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3. Dirichlet's fundamental theorems

Theorem 3.1. If p is a prime with p 3 (mod 4), then (1.3) holds.

Proof. Let M denote the left side of (1.3). We shall first show that

(3.1) M \ p1'2 f(-)cot2 k=i \pj
Formula (3.1) is quite ancient, and several references to it can be found in
Dickson's history [22, Chapter 6]. For references to more recent proofs
and generalizations, see [7, section 5]. For completeness, we shall reproduce
the following argument of Whiteman [60]. Since

P-i 1

(3.2) Z jsin (2t# lp)- - p cot (nk/p),
j 1 1

we have, upon the use of (3.2) and then (2.2),

P~1 fk\ 2 P~1 P~1 fk\
Z - cot (nk/p) Z Z - sin (2?

ä 1 \Pj Pj

-1j(z)P1/2
P}and (3.1) immediately follows.

Thus, to show that M is positive, it suffices to show that the right side

of (3.1) is positive. As

MZ j-2 =p(j>- !)/2 1 (mod 2) >

j= 1 l^r^p-1
since p ^ 3 (mod 4), it suffices to show that the right side of (3.1) is non-
negative.

Using the partial fraction decomposition
N

7i cot (nx) lim l/(m+x),
N— > oo m= — N

where x is non-integral, we have
P~1 fk\ 1 P~1 /k\ N 1

(3.3) E_ (-) ». (#) - " Ei (-) J_ b

— -I (T7-)|
^ N— >oo jf — Np \P/ J

2 p~ L(l,xp),
71
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where in the penultimate step we put j — mp + k and lastly use the fact

that (ç-j is an odd function of j. Thus, from (3.3), it suffices to show that

L (1, Xp) is non-negative.

Now, for s > 1,

(3-4) ll{l -( V ] »

where the product is over all primes q. Each factor on the right side of (3.4)

is positive for s > 1. Thus, L (s, xp) > 0 for s > 1. Since the infinite series

in (2.3) converges uniformly for s ^ s < go, where 0 < e < 1, L (s, xp) is

continuous at s 1. Hence, L (1, xp) — 0, and the proof of Theorem 3.1

is complete.
Apparently, Chung [19] was the first person to give a proof of Theorem 3.1

that was independent of the consideration of binary quadratic forms
and class numbers. Subsequent proofs of (1.1) and (1.3) were given by
Chowla [18], Whiteman [60], Moser [47] and Carlitz [16]. Moser also

discusses (1.1) in [48]. There is also a nice proof of (1.3) in Davenport's
book [20, p. 10]. All of these proofs use Fourier series. Now, in fact, the

proofs of Chung, Chowla, Whiteman, Moser, and Carlitz are essentially

no different from the proofs given by Dirichlet [24] in 1840 and later by
Berger [5] in 1884 and Lerch [44] in 1905. The only difference is that the
five aforementioned authors avoid the language of class numbers.

Perhaps our proof above is a modicum more elementary in that it does

not use Fourier series but instead employs the partial fraction decomposition
of cot (nx)f which can be derived by quite elementary means [49]. Of course,
our method above is applicable to any odd real primitive character.

Next, we show that very short proofs of (1.1) and (1.3) may be given
by the use of contour integration.

Theorem 3.2. If x is odd, then

iG(x) rS21 —^ { X (2) — 2 }
71

Proof. Fet
nFm z cos (71 z)

where

F (z, x)X x(j) cos (kz -4nj z/k)
0< j<kJ2
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Observe that / has a simple pole at z 0 with

(3.5) R(f,0)tiF(0,x) rc

Also,/has simple poles at z {2n~ l)/2, — oo < n < oo, with

(3.6) R (f,(2n- 1)12)F((2« - 1)/2,Z)

G(2n-l,x)2n-l
i

X (2n -1) G (x) ;

2n — 1

by (2.1).
Let CN denote the positively oriented rectangle with center at the origin,

horizontal sides of length 2A, and vertical sides of length A1/2, where A is

a positive integer. Applying the residue theorem with the aid of (3.5) and

(3.6), we get
1 f £ Z(2«-1)

(3.7) IN=—\ f(z)dznS21+iG(x)Z — — •
271 1 JCN «=-JV+I 2/1-1

From the definition of F (z, /), we see that there exists a positive constant A,
independent of A, such that for all z % + iy on the horizontal sides

of CN, I F(z, x)/cos (^z) I — ^ exp { — 2n | y \/k). Also, F(z, x)/cos (^z) has

period 2k. Thus, there is a positive constant B, independent of A, such that
for all z on the vertical sides of CN, | F(z, x)lcos faz) | — B. Hence we find
that as A tends to oo,

(3.8) IN 0(e"'tJvl/2/ic) + 0(1V1/2) o(1).

