x
Tp=1

2n—1

(—o0<x<o).

Next, in (2.1), replace » by 2n — 1. Then multiply both sides by
(=1)"/2n—1) and sumonn, 1 =n < w0, to get
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(-1
2n—1

(3:10) ~G()L(L Zu) = ¥, 1() T S-cos {2m (2n— 1)k}

- - -;f T x(Df@nilk,

by (3.9). Since y is even, S;; .= —S,, = —S,3 = Sy4. Using the defi-
nition of f, we see then that (3.10) reduces to

G(x) L(1, f4) = mS4y,

which completes the proof.

Second proof. Let

nF (z, x)
f(z2) = ————,
z ¢cos (nz)
where
F(z,p) = Y  x(j) cos (4njz[k)
O<j<k/4
— Y x(j) cos (2nz —4nj z[k) .
kj4<j<k/2
Note that
(3.11) R(f,0) = nF(0,x) = n(S41—S42) = 2084

and that, for —0 < n < o0,

2(—1)"
(3.12) R(f,(2n—1))2) = 2;_; F((2n—1)/2,%)
(=D*
= 5—7 G(@n=-1)2, %)
(=D" _
=5 —X@n-DGQ),
by (2.1).

We integrate f over the same rectangle Cy as in the proof of Theorem 3.2.
By an argument similar to that in that proof, we find that

(3.13) Iy = ~—1—§ f(2)dz = o(1),
CN

2ni |

as N tends to oo. Hence, applying the residue theorem to Iy, using (3.11)
and (3.12), letting N tend to oo, and employing (3.13), we find that
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© (—1yF(2n—1
0= Sy +G0) 3 ;nX(_r; )

n=—o

b

from whence Theorem 3.7 follows.
A proof of Theorem 3.7 using the character Poisson formula may be
found in [7, section 4].

CorOLLARY 3.8. If y is real and even, then S;; > 0.

Additional class number formulas of Dirichlet are immediate conse-
quences of Theorem 3.7.

COROLLARY 3.9. If 4 } d, then

1
(3.14) Sa1 (Xa) =§h(—4d), d>0,
Sa1(X-20) = 2R (d), d <0,
(3.15) Si1(xsg) = h(—=8d), d>0,
and
(3.16) Sa1(X-s0) = h(8d), d<0.

CoROLLARY 3.10. If p=1(mod8), then /4 (—4p) = 0(mod4); if
p = 5(mod 8), then 4 (—4p) = 2 (mod 4). If p is odd, then & (—8p) is
even.

Proof. The number of summands in S4q (x,) is even if p = 1 (mod 8)
and odd if p = 5(mod 8). Thus, the congruences for 4 (—4p) readily
follow from (3.14). For all odd primes p, S4; (xs,) has 2p terms and, thus,
p — 1 non-zero summands. Hence, Sy (xg,) is even, and (3.15) and (3.16)
show that # (—8p) is even.

The congruences for 4 (—4p) in Corollary 3.10 appear to have been first
stated by Lerch [45, p. 224], although they were, no doubt, known to
Dirichlet. For other proofs of the congruences in Corollary 3.10, for
equivalent formulations, and for some refinements, see the papers of

Brown [10], [11], [14], Hasse [32], [33], [34], and Barrucand and
Cohn [4].
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