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Le noyau de res : R (FG) — [] ce¢ R (FC) est donc contenu dans
PR(FG). Comme maintenant [] c.4 R (FC) est sans torsion, on a

Ker (res) = n,p"R(FG) = 0.

Au §5 nous aurons besoin de K (FG) dont la définition sera alors
rappelée, et du fait que si F est de caractéristique non-nulle, alors la fléche
d’extension des scalaires K (FG) - K(EG) est une injection directe. La
démonstration est donnée dans [Serre], page 136, ou K (FG) est noté
P, (G). Nous ne la reproduisons pas.

§ 2. PUISSANCES EXTERIEURES

Les puissances extérieures des FG-modules fournissent un élément de
structure additionnel dans I’anneau R (FG), appelé A-structure qui nous
permettra au paragraphe suivant de définir pour tout entier » un endo-
morphisme d’anneau

Y :R(FG)—> R(FG)

jouissant de propriétés analogues a celles des opérations d’Adams en
topologie.

Soit ¥ un FG-module, toujours de dimension finie. On notera 4,, V' la
m-iéme puissance extérieure de V. C’est le quotient de la puissance tensorielle
V=V V®..Q V (mfacteurs) par le sous-espace vectoriel engendre
par les éléments de la forme v; ® ... ® v, avec v; = v; pour au moins nu
couple d’indices distincts (7, /).

L’action de G sur 4, V est induite de 'action de G sur V™. On convient
que A, V' = F avec action triviale, et A, V = V.

Il s’avére que les puissances extérieures 4,, m = 0, induisent des opé-

rations
Jy:R(FG) > R(FG)

sur I’anneau des représentations virtuelles, et on a la formule habituelle
A (@+B) = 250 (40) . (A= B) -
Le point essentiel est le

LEMME. Soit 0 - Vo, =V, > V — 0 une suite exacte de FG-modules.
Alors,

[im Vl] = Zi=mO [j‘l VO] . [’Ln—i V]
dans R (FG) pour m = 0,1, ....
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Ici [U] désigne la classe de U dans R (FG).
On va démontrer que A, V; posséde une filtration

)’m Vl = WO = Wl = e 2 VVm = }“m VO - I/Vm+l =0
par des sous-modules W tels que

WilWisr = 2V @ A= V
pouri = 0,1, ..., m.
Par définition du produit dans R (F'G), on a

[j’i VO] ¥ I:)“m—i V:I = [)“i VO ® }“m-‘i V:I .
D’autre part, dans R (FG), on a
[)"m Vl] = Zi;no [WL/WLHJ 5

et le lemme en résulte.

Soit f: VT — 4, V; Papplication canonique. On considere le sous-
module Vi ® V7% de V. Son image par f est un sous-module W, de
2. V. 1l est clair que les W, i = 0,1, ...,m + 1 sont des sous-modules
emboités de 2,, V.

Reste & démontrer lisomorphisme W,/W,, , = 4,V ® 4,; V de
FG-modules pouri = 0,1, ..., m.

On considére le diagramme

Ve@ VT L W,

lp 1y
Ve ® Vm™h L WiWy

N #

N s

;Li I/O ® )“m—i vV

ol p est induit par la projection V; — V.

Tout d’abord f induit bien une application f'. En effet, on vérifie immé-
diatement que f (Ker p) < W,;,, et il en résulte que f est bien définie. Il
est clair que /' est FG-linéaire. Il est également évident que f se factorise
par une application FG-linéaire f" : 4, Vo ® A,,_; V> W,/W,,,. La
surjectivité de f (sur W) implique la surjectivité de /.

Par ailleurs, on constate que

dimF },m V1 = Ziz—lo dimF (ilVO ® im—lV)
car

dim 4, U = (1Y), et ("1") = Yl (D) (v ?)
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comme 1l résulte de la comparaison des coefficients de ¢ dans les deux
membres de U'identité (1+¢)"*Y = (1+¢)" (1 +1)".
Puisque dimg (1;V, ® 4,,_;V) = dimy W,/W,, en vertu de I'existence
de f”, surjectif, on a donc
dimF lm V1 = Zi_—zn() dimF (}’iVO ® Am-—iV)
z ) iZo dim W/W,, = dim; 4, V;,
ce qui implique que toutes les « inégalités »

dimp (4;Vo ® A,-;) = dimp W/W, 4

sont en fait des égalités.

