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CLASSICAL THEOREMS ON QUADRATIC RESIDUES

by Bruce C. BERNDT

1. INTRODUCTION

In 1839, Dirichlet [23] proved that if p is a prime with p = 3 (mod 4),
then

(1.1) Y <f3> >0,

O<n<p/2 p

where (E) denotes the Legendre symbol. In other words, the number of
p
quadratic residues in the interval (0, p/2) always exceeds the number of

quadratic non-residues in that interval. Dirichlet’s deduction of (1.1) was
an immediate consequence of one of his class number formulas for binary
quadratic forms. All known proofs of (1.1) are nonelementary in that they
use infinite series. Many authors have expressed the desire for a truely
elementary proof of (1.1). In fact, Landau [43, p. 129] remarks “Aber noch
kein Mensch hat diese wahre Tatsache mit elementaren Mitteln beweisen
konnen.” Although we give some new proofs of (1.1) here, unfortunately,
none can be considered elementary.

Another result with its origins in a class number formula of Dirichlet
1s the following. If p is a prime with p = 1 (mod 4), then

n
1.2 - 0.
(12 0<n2<:p/4 <P> g

Thus, the number of quadratic residues in the interval (0, p/4) always
exceeds the number of quadratic non-residues there. As with (1.1), an
elementary proof of (1.2) does not exist. Furthermore, (1.2) does not appear
to be as widely known as (1.1). All published proofs of (1.2) follow from
class number formulas. We give here some proofs of (1.2) that do not
involve class number considerations, although, admittedly, the use of
L-functions gives an undeniable link with class numbers.

The main purpose of this study is to make a systematically thorough
attempt to discover which sums of the Legendre symbol, or more generally,
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sums of real primitive characters, are always positive (or negative). In other
words, on which intervals for which classes of primes are results like (1.1)

and (1.2) possible ? The quadratic excess on (a, b) is defined to be ), (ﬁ>

a<n<b \P
Thus, for example, if p > 3 is prime, we show that the quadratic excess

on (0, p/3) is always positive. If p = 11, 19 (mod 40), then the quadratic
excess on (0, p/10) is positive. If p = 5 (mod 24), then the quadratic excess
on (3p/8, 5p/12) is negative. We establish many results of this type. Many
of our results are not new and can be found scattered throughout the
literature since 1839. In particular, Lerch [44], Holden [36-39], and Kar-
pinski [42] have established many of the results proved here. However, a
goodly number of our findings appear to be new. Moreover, our results
are most often proven with greater generality than elsewhere in the litera-
ture.

Many intervals are found for which the quadratic excess is zero. Such
results, however, can invariably be proved by purely elementary techniques.
Many examples of this sort of result may be found in a paper by Chowla
and the author [8] and, even moreso, in the work of Johnson and Mitchell
[41]. A related question is examined in a paper of Wolke [61].

Let % (d) denote the class number of the quadratic field of discriminant d
over the rational numbers. For d < 0, we obtain many congruences for
class numbers as easy corollaries of our efforts to find positive character
sums. Again, many of these results are scattered throughout the literature,
but many do not appear to have been previously noticed. As an example
of the type of result obtained, we state a lemma of Stark [59] which was
important in his proof that there are exactly 9 imaginary quadratic fields of
class number 1. If p is a prime with p = 19 (mod 24), then /4 (—12p)
= 4 (mod 8). As other examples, we mention that if p = 7 (mod 20),
then A (—5p) = 2h(—p) (mod 8); if p= 7(mod24), then & (—24p)
=4 (mod8); and if p=17(mod4l), then h(—24p) —2h(—28p)
+ 2h (—3p) = 0 (mod 16).

Our work involving congruences for class numbers overlaps considerably
with that of Pizer [53]. However, the techniques are entirely dissimilar.
Pizer uses the theory of type numbers of Eichler orders [52], while we use
the theory of Dirichlet L-functions. Pizer [53] proves congruences for class
numbers with discriminants containing three or fewer primes. We con-
centrate primarily on discriminants with just one odd prime or small
multiples of one odd prime. It should be mentioned, however, that our
methods are applicable to imaginary quadratic fields with discriminants



— 263 —

containing any number of distinct odd prime factors. Perhaps Hurwitz [40]
was the first to prove congruences for class numbers with discriminants
involving two distinct prime factors. Brown [11], [12], [14] and Hasse [34],
[35] have achieved several results for two distinct prime factors. For congru-
ences relating class numbers for imaginary quadratic fields with discrimi-
nants containing three distinct prime factors, see,in particular, papers of
Pumpliin [55], Brown [11], and Brown and Parry [15]. Finally, the divisi-
bility by a power of 2 of class numbers for imaginary quadratic fields with
discriminants containing an arbitrary number of distinct odd primes has
been studied by Plancherel [54], Rédei [56], and Rédei and Reichardt [58].
A related paper is [1].

An elementary argument [60] shows that (1.1) is equivalent to another
theorem of Dirichlet [23]. Let p be a prime with p = 3 (mod 4). Let r denote
an arbitrary quadratic residue and » an arbitrary quadratic non-residue
modulo p in the interval (0, p). Then

(1.3)  n— Y r>0.

O<n<p O<r<p

In other words, the sum of the non-residues in (0, p) always outweighs the
sum of the residues in the same interval. In the penultimate section of this
paper, many other results of this type are established. Most of these
theorems appear to be new.

In the last section of the paper, we state several open problems and
conjectures on positive sums of the Legendre symbol and on class numbers.

The organization for the paper is now briefly described. We shall, in
turn, examine various intervals for which positivity results can be obtained.
Our techniques are generally applicable to arbitrary primitive characters.
Thus, for each class of intervals we first give theorems for arbitrary primitive
characters that express character sums over these intervals in terms of
L-functions. Next, we determine for real primitive characters when the
character sum is always positive, negative, or zero. Thirdly, we translate
our representations of real primitive character sums into statements in-
volving class numbers. Fourthly, we deduce congruences for class numbers.

Our techniques can be classified into four main types. In section 3, we
use the partial fraction decomposition of the cotangent function to effect a
very simple proof of Dirichlet’s theorem in the form (1.3). Our second
technique uses contour integration and also appears to be completely new.
The third technique uses Fourier series and is an extension of the method
used, for example, by Dirichlet [24], Chowla [18], and Moser [47] to

O S—




— 264 —

prove (1.1). The fourth method is similar to the third and uses character
analogues of the Poisson summation formula which have been established
in various versions by Berger [5], Lerch [44], Mordell [46], Guinand [30],
the author [6], and Schoenfeld and the author [9]. The application of the
character Poisson formula to problems of this type appears to be new.
However, Yamamoto [62] has recently used essentially the same technique
to derive some of the results of this paper. The method is also briefly
described by the author in [7].

In most cases, we have chosen a direct, analytic method of proof,
whereas a possibly less direct but more elementary argument with the use
of Dirichlet’s main theorems is possible. In fact, throughout the literature,
the latter attack is generally the tact that is chosen. In particular, see the
aforementioned papers of Holden and Karpinski and a paper of Rédei [57].

The author is very grateful to his colleague Samuel Wagstaff, Jr. who
computed lengthy tables of sums of the Legendre symbol. These compu-
tations were immensely helpful to the author in formulating conjectures
and testing conjectures. The author is also very grateful to Duncan Buell
for extensive calculations in connection with some inequalities for class
numbers conjectured by the author. (See section 14.)

2. NOTATION AND PRELIMINARY RESULTS

Throughout the sequel, y shall denote a non-principal, primitive
character of modulus k. To indicate the dependence upon the modulus %,
we shall often write y, for y. Always, p denotes an odd prime. If py, ..., p,
denote distinct odd primes, let

d= +2 [[ (=% P2p,.
i=1

Here, r=0and « =0, 2 or 3; if « = 0, then r > 0 and the plus sign must be
taken, if « = 2, the minus sign must be taken, and if « = 3, either sign may be

d
taken. If n is a positive integer, let (—) denote the Kronecker symbol. Every
n

d
real primitive character is of the form (—), and the modulus of each such cha-
, n

d
racter is ] d ] [20, p. 42]. Furthermore, (—> is even or odd according to whether
n

d > 0 or d < 0, respectively.
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The following real primitive characters shall frequently arise in the

sequel. Let
(=D D20 if n is odd,

1a(n) = { 0, if n 1seven,

(—1D@=DB i p s odd,

1s (0) = 0, if n iseven,
and y.xs (n) = x4 (n) x5 (n). We shall often write, for example, y,; (1)
= y, (n) x4 (n). However, possibly the modulus of y, (n) x4 (n) is not 4k.
It will be understood, nonetheless, that despite the notation y,;, the least

period shall be taken to be the modulus of y, (n) y4 (n).
Let G (n, y) denote the Gauss sum

G, p) = ) x@)ermi,

Jjmodk

and put G(y) = G (1, x). We shall need the fundamental property [2,
p. 312]

(2.1) G, ) = 71(m)G(Q).

d
Furthermore, if y (n) = (), we have [2, p. 319]
n

i, if d>0,
i|d|'?, ifd<o.