Letting A tend to oo, we deduce from (3.7) and (3.8) that

iG(x)«X(2»-1)2/G(x) f 1 js2i Z —r~ l1 ~ Ö z(2)( L(1'^)'
71 „ 2/1-1 71 (_ 2 J

which completes the proof.
A direct proof of Theorem 3.1, or, more properly, an obvious generalization

thereof, may also be achieved by contour integration. Integrate

L_n IZ (ß 1) o < j< p

over a rectangle CN like that of the previous proof, but with the horizontal
sides of length 2A + 1.
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A short proof of Theorem 3.2 using the character Poisson formula can
be found in [7, section 4].

From the classical theory of L-functions, it can be shown that if / is a

real primitive character, then L (1, x) > 0 [2, pp. 27-28]. We shall repeatedly
use this fact without comment in the sequel. Hence, the following is

immediate from Theorem 3.2.

Corollary 3.3. If % is real and odd, then S21 > 0-

The following corollary is an immediate consequence of Theorem 3.2

and (2.4) and is one of Dirichlet's famous class number formulas [23].

Corollary 3.4. If d < 0, then

Corollary 3.5. If p 3 (mod 4), then S2% (xP) *s odd; if, furthermore,
p 3 (mod 8), then 3 | S21 (%p).

Corollary 3.6. If p 3 (mod 4), then h (—p) is odd.
We now will give two proofs of (1.2) below. The first, in essence, is due

to Dirichlet [24],

Theorem 3.7. Let x be even. Then if x*k (n) (n) xk (»),

C _GWw, - ^Ö41 Mb Z4-k) '
K

First proof. Let
1 0 < x < 7i/2

f(pc)=< 0 x tz/2

— 1 %\2 < X < 71

be an even function with period 27r. Calculating the Fourier series off we
find that

/-> m r/ ^
4 ^ — l)n cos (2n — l)x(3.9) /(*)=__ ^ i v( co <x < oo).n„i 2n— 1

Next, in (2.1), replace n by 2n - 1. Then multiply both sides by
(- l)"/(2n -1) and sum on n,1 ^ n<oo,to get



— 270 —

k — I co/ i y
(3.10) -G(x)L(l ,Xu)=Z XO') Z o

cos { l)/fe}
j i « i 2ft — 1

7Zk~1

- T Z x0')/(2
4 J =1

by (3.9). Since % is even, S41 — S42 Ä ""^43 ^44- Using the
definition of/, we see then that (3.10) reduces to

G(x)L(l,x*k) nS4i

which completes the proof.

Second proof\ Let

7iF(z,x)
f(z)

z cos (71z) '

where

F(z,x) Z XÜ) c°s (4njzjk)
0< j < /c/4

- Z xO') cos (27TZ —

fc/4<j</c/2

Note that

(3.11) Ä(/,0) 7iL(0,Z) tü(S41-S42) 2TI541

and that, for — 00 < n < 00,

(3.12) R (/, (2« -1)/2) F ((2n -1)/2, X)

(-1)"
2w_1

G ((2n -l)/2, x)

(-1)"
7 X (2n -1) (x)

2n — 1

by (2.1).
We integrate/over the same rectangle CN as in the proof of Theorem 3.2.

By an argument similar to that in that proof, we find that

(3.13) IN=f\ f(o(l),
2-m J cN

as N tends to 00. Hence, applying the residue theorem to IN, using (3.11)
and (3.12), letting N tend to 00, and employing (3.13), we find that
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£ — l)"z(2n — 1)
0 271S41 + G (x) E 9 _ '

« — 00 ^

from whence Theorem 3.7 follows.

A proof of Theorem 3.7 using the character Poisson formula may be

found in [7, section 4].

Corollary 3.8. If % is real and even, then S41 > 0.

Additional class number formulas of Dirichlet are immediate

consequences of Theorem 3.7.

Corollary 3.9. If 4 X d, then

(3.14) S4i(Xd) =^h(-4d), d > 0,

^4i (X-4d) 2h (d), d < 0

(3.15) S41(xsd) h — 8J), d > 0,

and

(3.16) S4I(X-M) Ä(8d), d < 0.

Corollary 3.10. If p 1 (mod 8), then h —4p) 0 (mod 4); if
p 5 (mod 8), then h (~4p) 2 (mod 4). If p is odd, then h (~8p) is

even.

Proof. The number of summands in S41 (xP) is even if P 1 (mod 8)

and odd if p 5 (mod 8). Thus, the congruences for h (~4p) readily
follow from (3.14). For all odd primes /?, ^41 (Xsp) has 2p terms and, thus,

p — 1 non-zero summands. Hence, S41 (x8p) is even, and (3.15) and (3.16)
show that h( — 8p) is even.

The congruences for h — 4p) in Corollary 3.10 appear to have been first
stated by Lerch [45, p. 224], although they were, no doubt, known to
Dirichlet. For other proofs of the congruences in Corollary 3.10, for
equivalent formulations, and for some refinements, see the papers of
Brown [10], [11], [14], Hasse [32], [33], [34], and Barrucand and
Cohn [4].
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