Il en résulte que f” est un isomorphisme pour tout i et le lemme est
démontré. |

Pour vérifier maintenant que 4,, induit une application

Jm:R(FG)—> R(FG)
telle que
’Im (O( +ﬁ) = Z i‘—r‘nO (iia) ’ (}'m—iﬁ) ’

il est commode d’introduire ’anneau des séries formelles R (FG) [[¢ 1]-
Pout toute F-représentation V de G, posons

AV) =3 w26 [An(N] . t"e R(F G) [[1]] .

Une série formelle de terme constant 1 est inversible. (1, V' = 1))
Comme les représentations forment une base de L, la formule ci-dessus
définit un homomorphisme

L:L- U(R(F G)[[]])

du groupe (additif) L dans le groupe multiplicatif des éléments inversibles
de R (FG) [[t]].

Si0 -V, = V{ = V — 0 est une suite exacte de FG-modules, le lemme
exprime que A (V) = A (V,) . A (V). Donc, A passe au quotient et fournit
un homomorphisme

A:R(F G) - U(RF G)[[]

du groupe additif de R (FG) dans le groupe multiplicatif U (R (FG) [[1])
et dont les coefficients sont les applications

4. :R(FG)— R(FG)

cherchées, i.e. 4, (o) est le coefficient de t™ dans la série formelle A (x).
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I1 est évident que la formule
Am(a+p) = Z iz0 (420) . (Ap=i B)
ne fait que traduire I'identité

Al+B) = (Aa) . (4P) .

Remarque. 1,, commute 3 Uinvolution * : R(FG) - R(F () définie au
§ 1. Enfin, A, commute aux homomorphismes de restriction f* : R (FG')
— R(FG) pour f:G — G’, ainsi qu’aux homomorphismes d’extensions
de scalaires.

§ 3. DEFINITION DES OPERATIONS D’ADAMS.

Soient ¢4, ..., ty des indéterminées. Pour tout entier n telquel = n < N,
on considére le polyndme symétrique ¢," + #," + ... + 4" et son expression
unique O (sy, ..., 5,) comme polyndme en les fonctions symétriques ¢lé-
mentaires s, ..., 5, de degré < n des indéterminées ¢4, ..., y. Les fonctions
S1y ey Sps ... sONt définies par I'identité

XV s, XY (=D X Y L+ (= DVsy = [[LE (X 1)

avec les conventions s, = 0 pour k > N et s, = 1. On observe, en faisant

Ine1 = tyrgg = . =ty = 0 (o N' £ N), que
Si(tl, seny tN" O, ) 0) = Si(tlﬁ ceey tN’)
pouri < N'.
Exemples.

Ql (Sl) = Sl: QZ (51532) = 512 - 252 ]
Q5 (515 52, 83) = 81> — 3545, + 353,

4 2 2
Q4(31,82,S3,S4) = 5" — 45" 5, + 25, + 4s; 55 — 4sy,

ot 'on a écrit Q; au lieu de QY pour simplifier I’écriture.

En fait, le polynéme OF (sy, ..., 5,) en tant que polynéme en sy, ..., S,
est indépendant de N pourvu que N = n. Cela résulte d’une identité dont
nous aurons encore besoin plus bas, exprimée par le lemme qui suit.

Soient ty, ..., ty €t ti, ..., ty» deux suites d’intéderminées et 7, ..., y
leur juxtaposition, ie. N = N 4+ N" et t; = t; pour 1 £i < N/, In 4
= t; pour 1 £ j £ N". Soient sy, ..., Sy- €t 51, ..., Sy» les fonctions symé-
triques élémentaires des ¢y, ..., fy- €t 11, ..., Iy~ Tespectivement. Enfin, soient
Sy, ..., Sy les fonctions symétriques élémentaires des 74, ..., Zy.
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