As usual, L (s, y) denotes the Dirichlet L-function

(2.2) G(o = {

(2.3) L(s,y) = Y x(m)n™* (Re s > 0).

n=1
The connection between L-functions and class numbers of imaginary
quadratic fields is given by the basic formula [2, p. 295], [31, p. 395].

ld l1/2
(2.4) h(d) =

L(la X—d) >

where d = —7, which we shall always assume in the sequel.
The sums that we shall consider are

Sp =80 = > x(n),

(i—- )k[j<n<ik]j

where 7 and j are natural numbers, and & is the modulus of y.

Lastly, the residue of a meromorphic function fat a pole z, shall always
be denoted by R (f, z,).
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3. DIRICHLET’S FUNDAMENTAL THEOREMS

THEOREM 3.1. If p is a prime with p = 3 (mod 4), then (1.3) holds.
Proof. Let M denote the left side of (1.3). We shall first show that

r . ,° ~1 7k
(3.1) M = —p'? Y (—)cot (nk/p).

2 k=1 \P
Formula (3.1) is quite ancient, and several references to it can be found in
Dickson’s history [22, Chapter 6]. For references to more recent proofs
and generalizations, see [7, section 5]. For completeness, we shall reproduce
the following argument of Whiteman [60]. Since

p—1

. 1
(3.2) Y. j sin Qmjk/p) = — 5P cot (nk/p),

ji=1
we have, upon the use of (3.2) and then (2.2),

p—1 ] 2p 1 p-1
Y (—C) cot (mklp) = — — Y j Z ( >sm (2njk/p)

k=1 / ] =1 =
p—1 = -
- > j<i>p“",
and (3.1) immediately follows.
Thus, to show that M is positive, it suffices to show that the right side
of (3.1) is positive. As

p—1

M= Y j—-2 >Yr =pp-1/2=1 (mod?2),

j=1 1l=r=p-1
since p = 3 (mod 4), it suffices to show that the right side of (3.1) is non-

negative.

Using the partial fraction decomposition
N

n cot (nx) = lim Y 1/(m+x),

N—>w m=—N

/

where x is non-integral, we have

p-1 /g 1 Pl g\ N 1
. - kip) = —li - ——
(3.3) Y <p> cot (nk/p) im ) ( ) >

k=1 T N->ewk=1 \P) meeon M + K[p
(N+Dp /4
~Piim Y <1>—_
T N—>w j=—Np p/J

2p
= L(1> Xp) s
i

e —_—e



— 267 —

where in the penultimate step we put j = mp + k and lastly use the fact

that (ij is an odd function of j. Thus, from (3.3), it suffices to show that
p/
L (1, y,) is non-negative.

Now, for s > 1,
-1

(3.4) L(s, 7,) = H{l - G)q} ,

q b

where the product is over all primes ¢. Each factor on the right side of (3.4)
is positive for s > 1. Thus, L (s, x,) > 0 for s > 1. Since the infinite series
in (2.3) converges uniformly for ¢ = s < oo, where 0 < ¢ < 1, L (s, x,) 18
continuous at s = 1. Hence, L (1, x,) =0, and the proof of Theorem 3.1
1s complete.

Apparently, Chung [19] was the first person to give a proof of Theorem 3.1
that was independent of the consideration of binary quadratic forms
and class numbers. Subsequent proofs of (1.1) and (1.3) were given by
Chowla [18], Whiteman [60], Moser [47] and Carlitz [16]. Moser also
discusses (1.1) in [48]. There is also a nice proof of (1.3) in Davenport’s
book [20, p. 10]. All of these proofs use Fourier series. Now, in fact, the
proofs of Chung, Chowla, Whiteman, Moser, and Carlitz are essentially
no different from the proofs given by Dirichlet [24] in 1840 and later by
Berger [5] in 1884 and Lerch [44] in 1905. The only difference is that the
five aforementioned authors avoid the language of class numbers.

Perhaps our proof above is a modicum more elementary in that it does
not use Fourier series but instead employs the partial fraction decomposition
of cot (nx), which can be derived by quite elementary means [49]. Of course,
our method above is applicable to any odd real primitive character.

Next, we show that very short proofs of (1.1) and (1.3) may be given
by the use of contour integration.

THEOREM 3.2. If y is odd, then

G
Sz1 = l—;t@ {}?(2) - 2} L(lai)'
Proof. Let
fl) = TE@D
z cos (mz)
where
Fad = % 20) cos (uz—dnjz/k)
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Observe that f has a simple pole at z = 0 with
(3.5) R(f,0) =nF(0,y) = 7S,y .

Also, f has simple poles at z = (2n—1)/2, —o0 < n < o0, with

2(—1)
(3.6) R(f,2n-1)2) = 2( ) F((2n—=1)/2,7)
n—1
i
= ZITIGQ"“LX)
i
=57 ¥@n-1)G6Q,
by (2.1).

Let Cy denote the positively oriented rectangle with center at the origin,
horizontal sides of length 2%, and vertical sides of length N'/2, where N is
a positive integer. Applying the residue theorem with the aid of (3.5) and
(3.6), we get

1 Ny @2n-1)
3.7) Iy = — dz =nS G s C,
(3.7 Iy 2m.SCNf(Z') zZ =78 +i (X)F_ZNH o

From the definition of F (z, y), we see that there exists a positive constant A4,
independent of N, such that for all z = x + iy on the horizontal sides
of Cy, | F(z, y)/cos (nz) | = A4 exp (—2n | y |[k). Also, F (z, y)/cos (nz) has
period 2k. Thus, there is a positive constant B, independent of N, such that
for all z on the vertical sides of Cy, I F (z, y)/cos (nz) l = B. Hence we find
that as N tends to oo,

(3.8) Iy = 0(e ™) L O(N~12) = 0(1).

Letting N tend to oo, we deduce from (3.7) and (3.8) that

iG() < 2@n—-1)  2iG(y)

Sy = — —=
2 T n;_:w 2n—1 T

1 _ _
{1 -3 X(Z)} L(1, %),

which completes the proof.
A direct proof of Theorem 3.1, or, more properly, an obvious general-
ization thereof, may also be achieved by contour integration. Integrate

1 .
Z X(]) eZm_)z/p

Z(ezniz'“l) 0<j<p

over a rectangle Cy like that of the previous proof, but with the horizontal
sides of length 2N + 1. |




— 269 —

A short proof of Theorem 3.2 using the character Poisson formula can
be found in [7, section 4].

From the classical theory of L-functions, it can be shown that if y is a
real primitive character, then L (1, y) > 0 [2, pp. 27-28]. We shall repeatedly
use this fact without comment in the sequel. Hence, the following is im-
mediate from Theorem 3.2.

CoORrROLLARY 3.3. If y is real and odd, then S,; > 0.
The following corollary is an immediate consequence of Theorem 3.2
and (2.4) and is one of Dirichlet’s famous class number formulas [23].

CoORrROLLARY 3.4. If d < 0, then

8, = {2 _ (i)} h(d).

COROLLARY 3.5. If p == 3 (mod 4), then S5, (x,) is odd; if, furthermore,
p = 3 (mod 8), then 3 | S,y (3,).

COROLLARY 3.6. If p = 3 (mod 4), then /4 (—p) is odd.
We now will give two proofs of (1.2) below. The first, in essence, is due
to Dirichlet [24].

THEOREM 3.7. Let y be even. Then if y,, (1) = x4 (n) x, (1),

G (x) _
Sy = T L(1, Zar) -

First proof. Let
1, 0<x<nm/2,
f&x) =41 0, x=n/2,
-1, #72<x<m,

be an even function with period 2z. Calculating the Fourier series of f, we
find that

4 2 (—=1) —
(3.9) f = -2y (—1)" cos 2n—1)x
Tp=1

2n—1

(—o0<x<o).

Next, in (2.1), replace » by 2n — 1. Then multiply both sides by
(=1)"/2n—1) and sumonn, 1 =n < w0, to get
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(-1
2n—1

(3:10) ~G()L(L Zu) = ¥, 1() T S-cos {2m (2n— 1)k}

- - -;f T x(Df@nilk,

by (3.9). Since y is even, S;; .= —S,, = —S,3 = Sy4. Using the defi-
nition of f, we see then that (3.10) reduces to

G(x) L(1, f4) = mS4y,

which completes the proof.

Second proof. Let

nF (z, x)
f(z2) = ————,
z ¢cos (nz)
where
F(z,p) = Y  x(j) cos (4njz[k)
O<j<k/4
— Y x(j) cos (2nz —4nj z[k) .
kj4<j<k/2
Note that
(3.11) R(f,0) = nF(0,x) = n(S41—S42) = 2084

and that, for —0 < n < o0,

2(—1)"
(3.12) R(f,(2n—1))2) = 2;_; F((2n—1)/2,%)
(=D*
= 5—7 G(@n=-1)2, %)
(=D" _
=5 —X@n-DGQ),
by (2.1).

