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Le noyau de res : R (.FG) -> J~[ Cs<# R (FC) est donc contenu dans

pR(FG). Comme maintenant Y[ cev R (FC) est sans torsion, on a

Ker (res) nnpn R (F G) 0.

Au § 5 nous aurons besoin de K (FG) dont la définition sera alors

rappelée, et du fait que si F est de caractéristique non-nulle, alors la flèche

d'extension des scalaires K(FG)->K(EG) est une injection directe. La
démonstration est donnée dans [Serre], page 136, où K(FG) est noté

PF (G). Nous ne la reproduisons pas.

§ 2. Puissances extérieures

Les puissances extérieures des FG-modules fournissent un élément de

structure additionnel dans l'anneau R (FG), appelé 2-structure qui nous

permettra au paragraphe suivant de définir pour tout entier n un endo-

morphisme d'anneau

Wn:R(FG) -> R(FG)

jouissant de propriétés analogues à celles des opérations d'Adams en

topologie.
Soit V un FG-module, toujours de dimension finie. On notera Am V la

m-ième puissance extérieure de V. C'est le quotient de la puissance tensorielle
Vm V (x) V ® ® V (m facteurs) par le sous-espace vectoriel engendré

par les éléments de la forme v± ® (g) vm avec vf Vj pour au moins nu
couple d'indices distincts (z, /).

L'action de G sur Xm V est induite de l'action de G sur Vm. On convient

que A0 V F avec action triviale, et A1V V.

Il s'avère que les puissances extérieures Am, m ^ 0, induisent des

opérations

ïm:R(FG)->R(FG)
sur l'anneau des représentations virtuelles, et on a la formule habituelle

4,0+/?)
Le point essentiel est le

Lemme. Soit 0-^Vo^V1-^V->0 une suite exacte de FG-modules.

Alors,

[4 4] Z,=o 0,4]. [4^-4
dans R(FG) pour m 0,1,
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Ici [U] désigne la classe de U dans R (FG).
On va démontrer que Xm V1 possède une filtration

Am Vl W0=> => Wm A„, V0 => 0

par des sous-modules Wt tels que

WtIWi+1 X{ V0 0 Xm-i V

pour i 0, ||..., m.

Par définition du produit dans R (FG), on a

[A( F0] [Am_( F] [A, F0 ® A„,_.; F]

D'autre part, dans R (EG), on a

[Am Fj I.roWWm].
et le lemme en résulte.

Soit f '.V Am V1 l'application canonique. On considère le sous-

module Do ® LT' de V. Son image par f est un sous-module Wt de

Xm V1. Il est clair que les Wi9 i « 0, 1, m 4- 1 sont des sous-modules

emboités de Xm V1.

Reste à démontrer l'isomorphisme WJWi+1 lt V0 0 Am_i V de

EG-modules pour i 0, 1, m.

On considère le diagramme

v'o ®vT1 -f-+ w,

ipliV'o ®WJWi+ 1

\ /^ / S"

Xi V0 0 Xm-i V

où p est induit par la projection V1 V.

Tout d'abord /induit bien une application /'. En effet, on vérifie
immédiatement que /(Kerp) c Wi+1 et il en résulte que /' est bien définie. Il
est clair que/' est EG-linéaire. Il est également évident que/7 se factorise

par une application EG-linéaire f" : li V0 ® Xm^f V -> WJWi+1. La
surjectivité de/ (sur Wt) implique la surjectivité de f".

Par ailleurs, on constate que

dimF Am Vl Yjî=o dimF (^F0 ® Xm^tV)
car

dim A, U(' et O Zi=oOLN-i)
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comme il résulte de la comparaison des coefficients de t dans les deux
membres de l'identité (1 + t)n+N (1 + t)n (1 + t)N.

Puisque dimF (.AtV0 ® Am_y) ^ dim^ WJWi+1 en vertu de l'existence
de /", surjectif, on a donc

dimF Am Vt Yi=o dimF (Ay0 ® Am__y)

è £i=o dim WJWi+i dimFAm Vx

ce qui implique que toutes les « inégalités »

dimF (A,F0 ® Am_,) g dimF WJWi+x

sont en fait des égalités.

Il en résulte que f" est un isomorphisms pour tout i et le lemme est

démontré.
Pour vérifier maintenant que Am induit une application

Am: R (F G) R (F G)
telle que

A»(«+/D «

il est commode d'introduire l'anneau des séries formelles R(FG) [[*]].
Pout toute F-représentation V de G, posons

HV) Emïo[Am(K)].tm6Â(FG)[M].
Une série formelle de terme constant 1 est inversible. (A0 V 1

Comme les représentations forment une base de L, la formule ci-dessus

définit un homomorphisme

2:L-> 17 (R (F G )[[*]])
du groupe (additif) L dans le groupe multiplicatif des éléments inversibles
de R(FG)[[/]].

Si 0 -» V0 -» V1 -» V -> 0 est une suite exacte de FG-modules, le lemme

exprime que A (Vx) A (V0). À (V). Donc, A passe au quotient et fournit
un homomorphisme

A:R(FG)^U(R(FG)l[t]])
du groupe additif de R (FG) dans le groupe multiplicatif U (R (FG) [[t]])
et dont les coefficients sont les applications

Am: R (F G) -> R(F G)

cherchées, i.e. Am (a) est le coefficient de tm dans la série formelle A (a).
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Il est évident que la formule

Am(a+£) ZiZoM-Vm-iß)
ne fait que traduire l'identité

2(a+£) (Xa).(Xß).

Remarque. lm commute à l'involution * : R (FG) —> R (FG) définie au

§ 1. Enfin, Xm commute aux homomorphismes de restriction/* : R(FG')
-> R (FG) pour f :G -* G\ ainsi qu'aux homomorphismes d'extensions

de scalaires.

§ 3. Définition des opérations d'adams.

Soient tu tN des indéterminées. Pour tout entier n tel que 1 ^ n ^ N,

on considère le polynôme symétrique t" + t2n + + tNn et son expression

unique QNn (sl9..., sn) comme polynôme en les fonctions symétriques
élémentaires .l5 sn de degré ^ n des indéterminées tl9 tN. Les fonctions

sl9 sk9 sont définies par l'identité

xn +... +(-i)'s(x*-' +... +(-i nAd-g
avec les conventions sk 0 pour k > N et s0 1. On observe, en faisant

tN,+ 1 tN> + 2 tN 0 (où N' ^ JV), que

$i (ßl 5 ." 5 ^iV'5 * ' * ' (^1 * * *

pour i ^ iV'.

Exemples.

Qi(si) Q2(SI,S2) Si2 -2S2,
03 Ol, ^2? 53) Si3 - 3Si S2 + 3S3 p

g4 (Si, s2, s3, s4) Si4 - 4si2 s2 + 2s22 + 4si s3 - 4s4

où l'on a écrit Qt au lieu de QNt pour simplifier l'écriture.
En fait, le polynôme QNn (sl5 sn) en tant que polynôme en sl9 sn

est indépendant de N pourvu que N ^ n. Cela résulte d'une identité dont
nous aurons encore besoin plus bas, exprimée par le lemme qui suit.

Soient /,..., tN et t[9 0" deux suites d'intéderminées et tl9 tN
leur juxtaposition, i.e. N N' + N" et t{ t• pour 1 ^ i ^ TV', tN>+j

t] pour l S j S N". Soient s[9 s'N> et s'u s'N„ les fonctions
symétriques élémentaires des t'l9 tN> et t'l9 t"N» respectivement. Enfin, soient

.l5 sN les fonctions symétriques élémentaires des tl9..., tN.
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