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prove (1.1). The fourth method is similar to the third and uses character
analogues of the Poisson summation formula which have been established
in various versions by Berger [5], Lerch [44], Mordell [46], Guinand [30],
the author [6], and Schoenfeld and the author [9]. The application of the
character Poisson formula to problems of this type appears to be new.

However, Yamamoto [62] has recently used essentially the same technique
to derive some of the results of this paper. The method is also briefly
described by the author in [7].

In most cases, we have chosen a direct, analytic method of proof,
whereas a possibly less direct but more elementary argument with the use

of Dirichlet's main theorems is possible. In fact, throughout the literature,
the latter attack is generally the tact that is chosen. In particular, see the
aforementioned papers of Holden and Karpinski and a paper of Rédei [57].

The author is very grateful to his colleague Samuel Wagstaff, Jr. who
computed lengthy tables of sums of the Legendre symbol. These computations

were immensely helpful to the author in formulating conjectures
and testing conjectures. The author is also very grateful to Duncan Buell
for extensive calculations in connection with some inequalities for class

numbers conjectured by the author. (See section 14.)

2. Notation and preliminary results

Throughout the sequel, x shall denote a non-principal, primitive
character of modulus k. To indicate the dependence upon the modulus k,
we shall often write Xk f°r X- Always, p denotes an odd prime. Ifpu ...,pr
denote distinct odd primes, let

d ± 2a fl (-l)(Pi"1)/2A-
i= 1

Here, r ^ 0 and a 0, 2 or 3 ; if a 0, then r >0 and the plus sign must be

taken, if a 2, the minus sign must be taken, and if a 3, either sign may be

fd\
taken. If n is a positive integer, let - 1 denote the Kronecker symbol. Every

fd\
real primitive character is of the form 1-1, and the modulus of each such cha¬

racter is ] d\ [20, p. 42]. Furthermore, is even or odd according to whether

d > 0 or d < 0, respectively.



The following real primitive characters shall frequently arise in the

sequel. Let
f —1)("~1)/2, if n is odd,^ { 0, if n is even,

— 1)("2_ 1 )/s, if n is odd

0, if is even
*8(W)

and y4y8 Cn) X4 (n) Xs (")• We shall often write, for example, y4k («)

yk (n) y4 (n). However, possibly the modulus of yk (ri) y4 («) is not 4k.

It will be understood, nonetheless, that despite the notation x4fc, the least

period shall be taken to be the modulus of yk (n) y4 (n).

Let G (77, y) denote the Gauss sum

G(n,x)= Z xU)e2"Bjlk,
j mod k

and put G (y) G(l,y). We shall need the fundamental property [2,

P-312]

(2.1) G(n, x) X (n) G (x)

fd\
Furthermore, if /(w) I - we have [2, p. 319]

W
("d1/2, if d > 0

(2'2) G^= -,,1/2 -f,
'

; I dI1'if 0.

As usual, L (5, 7) denotes the Dirichlet L-function
00

(2.3) F(s,7) Z X(n)n~s (Re s > 0).
n- 1

The connection between L-functions and class numbers of imaginary
quadratic fields is given by the basic formula [2, p. 295], [31, p. 395].

I d |1/2
(2-4) A(d) LJ_L( l,z-d),

71

where d ^ —1, which we shall always assume in the sequel.
The sums that we shall consider are

Sß Sji (x) Z x (»),
(i— l)k/j<n< ik/j

where i and j are natural numbers, and k is the modulus of y.
Lastly, the residue of a meromorphic function/at a pole z0 shall always

be denoted by R (/, z0).
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