We integrate f over the same rectangle Cy as in the proof of Theorem 3.2.
By an argument similar to that in that proof, we find that

(3.13) Iy = ~—1—§ f(2)dz = o(1),
CN

2ni |

as N tends to oo. Hence, applying the residue theorem to Iy, using (3.11)
and (3.12), letting N tend to oo, and employing (3.13), we find that
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© (—1yF(2n—1
0= Sy +G0) 3 ;nX(_r; )

n=—o

b

from whence Theorem 3.7 follows.
A proof of Theorem 3.7 using the character Poisson formula may be
found in [7, section 4].

CorOLLARY 3.8. If y is real and even, then S;; > 0.

Additional class number formulas of Dirichlet are immediate conse-
quences of Theorem 3.7.

COROLLARY 3.9. If 4 } d, then

1
(3.14) Sa1 (Xa) =§h(—4d), d>0,
Sa1(X-20) = 2R (d), d <0,
(3.15) Si1(xsg) = h(—=8d), d>0,
and
(3.16) Sa1(X-s0) = h(8d), d<0.

CoROLLARY 3.10. If p=1(mod8), then /4 (—4p) = 0(mod4); if
p = 5(mod 8), then 4 (—4p) = 2 (mod 4). If p is odd, then & (—8p) is
even.

Proof. The number of summands in S4q (x,) is even if p = 1 (mod 8)
and odd if p = 5(mod 8). Thus, the congruences for 4 (—4p) readily
follow from (3.14). For all odd primes p, S4; (xs,) has 2p terms and, thus,
p — 1 non-zero summands. Hence, Sy (xg,) is even, and (3.15) and (3.16)
show that # (—8p) is even.

The congruences for 4 (—4p) in Corollary 3.10 appear to have been first
stated by Lerch [45, p. 224], although they were, no doubt, known to
Dirichlet. For other proofs of the congruences in Corollary 3.10, for
equivalent formulations, and for some refinements, see the papers of

Brown [10], [11], [14], Hasse [32], [33], [34], and Barrucand and
Cohn [4].
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4. SUMS OVER INTERVALS OF LENGTH k/3.

THEOREM 4.1. If y is even and y;, (n) = <§> ¥ (n), then

312G (y)
(4.1) S31 = ——— L(1, i31) ;
2
if y is odd, then
G ()
(4.2) S3; = —{3 — 13 }L, ).

Proof. First, suppose that y is even. Let

(1, 0< x < 2n/3,
f(x)=! 1/2, x = 2r/3,
0, 2nf3 <x <7

be an even function with period 2n. Then, by an elementary calculation,

31/z <n> cos (nx)

(—o0<x< ).

2
(4.3) ) =- + — Z

n

\

Now, multiply both sides of (2.1) by 31/2 <3) (nn)and sumonn, 1 =n < .

With the use of (4.3), we obtain
k—1
283 = Z x () {f@njlk) —2/3}

31/2 1 31/2
—G(x) Z x(n)< >— TG(X)L(]-a)ZSk)a

which completes the proof of (4.1).
For variety, we shall prove (4.2) by contour integration. Of course, the
method of Fourier series used above works equally well here.
Let
nF (Za X)

z sin n(z+1/3)’

f(2) =

where
F(z,y) =2 >  x(j) sin (nz +n/3 — 6mjz/k)

0<j<k/3

4 e—31tiz Z X(]) e67rijz/k.
k/3<j<2k/3
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Observe that

_mFO,0) .
(44) R(f, O) = m = 27”531
and that
(4.5) R(f,n—1/3) = 3(=1) F(n—1/3, %)
3n—1

3
= —— GBn-1,9=-— 1(3n—=1)G(x),

3n—1 3n—1
by (2.1), where —o0 < n < 0.

We integrate f over the same rectangle Cy as in the proof of Theorem 3.2.
The estimate (3.8) is obtained by the same type of argument as in that
proof. Applying the residue theorem, employing (4.4) and (4.5), and
letting N tend to oo, we deduce that

2 71@Bn—-1)
0 = 2ni S5; — 3G ———
Tl D31 (0 n=§;oo 30— 1
. o ZBn=1) & 1Gn+1)
= 27i S3; — 3G (y b T
. o A & 7(Gn)
=2751531“3G(X){ Z - Z ’
n=1 R n=1 3n

from which (4.2) readily follows.
COROLLARY 4.2. For any real primitive character y with & > 3, S5, > 0.

CorOLLARY 4.3. If d > 0 and 3 ¥ d, then

(4.6) S50 () = 3 h (=34);
if d < 0, then
1 d
4.7) Sur (1) = 5{3 - @ } hd).

COROLLARY 4.4. Let p>3. If p=1(mod12), then #(—3p)
= 0(mod 4), while if p= 5(mod12), then h(—3p)= 2(mod4). If
p=3(mod4), then A(—12p)=0(mod4). For any odd prime D,
h (—24p) = 0 (mod 4).

Proof. Letp = 6m + j, wherej = 1 or 5 and m is a non-negative integer.
The number of summands in S5, (xp) is thus 2m + [}j/3]. The two congru-
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ences for 4 (—3p) are then consequences of (4.6). The number of summands
in S3; (X4p) 18 8m + [4j/3]. If p = 7 (mod 12), the number of non-zero
summands 1s 4m; if p = 11 (mod 12), the number of non-zero summands
i1s 4m + 2. In cither case, the number of non-zero summands is even, and
so it follows from (4.6) that 4 (—12p) = 0 (mod 4) when p = 3 (mod 4).
Lastly, the number of summands in Ssq (xg,) is 16m + [8j/3]. If j = 1,
there are 8m non-zero summands; if j = 5, there are 8 + 6 non-zero
summands. In either case, S3; (ys,) is even, and we deduce from (4.6)
that 2 (—24p) = 0 (mod 4).

COROLLARY 4.5. Let p and ¢ be distinct primes with p,g¢ > 3 and
p = q (mod 4). Then A2 (—3pg) = 0 (mod 4).

Proof. Let p = 6m + jand ¢ = 6m’ + j’, where j,j" = 1 or 5 and m
and m’ are non-negative integers. The number of summands in S3; (3,,)
is [pq/3], and we observe that [pg/3] = [jj’/3] (mod 2). Of these summands,
[¢/3] = 2m’" + [j'/3] are multiples of p, and [p/3] = 2m + [j/3] are
multiples of g. Thus,

By examining all of the possibilities for the pair j, j, we find that S35 (3,,)
is always even. The result now follows from (4.6).

It is clear that the same type of argument yields congruences from
h (—12pq) and h (—24pq).

The class number formulae (4.6) and (4.7) appear to be due originally
to Lerch [44, pp. 402, 408]. Holden [36] has also given a proof of (4.7).

5. SuMS OVER INTERVALS OF LENGTH k/5.

n

THEOREM 5.1. Let ¥ be odd and let x5, (n) = <—5—> ¥y (). Then

1
(5.1) Ss1 = A G(X){(S"Z(S)) L(1,%) — 5'/2 L(1, %se) } |
and

1 _
(5.2) Ss; = 2—7” 51/ G () L(1, 7s1) -




¥
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Proof. Let
1, 0<x<27n/5,

fG) =1 12, x =21/5,
0, 2n/5 < x <=,

be an odd function of period 2z. Calculating the Fourier series of f, we find
that, for all x,

(5.3) fx) =

* sin (nx) 2 2 sin (5nx)

)

ne 1  5n n=1 n
sin (nx 2 ® sin (nx
( ) _ —cos (2n/5) Y. (nx)
T n=1 n
n=2 5) n=1,4 (mod 5)

Msa

2

T

2 o0

+ — cos (n/5) Z
T n=

5 m

2

T 4,

sin (nx) 2 2 sin (Snx)
e

II

1 n=

+ —l-cos (77:/5 { — ﬁ)} Sin (nx)
T - 5

s o 5 o+ (1)} 229

n

+ —5—17; { cos(2n/5) — cos(n/5)} i Sin (Snx)
1 2 sin (52 x)

=i % 5_51/2(> sm(nx) 5
2n .= 3 n 2nn=1 n ’

since cos (n/5) = (5'/2+1)/4 and cos (21/5) = (5'/2—1)/4.
Now, multiply both sides of (2.1) by {5 — 51/2(7—51>} /(2rn) and sum

on n, 1 =n < co. Next, replace n by 5z in (2.1) and then multiply both
sides of (2.1) by —1/(2nn) and sum on n, 1 =n < 0. Adding the resulting
two equations and using (5.3), we get

k-1
21851 =10, 1 (DS @njlk)
=

G(p (& ) 2 7 (5
- 2; {n;{s 51/<5>}X(’1) ;X( n)}

_ __(L) {5L(1,7) = 52 L1, 75) — 7() L(L, D) },

from which (5.1) follows immediately.
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The proof of (5.2) is similar. In this case, we let

j 0, 0<x <2n/5 4n/5<x<m,
fx) =4 1/2, x = 2rn/5,4n/5,
1, 2n/5<x <4n/s,

be an odd function with period 2z. The Fourier series of fis given by

_ SHR 20 /) sin (nx)
- 3 (57

(—oo<x<o).

We then proceed in the same fashion as above.
COROLLARY 5.2. If y is real and odd, then S5, > 0.

COROLLARY 5.3. If d < 0 and 5 } d, then

1 d 1
(5.4) Ss1 (x-a) = 4 {5 - <’5‘>} h(d) — 4 h(5d)
and
1
(5.5) Ss2 (X-a) = 5 h(5d) .

Formula (5.5) is due to Lerch [44, p. 407]. By combining (5.4) and (5.5),
we can derive a formula for % (d) which is also due to Lerch [44, p. 404].

CoRrROLLARY 5.4. If p # 5, we have the following consequences:
(5.6) h(—5p) =0 (mod 8), if p =19 (mod 20),
(5.7 h(-5p) =4 (mod 8), if p =11 (mod 20),
(5.8) h(—5p) =2h(—p) (mod 8), if p =7 (mod 20), |
(59) h(—=5p) =4+ 2h(—p) (mod 8), if p =3 (mod 20),

(5.10) h(—20p) =0 (mod 8), if p =1,9 (mod 20) or if
p = 13,37 (mod 40),

(5.11) h(—20p) =4 (mod 8), if p = 17,33 (mod 40),
(5.12) h(—40p) =4 (mod 8), if p = 2,3 (mod 5),
and

(5.13) h(—40p) = 2h(—8p) (mod 8), if p = 1,4 (mod 5).




— 277 —

Proof. If p=j(mod10), 1 =j=09, then Ss; (y,) = [j/5] (mod 2).
With the use of (5.4) and the above, and recalling that 4 (—p) is odd, we
deduce (5.6)-(5.9).

If p=j(mod5), 1 =j=4, the number of non-zero summands in
Ss1 (X4p) is even if j = 1 or 4 and is odd if j = 2 or 3. Using also Corol-
lary 3.10, we readily deduce (5.10) and (5.11) from (5.4).

If p=j(mod5), 1 =j=4, the number of non-zero summands in
Ss1 (xs,) is even if j = 1 or 4 and is odd if j = 2 or 3. Using also the fact
that 4 (—8p) is even, we may deduce (5.12) and (5.13) from (5.4).

COROLLARY 5.5. Let p and ¢ be primes with p,qg # 5 and with
p = q + 2 (mod 4). Then

h(—=5pg) =0 (mod 8), if p =1,9 (mod 20) and g = 11,19 (mod 20),
h(—5pq) =4 (mod 8), if p = 13,17 (mod 20) and ¢ = 3,7 (mod 20),
and
h(—=5pq) = 2h(—pq), if p = 1,9 (mod 20) and g = 3,7 (mod 20),

or if p = 13,17 (mod 20) and ¢ = 11,19 (mod 20).

Of course, the same congruences for 4 (— 5pg) hold if the congruences for p
and g are interchanged.

Proof. Let p = j(mod 10) and ¢ = j' (mod 10), where 1 =j,j =09.
Observe that Ss; (x,,) contains [pg/5] terms of which [g/5] are multiples
of p and [p/5] are multiples of ¢g. From (5.4), we then find that

4Lii'151 = Lils] = Li'l5D

5
- {s - () G)} h(—pa) — h(—5pg) (mod 8).
P/ \4

/

Since h (—pg) is even, each of the desired congruences readily follows.

In the case that y is even, we can state a theorem analogous to
Theorem 5.1. However, the L-functions in the representations of S5; and
S5, involve quartic characters. For example,

0 nt+1 =
(5.14) sy =20 {sin Qus) y ST E®
T n=1 n
n=1,4 (mod 5)
+ sin (m/5) Y (=1 X@}
n=1 n
n=2,3 (mod 5)

2
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the series on the right side of (5.14) may be written in terms of L-functions

of quartic characters. Thus, we are unable to derive any positivity results
for character sums.

6. SUMS OVER INTERVALS OF LENGTH k/6.

THEOREM 6.1. Let y be even and let x5, (n) = <g> x(n). Then

31/2
(6.1) Se1 = o (X) {1+ 1} LA, %30 »
1/2
(6-2) Sez = — ‘3—”&(@ 92(2) L(l, ZSk) >
27
and
312 G
(6.3) So =~ P 11,70
Let ¥ be odd. Then
(6.4) Se1 = (X){1+X(2)+X(3)—x(6)}L(1 0
G
(6.5) 562—’2—(@{2"—(2)—2,{(3)"‘7(6)}];(1 X
and
(x)
(6.6) Sez = i {1 =27+ 23} LL, D -

We shall not give a proof of Theorem 6.1, because all of the formulas
may be deduced from Theorems 3.2 and 4.1 and elementary considerations.

COROLLARY 6.2. If d > 0, we have
S¢; > 0, if d is even, or if x(2) =
Se1 =0, if x(2) = —
Se, >0, if x(2) = —
S¢, = 0, if d is even;
Se, <0, if y(2) =
S¢3 < 0, for all d;
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Se¢; = — Sg3, if d 1is even;

S61 = _2862 = _2563’ lf X(2) = 1;
and

Sez = — Se3, if 2(2) = — 1.

If d < 0, we have
Se; >0, if d is even and x(3) = 1 or 0, or if x(2) = 1,

or if y(2) = —x(3) = -1
S¢; = 0, if d is even and y(3) = — 1, or if x(3) =0
and y(2) = —1;
Se1 <0, if x(2) = x(3) = — 1
Se¢, >0, if d is even and x(3) = — 1, or if x(3) # 1;
S, =0, if x(3) = 1;
Se3 >0, if d is even and 3 (3) # — 1, or if x(2) = — 1;
Se3 =0, if d is even and 3y (3) = — 1, or if ¥ (2) = x(3) = 1;

and

We remark here that the results Sg;; = 0, i = 1, 2, 3, in Corollary 6.2
may be proven in a completely elementary manner. As an illustration, we
prove that S¢; = 0 if y is even and y (2) = —1. (The following argument
was supplied to the author by Thomas Cusick, Ronald J. Evans, and the
author’s students in a graduate course in number theory.) Since y is even
and y (2) = —1, we have

xmy= Y xm+ Y xm

k/3<n<k)2 k/3<n<k]2 k/3<n<k/2
n even n odd
=x@ Y azm+ Y x(k=2n)
k/6<n<k/4 k/4<n<k/3
= - Y xm.
k/6<n<k/3

As S,; = 0, it follows from the above that S¢; = 0.

In the case that y (n) is the Legendre symbol, the equalities of Corol-
lary 6.2 were derived by Johnson and Mitchell [41].

Of course, using (2.4), we may convert (6.1)-(6.6) into formulas involving
class numbers. Since no new, additional congruences for class numbers
may be derived from these formulas, we shall not write them down. The
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class number formula for Sq; (%_,) is due to Lerch [44, p. 403], and those
for Ss, (x4) and Sg; (x,) are also due to Lerch [44, p. 414]. In the terminology
of class numbers, Holden [36] has established (6.4)-(6.6) in the associated
special cases. Some results related to (6.1)-(6.3) were also found by
Holden [39].

7. SUMS OVER INTERVALS OF LENGTH k/8.

THEOREM 7.1. Let y be even, let y4. = xax, and let ys. = Yaxsx. Then

(7.1) Sg; = (X) { (2) L(1, jq1) + 2112 L(1, XSk)}
Sg, = (X) { [2 —X (2)] L(1, j4) — 2112 L(1, 7g) }
(X) 1/2
Sg3 = { = [24+7 @] LA, 74 + 272 L1, Zaw) }
and
Sgq = (X) { (2) L(1, Zap) — 21172 L(1, 78k)}

Let ¥ be odd and let yg, = ysx. Then

| G 1
(7.2) Sg; = —2—%){[2 + 3 1®{1 -7 }] L(1, ) — 22 L(I,ZSR)} ,

3 1
Sgz = 27(;:){ (2) |:1 —5%(2) +5 X(4)] L(1,7) +2'2 L(1>X8k)}

G 3 1 ‘
Sg3 = 2(X){ (2)[—1 +§2(2)—§X(4)jl L(1,%) +2'? L(LZSk)} ;
and
1
S84 = ? {[2 ——2(4)] [1 _)—6(2)] L(la Z) — 212 L(l, )—CSk)} .
i 2

We need only prove (7.1) and (7.2), for the remaining formulae can
then be deduced from (7.1), (7.2), Theorem 3.2, Theorem 3.7, and elemen-
tary considerations. Since the proofs are similar to those in previous sections,
we omit them. For the same reasons, proofs in sections 8-11 will not be
given.
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COROLLARY 7.2. If d > 0, we have

s e T R B

S81 >0, if X(z) =1 or O,

Sgs <0, if y(2) = —1 or 0,

| Sga | < Sg1, If x(2) = 15

| Sg1 | < = Sg4 if x(2) = — L
Sg1 > Sg3, if 2(2) = 13

Sgy > — Sg3, if x(2) = — 15
Sg, < — Sg3, If x(2) = 1;

Sgz > Sg4, 1f X(Q) = —1;

Ss1 = Sg3, If x(2) = — 13

and
Sg2 = Sss, If 2(2) = 1.

If d < 0, we have
SSZ > 0, lf X(z) == 1 or 0;

Sgz > 0;

Sgqa <0, if x(2) = 1;

| Sgz | < Sg3, if 2(2) = — 15

Sg1 > — Sg3;

Sg1 = — Sgp = Sgg, If 1(2) = — 1;
and

Sgs = Sg3 = — Sgy, if 3(2) = 1.

Theorem 7.1 yields 8 formulae for class numbers. We shall list just
those that we need to derive congruences.

CoROLLARY 7.3. Let d be odd. If d > 0, then
1/d 1
: (7.3) Sg1 (Xa) =z<§>h(—4d) +Zh(_8d)
':; and
1/d 1
(7.4) Sga (o) =z<*2“>h(—4d)~zh(—8d).

If d < 0, then
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1.5 Ser (-d) = i—{s _ @} h(d) — 3 h(8d)
o

(1.6) Sus (- = {1 _ (g)} h(@) + 3 h ()

and : o

(7.7 Spu (10 = {1 - @} hd) — 3 h(84).

COROLLARY 7.4. We have
h(—8p) = h(—4p) (mod 8), if p = 1,5 (mod 16),
h(—=8p) =4 + h(—4p) (mod 8), if p = 9,13 (mod 16),
h(—8p) =0 (mod 8), if p =15 (mod 16),
h(—8p) =4 (mod 8), if p =7 (mod 16),

h(—8p) = 2h(—p) (mod 8), if p = 11 (mod 16),
and
h(—8p) = — 2h(—p) (mod 8), if p =3 (mod 16).

Proof. If p = j(mod 16), 1 =j = 15, then
(7.8) Ss1 = [Jj/8] (mod 2).

Let p = 1(mod 4). Then the first two congruences follow from (7.3),
(7.8), and Corollary 3.10. Let p = 3 (mod 4). Then the latter four congru-
ences follow from (7.5), (7.8), and the fact that 4 (—p) 1s odd.

COROLLARY 7.5. We have

h(—8p) =0 (mod 4), if p = 1,7 (mod 8)
and
h(—8p) =2 (mod 4), if p = 3,5 (mod 8).

Proof. Let p = 1 (mod 4), and suppose that p = j(mod 16), 1 =j = 15.
Then

(7.9) Sg1 — Sga = [j/8] — [J/2] + [3j/8] (mod 2).

The congruences for p = 1 (mod 4) follow from (7.3), (7.4), and (7.9).
Let p = 3 (mod 4), and suppose that p = j(mod 8), 1 =j = 7. Then

(7.10) Ss3 — Sgq = — [j/2] — [j/4] (mod 2).
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The congruences for p = 3 (mod 4) follow from (7.6), (7.7), and (7.10).

CorOLLARY 7.6. We have

h(—40p) =0 (mod 8), if p =1,9, 31,39 (mod 40)
and ‘
h(—40p) = 4 (mod 8), if p = 11,19, 21,29 (mod 40).

Proof. The congruences follow from (5.13) and Corollary 7.5.

The character sums of this section were studied in great detail from an
elementary viewpoint by Osborn [50] and Glaisher [27], [28], [29]. Some of
the class number formulas in this section can be traced back to Gauss [26]
with the proofs given by Dedekind [21]. The formulas

1
(7.11) "2‘ h(—=8d) = Sg1 (xa) — Ss4 ()
and

1
(7.12) 5 h(8d) = Sgy(x-a) + Ss3(x-a)

are due to Dirichlet [23]. Proofs of (7.11) and (7.12) were also given by
Lerch [44, pp. 407, 409]. Pepin [51], Hurwitz [40], Glaisher [29], Holden [39],
Karpinski [42], and Rédei [57] have also derived class number formulas
in terms of Sg;, | =i =4.

For p = 1 (mod 8), Corollary 7.5 was first established by Lerch [45,
p. 225]. Brown [14] has proven Corollary 7.5 and all the congruences of
Corollary 7.4 involving a single class number. He has also pointed out
(personal communication) that the remaining congruences of Corollary 7.4
may be deduced from his work [14] and a paper of Hasse [35]. The latter
author [32] has also proved Corollary 7.5 for p = 7 (mod 8). As indicated
in the Introduction, Corollaries 7.4 and 7.5 have also been proven by
Pizer [52]. The special case of Corollary 7.5 when p = 19 (mod 24) was
brought into prominence by Stark [59]. See also [13].

8. SUMS OVER INTERVALS OF LENGTH k/10.

As with intervals of length k/5, we are able to establish theorems about
positive sums for odd y only.

THEOREM 8.1. Let y be odd and put x5, (n) = (g> x (n) . Then

/




and
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St = —@{[4 {1-1@}{x()-1ILA, D)
~ S+ 7 (D] L1, 750}
Sto,2 = "—(X—) {2-1@J[1-2G] LA, 0
+ 512 7(2) L(1L, 750} 5
S105 = S (2779 -1 L(L, D
+ 5122+ 7] LA, Zs} 5
S104 = _&Q {R=-x@][1-2(] LA, D
— 512 7 (2 LA, Ts)}
Sio,s = 4(1) {[3-43x()+2(HIL(, D

CoRrROLLARY 8.2. If d < 0, we have

and

Slo,5 <0,

numbers.

if
if
if
if
if
if
if
if
if

if

— 51/2 L(1, X5k)} .

= 0 and yx(5) # 1;

¥(2) = —1 and x(5) # — 1;
x(2) = — 1 and %(5) = —
y(2) = 1, or if x(2)

¥ (2) = 0 and % (5) =

¥(2) = —1 and %(5) =
105 =1;

x(2) = — 1, or if x(2)

x(2) = 0 and % (5) = 1;

x(2) = x(5 =1,

x(2) =

We shall refrain from writing down any of the class number formulas
arising from Theorem 8.1, since no further congruences for class numbers
may be deduced. The sums Sy, ;, 1 =i = 35, appear to have been previously
discussed only by Karpinski [42] and by Rédei [57] in connection with class

=0 and ¥ (5) # 1;
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9. SUMS OVER INTERVALS OF LENGTH k/12.

THEOREM 8.1. Let y be even, ys(n)= (g) y (n), and 4 (n)
= X4 (n) x (n). Then

Siz2,1 = (X) {[1+7% (3] L, ja0)
1
+3 312 71+ 7] LA, 730} >
(x)
Si22 = {=[1+7 (3] LA, 7ap)
1
+ 5 3121247 (=7 (®H] L, 30} »
. (X) 1/2
512,3 = { 2L(1, jap) — 3 [1 + (2)] L(1, X3k)}
B (x) 12
Si24 = { —2L(1, 74 + 32 L(1, 730}
Siz,5 = (X) {[1 + 7% (3] L1, ja)
1
P47 +T@] LA, T}
and
G
Si2,6 = (X) { = [1+2B3]T LA, Far)

1
5 3231+ 7 (D] L1, 730} -

n
Let y be odd and let y,,,(n) = <§> x4 (n) x(n). Then

(0

9.1) 5121=—2——{ [4-7@{1-7@}{1-73®}1 LA, 7

- 31/2 L(ls Zle)} ’
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S G (%) _
12,2 = o 1 —-1[[1-%2)] [1-%(3)] L1, 7))
+ 312 L(1, Zle)} 3
(x)
Sia3=—[1=-1I[1+7(D-2B3)] LA, D),
G (1)
Si2,4 ————{ (2)[9((2)—1] + 1 —7(3)}L(1 X

Siz2,5 = 2(%){ X3 —-11[2+72 (-7 (D] L1, )

+ 31/2 L(la ile)} ’
and

G
Sise = G0 5 =1 @I 442 (1 =13} LA, D

- 312 L(1, Zle)} :
CoRrROLLARY 9.2. If d > 0, we have

Si2010>0, if x(2)=1,o0rif y(3)# —1;
S0 =0, if x(2)#1 and y(3) = —

S122 >0, if ¥(2)# —1 and y(3) = —1;
S12,2 =0, if (2 =x03) = —
S122 <0, if ¥(2) = —1and y(3)# —1;

512’3 > O, lf X(z) = —
512,5 <0 5 if X(3) =
Si26>0, if x(2)=1and x(3) = —

S1206 =0, if x(2)#1 and x(3) = —
and
Siz26 <0, if x(2)#1 and x(3) # — 1.

If d < 0, we have
S22 >0, if x(2 =1, orif y(3) =
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Siz3 >0, if ¥ =23 =—1,0r if x(2) =0
and x(3) #1;
Si23 =0, if x(2) =1, or if ¥(2) =0 and x(3) =1,

or if y(2) = —1 and x(3) = 0;
Si23 <0, if x(2)= -1 and y(3) = 1;
Siza>0, if x(2 = —1,o0rif y(2) # — 1 and
2(3) #1;
Si4=0, if x(2) # —1 and y(3) =1;
Si,s >0, if (2 = —1,o0rif x(3) =1;

and
812,6 < O, if X(Z) = 1.

COROLLARY 9.3. We have

h(—12p) =0 (mod 8), if p =23 (mod 24),
and
h(—12p) =4 (mod 8), if p =7,11,19 (mod 24).

Proof. From (9.1) and (2.4),

1 2 3 1
(9.2) Si51(xp) = 2 {4+ [1 — <p>:| [1 — <E>}} h(—p) — 7 h(—12p) .

If p = j (mod 24), 1 =j = 23, then

(9.3) Si12,1 (xp) = [j/12] (mod 2).
From (9.2) and (9.3) we deduce that

Aj12] = {4+ [1_<;>] [1— (;)]} h(=p) — h(—12p) (mod 8).

The desired congruences now readily follow.
The special case, p = 19 (mod 24), of Corollary 9.3 was important in
Stark’s work [59]. Brown [13], [14] has also given proofs of this special case.
Some of the class number formulas arising from Theorem 9.1 were
actually stated by Gauss [26] with the proofs given by Dedekind [21].
Several class number formulas involving the sums Sy, ;, 1 =i =6, were

discovered by Lerch [44, pp. 407, 408, 414], Holden [36], [38], [39], Kar-
pinski [42], and Rédei [57].
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10. SUMS OVER INTERVALS OF LENGTH k/16

Although Si4; 1 =i=238, may be expressed in terms of Dirichlet
L-functions at the value 1 by the methods of the previous sections, in each
case, L-functions with complex characters arise. Thus, our methods do not
enable us to make any conclusions about the sign of S;4 ;, 1 =i = 8. How-
ever, we are able to prove the following result.

THEOREM 10.1. Let y be even and put x4 = x4 x and Ysp = X4 Xs X-
Then

Si61,+ Sies = ﬁ{ 7(4) L(1, Z42)
+ 212 7 L1, 7s0) } »
St62 + S167 = (X) {[27(2) — ¥(H] L, T4
- 2“’- 7 LA, 750}
Sies T Sie6 = G(X) { =27 +xH] LA, 7
+ 2“2 7 LU, 780 } »
and
Si6. + Sies = 2("){ 7(4) L(1, Z4)
— 212 7 L1, 7 } -
Let y be odd and put yg = ¥s x. Then
Si6,1 — Ste,8 = C;(X) {21 +1®+x®][1- ! x(2)] L(1, 7)
— 212 7(2) L1, Fs) } »

Si6,2 — S16,7 = (X) {[ (4)— 18] [1 - A X(z)] L(1, %)
+ 21/2 7(2) L(1, ¥sw) } >
Si6,3 — Si6,6 = (X) {[ (8) — X(4)] [1 - A x(2)] L(1, i)

+ 2”2)((2) L(1, ¥s) } >
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and

Si64 — Si6,5 = —@ {2k —7@ -1 ®][1 - —x(2)] L(1, %)

- 21/2 % (2) L(1, XSk)} .

CorOLLARY 10.2. If d is odd and positive, then

Sie1 + Si6s >0, if x(2) =1,
and
Sl6,4 + Sl6,5 > O, lf X(Z) = == 1.

If d is odd and negative, then
Si62 — S16,7 >0, if x(2) =1,
Si63 — S166 >0, if x(2) =

Si163 — S166 <0, if (@2 =-1,
and
Siea — S1es <0, if x(2) =1.

11. SUMS OVER INTERVALS OF LENGTH k/24.

For intervals of length k/24, a complete statement of Theorem 11.1 for
both even and odd characters would require 24 formulas. Because of
limitations of space, we state just 2 of the formulas for S,4 ;(x), where
1 =i=12 and y is even or odd.

THeoREM 11.1. Let y be even. Let yi.(n) = (g)X(H)’ X4 (n)

= 5 () % D)y 75 (1) = 24 () 75 (1) % (), and ypae () = @ ¥s (1) 1 (1).
Then
1
524,1 = 2— % ~ )Z(Z) [1 +i(3)] L(l: 241{)
i 2
1
+ 5 3P @O+ EOI LA, 230 + 272 [7(3) = 1] L(L, 7o)

+ (3/2M* L(1, Zaar) } .

L’Enseignement mathém., t. XXII, fasc. 3-4. 19
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Let x be odd. Put zg (1) = s (1) % (1) L1as (1) = @ 1 () 7 (0)
and 1,4 (1) = <f> ya (#) %s () % (). Then

3
G 1
Sz = G| 3 1OR-1@I@ - 111~ 2] L1 D

1
+ 27172 [1+7(3)] LA, i) + 32 ["2‘ 1 (2) — 1] L(1, %121

+ (3/2"* L(1, 7341 } .

The next result gives the deductions about positive and negative charac-
ter sums that can be derived from a full statement of Theorem 11.1.

COROLLARY 11.2. If d > 0, we have
Syan >0, if x(2) = x(3) =1, 0orif x(2) =0

and y(3) = 1;
Sya3 >0, if x(2) =0 and y(3) = —1;
Szas >0, if x(2) =x03) = —-1;
Sa10 <0, if x(2)#1 and y(3) = — 1, or if
¥(2) = —1 and x(3) = 0;

and
Sra12 <0, if x(2)#1 and x(3) = 1.

If d < 0, we have
Sypas >0, if (2 =1,o0rif x(2) =0 and x(3) = 1;

Sya6 >0, if x(2) =0 and x(3) = —1;
Sra7 >0, if 32 # —1and x(3) = —1;
and
S0 >0, if y(B) =1,o0rif y(2) = —1 and x(3) =0.

We next state just two of the 24 different class number formulas in-
volving S,, ; that can be deduced.

CoRrROLLARY 11.3.Ifd > 0, 2 } d, and 3 ¥ d, then

d d >
(11.1) 85, (2 = <-2—> {1 + <§>} h(—4d) + {1 +<§)} h(—3d)
+ {@—1}11(—861) + h(—24d).
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Ifd <0,2%d, and 3 ¥ d, then

\, d\
R R R
3 {1 + @} h(8d) + {@ —2} h(12d) + h(24d).

Several congruences for class numbers may be deduced from Corol-
lary 11.3. We remark that the consideration of other class number formulas
involving S,, ; does not appear to yield further congruences.

CorOLLARY 11.4. If p = 1 (mod 4), then

(11.3) h(—24p) + 2h(—4p) + 2h(—3p) = 0 (mod 16),

if p=1 (mod 48),
(11.4) h(—24p) + 2h(—4p) + 2h(—3p) = 8 (mod 16),

if p =25 (mod 48),
(11.5) h(—24p) — 2h(—8p) = 0 (mod 16), if p = 5 (mod 48),
(11.6) h(—24p) — 2h(—8p) = 8 (mod 16), if p =29 (mod 48),
(11.7) h(—24p) — 2h(—4p) = 0 (mod 16), if p = 13 (mod 48),
(11.8) h(—24p) — 2h(—4p) = 8 (mod 16), if p = 37 (mod 48),

(11.9) h(—24p) — 2h(—8p) + 2h(—3p) = 0 (mod 16),
if p =17 (mod 48),
and

(11.10) h(—24p) — 2h(—8p) + 2h(—3p) = 8 (mod 16),
if p =41 (mod 48).

Proof. Let p = j(mod 48), 0 < j < 48. Then by (11.1), we have

(11.11) 8[j/24] = (\%){1 + <§>}h(—4p)+ {1 + @}h(-@)

3
+{<E>"1}h(_8p) + h(~24p) (mod 16).

Congruences (11.3)-(11.10) now follow directly from (11.11) by considering
the eight separate cases modulo 48.
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CoRroLLARY 11.5. We have
(11.12) h(—24p) =0 (mod 8), if p=1 (mod 24),
and
(11.13) h(—24p) =4 (mod 8), if p=5,13,17 (mod 24).

Proof. Congruence (11.12) is a consequence of (11.3), (11.4), Corol-
lary 3.10, and Corollary 4.4. Secondly, for p = 5 (mod 24), (11.13) follows
from (11.5), (11.6), and Corollary 7.5. Thirdly, for p == 13 (mod 24),
(11.13) follows from (11.7), (11.8), and Corollary 3.10. Lastly, for
p = 17 (mod 24), (11.13) follows from (11.9), (11.10), Corollary 4.4, and
Corollary 7.5.

COROLLARY 11.6. If p > 3 and p = 3 (mod 4), then
h(—=24p) — h(—12p) =0 (mod 16), if p =7 (mod 48),
h(—24p) — h(—12p) = 8 (mod 16), if p = 31 (mod 48),
h(—24p) — 3h(—12p) + 2h(—8p) = 0 (mod 16), if p = 11 (mod 48)
h(—24p) — 3h(—12p) + 2h(—8p) = 8 (mod 16), if p = 35(mod 48),
h(—24p) — 3h(—12p) + 4h(—p) = 0 (mod 16), if p = 19 (mod 48),
h(—24p) — 3h(—12p) + 4h(—p) = 8 (mod 16), if p = 43 (mod 48),
h(—24p) — h(—12p) + 2h(—8p) = 8 (mod 16), if p = 23 (mod 48),
and
h(—24p) — h(—12p) + 2h(—8p) = 0 (mod 16), if p = 47 (mod 48).
Proof. Let p = j(mod 48), 0 < j < 48. Then (11.2) gives

B - (B H-Ghren b G

N {@ _2} h(=12p) + h(—24p) (mod 16) .
p

All of the desired congruences are immediate consequences of (11.14).

CorOLLARY 11.7. We have

h(—24p) =0 (mod 8), if p=11,19,23 (mod 24),
and
h(—24p) =4 (mod 8), if p =7 (mod 24).
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Proof. The desired congruences follow from Corollaries 7.5, 9.3, and
11.6.

Lerch [44, pp. 409, 410] has derived some class number formulas in
terms of the sums S,, ; 1 =i =12. Karpinski [42] and Réde@ [57] have
also established class number relations of this sort.

12. SUMS OVER SEVERAL INTERVALS OF EQUAL LENGTH

In this section, it will be convenient to use the following character
analogues of the Poisson summation formula [6, Theorem 2.3], [7,
equations (4.1), (4.2)]. Let f be continuous and of bounded variation on
[c, d]. Let y be a primitive character of modulus £. If y is even, then

2G (1) & @ g"

(12.1) Y xmfm) = 2 X f(x) cos (2mnx/k)dx ;

c=n=d k n

c

if ¥ 1s odd, then
, 2iG
122 Y g fm=— 20

c=n=d k

i X (n) Rdf (x) sin (2nnx/k)dx .
n=1 Je

The primes " on the summation signs on the left sides of (12.1) and (12.2)
indicate that if ¢ or d is an integer, then the associated summands must be
halved.

Throughout the section, it is assumed that y is a primitive character of
modulus k. For each of the theorems below, deductions concerning the
signs of the pertinent character sums are trivial. Likewise, the corresponding
formulas for class numbers are immediate from (2.4). Thus, none of these
obvious corollaries shall be explicitly stated.

THEOREM 12.1. Let y be even, and let m be any positive integer. Then

(12.3)  Sym1 + Sama + Sams + Sams + Sgmo + .o + Samam

2G (;
_ _;I@ 70m) L1, 742) -

Proof. Apply (12.1) several times with f(x) = 1 in each case and with
(c,d) = (0, k[4m), (3k/4m, Sk|4m), (Tk[4m,Ok[4m), .., (4m—1) k[4m, k).
We then get




Sam1 = G:O i Zz(zn) sin (2zn/4m) ,
n=1
) < x(m
Sima + Sams = . y =—= . {sin (10nn/4m) — sin (6nn/4m)}
Samam = G:O 3 X(n){ — sin (2nn (4m —1)/4m)} .

n=1

Adding the above equations, we find that

(12.4) Sam1 T Sama + Sams + oo + Samam

= ¢ 5 2m mZ (—1) sin (2(2j +1) nn/4m).

7t n=1 n J

Now an elementary calculation shows that
2m-1

(12.5) Y, (1) sin (2(2j +1)nn/4m)

j=0
B 2m(—D*, if n=_Qu+1) m,
B 0 , otherwise.

Putting (12.5) into (12.4), we conclude that

Sums + Sama + Sums + o+ Sumam
_26() & (=D z(@u+Dm)

)

u=0 21”’ + 1

2
=20 (1, 2
7 i’
which completes the proof.
Observe that if m = 1, Theorem 12.1 reduces to Theorem 3.7. If
m = 2,3, 4, and 6, then Theorem 12.1 reduces to results that can be derived
from Theorems 7.1, 9.1, 10.1, and 11.1, respectively.

THEOREM 12.2. Let y be odd, and let m be a positive integer. If m is
odd, then

/ 1

1=j=m/2

if m 1s even, then

a7y ("2 —j)Sm,,- OB 27 Q)2 ML D
1=j=m/2 \
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Proof. Apply (12.2) several times with f(x) = 1 in each case and with
(e, d) = (0, kjm), (k|m, 2k/m), ..., ([m/2] — 1) k/m, [m/2] k/m). We then get

Smi = 16 OZOL ;Z(n){ cos (2nnjm) — 1},

s n=1 n

— iG (1) i }?(n){ cos (4nn/m) — cos (2nn/m)},

Y n=1 n

iG () i Z(”){ cos (2[m/2] nn/m)

n
— cos (2{[m/2] — 1} mn/m)}.

Sm,[m/Z] =

n=1

Multiply the j-th equation above by [m/2] + 1 — j, 1 =/ = [m/2], and
add the resulting equations to obtain

(12.8) 2 {Im2]+1-j}S,,;

l=je=m/|2

. o = [m/2]
_ iG (%) » % (n) {_ [m/2] + > cos (2nnj/m)} .

T n=1 N J
First, suppose that m is odd. Then (12.8) becomes
‘m+1 > iG(p) & )Z(n){
—Jj | Sm;= —< —m+ cos (2nnj/m)
Z ( 2 J 2n n=1 N jiL_:O '

1=j=m/2 \

_ oW {=m+7(m} LA, %,

from which (12.6) follows.
Suppose next that m is even. Then (12.8) becomes

m+2 _
Z < ) - J>Sm,j
1=j=m]2

" 0 = m—1
_iG () M{_m—1+(—1)"+ Z cos (Znnj/m)}

G
i 2iX){_,n_1+z(2>—1+z(m>} L(1, 7,

from which (12.7) follows.
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We indicate some special cases of the previous theorem. If m = 2, (12.7)
reduces to Theorem 3.2. If m = 3, (12.6) yields Theorem 4.1. If m = 5, 6,
8, 10, 12, and 24 in Theorem 12.2, we obtain results deducible from
Theorems 5.1, 6.1, 7.1, 8.1, 9.1 and 11.1, respectively.

THEOREM 12.3. Let y be even and let m be an arbitrary positive integer.
Then

(12.9) Sgm1 — Ssma — Ssms + Sgms + Sgmo— —+ + "+ Sgmsm
222G (y) _
= ———— x(m) L(1, %g) -

Proof. Apply (12.1) several times with f(x) = 1 in each instance and
with (¢, d) = (0, k/8m), (Bk/8m, 5k/8m), (Tk/8m, 9k/8m), ...,
(8m—1) k/8m, k). Accordingly, we find that

Sgm1 — Sgma — Sgms + Ssms + Semo— — + + "+ Ssmsm

G 8m—1
7EX) 21)((”) Z X4 (J) xs (j) sin (2mnj/8m)

m—1

-2y ’z,ﬁ 5 1010, sin @on @t fsm

T =1 u=0

Z Xa (V) x5 (v) sin (27nv/8) .

The inner sum above is merely —iG (1, yaxs) = xa (1) xs (1) 2372, by (2.2).
Hence, (12.9) immediately follows.

The special cases with m = 1, 2 and 3 of Theorem 12.3 may be deduced
from Theorems 7.1, 10.1 and 11.1, respectively.

The proofs of the next four theorems are very similar to the preceding
proofs and so will not be given.

THEOREM 12.4. Let y be odd, and let m be an arbitrary positive integer.
Then

Sgmz + Sgm3 — Sgme — Ssm7+ + — —""— Sgmsm-2 — Sgmsm-1
2’2 G(y) _ _
= - ——7—7:—'“ ¥ (m) L(1, Xgp) -

The special cases of Theorem 12.4 with m = 1, 2 and 3 are consequences
of Theorems 7.1, 10.1 and 11.1, respectively.
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THEOREM 12.5. Let y be even, and let m be an arbitrary positive integer.
Then

m-—1 31/2

G _ 3
Z Symazjrz=— __n_—}’(m) L1, %3z) -

j=0
The instances of Theorem 12.5 with m = 1, 2, 4 and 8 are consequences
of Theorems 4.1, 6.1, 9.1 and 11.1, respectively.

THEOREM 12.6. Let x be odd, and let m be an arbitrary positive integer.
Then

Ssmaz — Ssma + Ssm7 — Ssmo+ — F Ssmsm—3 — Ssmsm—1

i5'2G(y) _ _
= — ————;— X(n’l)L(l, XSk) .

The special cases of Theorem 12.6 for m = 1 and m = 2 follow im-
mediately from Theorems 5.1 and 8.1, respectively.

THEOREM 12.7. Let x be odd, and let m be an arbitrary positive integer.
Then

Siomz+S12m3+Stoma+Si2ms —St2ms —S12mo — St2m10 — Siami11

++++-———"=Smiom-a—Stomizm-3— St1amizm-2" St2m12m—1

i (12)12 G
o —-l( )n (X)Z(m)L(lafuk)-

The special instances of m = 1 and m = 2 of Theorem 12.7 yield
results that are easily deduced from Theorems 9.1 and 11.1, respectively.

The class number formula arising from Theorem 12.1 was first proved
by Holden [39]. A less general form of Theorem 12.2 was also established
by Holden [36] who in another paper [37] used his result to derive formulas
for sums of the Legendre-Jacobi symbol over various residue classes. The
special case m = 1 of the class number formula deducible from Theorem 12.7
is due to Lerch [44, p. 407]. Otherwise, the results of this section appear to
be new.

13. SUMS OF QUADRATIC RESIDUES AND NONRESIDUES
We mentioned in the Introduction the two equivalent formulations of

Dirichlet’s theorem for primes that are congruent to 3 modulo 4. In this
section, we state and prove as many theorems as we can that are of the same
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nature as (1.3). In the case that y (n) is the Legendre symbol, we stated our
results in [7, Section 4]. For convenience, we put

S;i(x,r) = Y yx(n)yn",

(i—1)k/j<n<ik/j
where i, j, and r are natural numbers. Again, y is primitive throughout the

section.

THEOREM 13.1. Let y be even. Then
G (x)

1
S (X, 1) =— {1 -~ _(2)} L(2,7%).

Proof. In (12.1), put f(x) = x, ¢ = 0, and d = k/2. Integrating by
parts, we find that

k 0
S, (1. 1) = G (%) x(n)

2

2
27 n=1

{cos (nn) — 1},

and the desired result readily follows.

CoroLLARY 13.2. For any even, real character y, we have S, (x, 1) < O.
In view of Corollary 3.8 and the fact that S,; = 0 for even y, Corol-
lary 13.2 is certainly not surprising.

THEOREM 13.3. Let y be odd. Then
iG(ypk
2n

Proof. In (12.2), put f(x) = x, ¢ = 0, and d = k/2. Thus, upon inte-
grating by parts, we get

S,1 (1) =

SZI(Xa 1)= {)?(2)“1}14(1»}?)-

G(x)k x(n)

os (mn),

P
from which the desired result readily follows.

CorOLLARY 13.4. If y is real and odd, then S, (3, 1) > 0,if y (2) # 1,
and S, (x, 1) = 0, otherwise.

In view of Corollary 3.3 and the elementary fact that S,; = 0 if ¥ (2)
= —1 [8], at least part of Corollary 13.4 1s expected. If p is a prime,
Corollary 13.4 shows that the sum of the quadratic residues modulo p
exceeds the sum of the non-residues on (0, p/2) if p = 3 (mod 8), while the
two sums are equal if p = 7 (mod 8).
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THEOREM 13.5. Let y be odd. Then

k 31/2
Sy (2, 1) = — ’Gi") { [1-F®T LD+ L2, x3k>}

Proof. In (12.2), put f(x) = x, ¢ = 0, and d = k/3. The result follows
from the same type of calculation as above.

COROLLARY 13.6. If y is real and odd, then S5; (3, 1) > 0.
The following theorems are proved in the same manner as above.

THEOREM 13.7. Let x be odd. Then

G (x)k 3i/2
Ss2 (1) = - iX) { [% (3)_1]L(1’X)+TL(2 Xsk)}

CoroLLARY 13.8. If y is real and odd and if yx(3) = 1, then
S32 (X: 1) < 0

THEOREM 13.9. Let y be even. Then

1
Sa2 (1, D) = — —47?(—) {L(l, Xa) + = [2 7(2)] [1 - -X(2)] L(2, X)}

CoroLLARY 13.10. For yx real and even, we have S, (3, 1) < 0.

THEOREM 13.11. Let y be odd. Then

k
Su(p =00 { TN -ZQ] LA, D+ L, x4k>}
and
Saz (2, 1) = (X) {[ (2)—1][ X(2)—1]L(1,x)+ 1L(2 )m)}

COROLLARY 13.12. Let yx be real and odd. If x(2) % —1, then
S41 (x, 1) > 0; in any case, S,5 (3, 1) < 0.

THEOREM 13.13. Let y be even. Then
(x) k*

Si1(x,2) = L(2, y)

and

(x) K
| S21 (1, 2) = A2

{1 -2} L2, 7).
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CoroLLARY 13.14. If y is even and real, then S;; (x,2) > 0 and
S21 (6, 2) < 0.

THEOREM 13.15. Let y be odd. Then

iG (y) k?
and |
G (y) k% (1 1 1
S22 = O BE {Z [7Q)—11L(L D) + 7—;[1 - gm] LG, yt)} .

CoOROLLARY 13.16. Let y be odd and real. Then in all cases,
Si1 (6, 2) < 0;if x(2) = 1, then S,; (3, 2) < O.

If x is real, the class number formula corresponding to (13.1) is due to
Cauchy [17]. Pepin [51, p. 205], Lerch [44, p. 395], and Ayoub, Chowla,
and Walum [3] have also given proofs of (13.1). Of course, any number of
formulas could be proven for ) y(n)n", where r is a positive integer

a<n=>b
and a and b are rational multiples of k. However we are unable to make
any more non trivial deductions about the positivity (or negativity) of such
character sums. In this connection, see [3] and [25].

14. SOME QUESTIONS AND PROBLEMS

In the foregoing work, in order to determine if S;; is of constant sign
for classes of real, primitive characters, we expressed S;; as a linear com-
bination of L-functions of real characters evaluated as s = 1, and then we
inspected the coefficients in this linear combination to determine if all were
either non-negative or non-positive. In fact, S;; may always- be expressed
as a linear combination of L-functions evaluated at s = 1. However, In
the general situation, the L-functions are associated with complex charac-
ters. When non-real characters arise in the representation of S;;, we are
unable to say anything about the sign of S;;. We have attempted to find all
instances when §; can be expressed in terms of L-functions of real charac-
ters. It is natural to ask if these cases are the only instances when theorems
about the non-negativity or non-positivity of S;; are possible. Results of
P. D. T. A. Elliott (written communication) appear to indicate that this,
indeed, is the case. For example, he has proved the following result. Consider

the set of primes p in any residue class, e.g., p = 1 (mod 8), and the as-
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sociated characters y, of a given fixed order. Then the values of arg L (1, xp)s
as p varies, are everywhere dense modulo 27.

Let us look at just one example where the admittedly scant, numerical
evidence seems to suggest otherwise. Let y (n) denote the Legendre symbol
modulo p, where p = 1 (mod 4). Then S5; cannot be expressed in terms of
L-functions with real characters. However, for p=1(mod8) and
p = 30,000, computations show that Ss; > 0. Sufficient conditions for
the positivity of S5, are that the two series on the right side of (5.14) are
positive. For p = 1 (mod 8), are these two series always positive ?

There are a few instances for which we are able to express S;; in terms
of L-functions of real characters and for which we are unable to deduce
any theorems on the sign of S;;, but for which numerical computations

7N

n . :
suggest a constant sign. Again, let y(n) = ( ~) . For primes p with
N2
p = 7 (mod 8) and p = 200,000, calculations of Duncan Buell show that
/5
h(—5p) < {5 — (—-)} h(—p), or, equivalently, by Corollary 5.3, that
D,

S5y > 0. Is this true for all p with p = 7 (mod 8) ?

There are 7 additional cases for intervals of length p/24 in which numeri-
cal calculations for p = 30,000 suggest that S,,; may possibly have a
constant sign. For p = 11 (mod 24), S, 3, Sy4,11 > 0; for p= 17 (mod 24),
S24,8, 24,9 < 0; forp = 19 (mod 24), S,, ¢ > 0; and for p = 23 (mod 24),
Sr4.2 = —834,12 > 0. It can be shown that the above inequalities have
the following implications, which we very tenuously conjecture hold for
all primes in the given residue classes. If p = 11 (mod 12), then 4 (—12p)
< 2h(—8p) + h(—24p); if p= 11 (mod24), then i (—8p) < 2h(—p)
+ h(—12p); if p = 17 (mod 24), then 2k (—3p) < 2h (—8p) + h (—24p)
and & (—8p) < 2h(—3p) + h(—4p); and if p = 19 (mod 24), then 44 (—p)
< h(—12p) + h(—24p).

S. Chowla has conjectured that if p is a prime with p = 3 (mod 8),
then §,; assumes every value that is a positive, odd multiple of 3. He has
also conjectured that if p = 7 (mod 8), then S,; assumes every positive,
odd integral value. In other words, Chowla has conjectured that 4 (—p)
assumes every possible odd value for each of the sets of primes p with
p = 3 (mod 8) and p = 7 (mod 8). Samuel Wagstaff has done some cal-
culations to test Chowla’s conjectures and similar conjectures of the author.
All of the calculational data are for p = 30,000. For p = 3 (mod 8), the
largest value for S,; is 297. There are only two omissions, 249 and 291.
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For p = 7 (mod 8), the largest value for S,; is 259. The smallest value not
assumed 1s 163. There are several other values between 163 and 259 that
are not assumed. The calculations also strongly support the following
conjectures. S,; and S3;, for p = 1(mod4); Ss,, for p= 3 (mod 4);
Sg1, for p = 1 (mod 8); Sg,, for p = 7 (mod 8); —Sg,, for p = 5 (mod 8);
and Sy, ,, for p = 7 (mod 8) and for p = 11 (mod 12), each assumes all
positive, integral values. We refer the reader to the foregoing work here
for the translations of these conjectures into conjectures about class
numbers.
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