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Le méme argument que dans (b) montre que les j; sont des fonctions
modulaires sur I'y(2°), puis, en appliquant (5.4), que ce sont des formes
modulaires 2-adiques de poids 0 sur SL,(Z).

Remarques.

(a) On peut aussi déduire (5.4) et (5.5) de la définition « géométrique »
des formes modulaires /-adiques adoptée par Katz dans son expos€ a
Anvers (Lect. Notes 350, p. 69-190).

(b) Le théoréme (5.2) «explique» que I'on ait des congruences sur
n —1
¢ (n) (mod/) lorsque 7 est, soit divisible par /, soit tel que <7> = — (—l—> ,
cf. Kolberg [7], ainsi que les exercices du § 6.

(c) Lorsque /=2, on a j; = j; =js =) = j” = 0(mod 2), de sorte
que

o0
j= > ¢B8n—1)¢*"" (mod 2),
n=0
et le théoréme (5.2) ne fournit aucun renseignement sur ces coefficients
(mod 2). 1l serait intéressant de voir s’ils sont répartis « au hasard », comme
cela semble le cas pour la fonction de partition, cf. [13].

§ 6. EXERCICES

Formes modulaires de poids 1.

(6.1) Les hypothéses étant celles de (4.2 ii), montrer que o < 3/4, et
quil y a égalité si et seulement si I'image de Gal (K;/Q) dans PGL,(C)
= GL,(C)/C* est isomorphe au groupe diédral D, d’ordre 4 (cf. exemple
4.4)).

(6.2) On suppose que fest de type (1, &) sur I'o(N) (mais pas nécessaire-
ment que c’est une fonction propre des opérateurs de Hecke). Montrer que,
si

(*) N{n<x:a,#0} = o(x/log’*x),

on a f = 0. (Observer que ’espace des f satisfaisant & (*) est stable par les
operateurs de Hecke; s’il n’est pas nul, il contient un vecteur propre;
conclure en appliquant (6.1).)
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Formes modulaires (mod m).

(6.3) Montrer que, sous les hypothéses de (4.71ii,), on a o (m) < 3/4
(méme méthode que pour (6.1)). En déduire un résultat analogue a (6.2).

(6.4) On fixe k, m, N, ¢ et ’on note m la norme de m. Soit 4 I’ensemble
des séries formelles Y a, ¢", & coefficients dans Ogy/m, qui sont réduction
(mod m) de formes modulaires de type (k, &) sur I'y(N), a coefficients
dans Op; c’est un Op/m-module libre de type fini. Les opérateurs de Hecke
T, définissent des endomorphismes 7, , de 4. Montrer que 1’application
pl= T, 4 est frobénienne au sens suivant: pour tout # € End (4), I’ensemble
P, des nombres premiers p, ne divisant pas Nm, tels que T, 4 = u est
frobénien (et peut €tre défini par une extension galoisienne finie de Q non
ramifiée en dehors de Nm). Soit P; I’ensemble des p = 1 (mod Nm) qui
appartiennent a P, (i.e. tels quefl T, = 2f pour tout fe A4), et soit P,
I’ensemble des p = —1 (mod Nm) qui appartiennent a P, (i.e. tels que
f| T, = 0 pour tout /'€ 4). Montrer que P; et P, ont une densité > 0
(cf. [5], 9.6, oli est traité le cas analogue des formes de poids 1). Si p € P},
onaTl, =r+1 etsipeP;,onaT, =(-1)"7%sirest pair et

Ty 4= 0 si r est impair. Si f = ) a,q" est un élément de A4, on a donc
( a,r = (r+1a, si. peP;
(n,p) = 1= [0 si peP,, r impair

r

”Pzi(——l)”/za,, si peP,, r pair.

(6.5) On conserve les notations de (6.4). Soit /' = Y a, ¢" un élément
de A. Montrer, en utilisant les derniéres formules de (6.4), que ’ensemble
des valeurs prises par les a, (n>>1) est un sous-ensemble de Op/m stable
par multiplication par Z. (En particulier, si Op = Z et si I’'un des q, est
inversible dans Z/mZ, alors les a, prennent toutes les valeurs possibles.)
Si a appartient a ce sous-ensemble, et si 2 /' m, on a

N{n<x:a, =a dans Ogm} >> x(loglogx)"/logx

quel que soit 4. (Choisir r >1 tel que a, = 27" ! g, et remarquer que
a, = a lorsque n est de la forme p, ... p, ¥, ou py, ..., p, sont des éléments
de P} ne divisant pas r, et deux a deux distincts.)

Formes modulaires (mod 2).

(6.6) Soit S la F,-algébre des formes modulaires (mod 2) sur SL,(Z),
autrement dit (cf. [21], [27]) Ialgébre des polyndmes en la série

A~=q+q9+q25+q49+...,
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a coefficients dans F,. Soit S, (resp. S;) le sous-espace de S’ engendré par
les A’ pour i >1 (resp. par les A2], pour j >0);ona S=F, ®S,. Soit
/= a,q" un élément de S,.

(a) Montrer que, si fe S, et f # 0, il existe ¢ > O tel que

N{n<x:a, =1} ~ cx'/?,

(b) On peut prouver (cf. [22]) que les T, sont localement nilpotents
sur S,. Admettant ce fait, il existe un entier 2 > 0 tel que f soit annulé par
tous les produits 75 ... Tp,, p; premier # 2. Montrer que a, = 1 entraine
que n est de la forme bc ou b a au plus 4 facteurs premiers # 2 (raisonner
par récurrence sur 4 et n). En déduire:

N{n<x:a,=1} << x(loglogx)""'/logx.

(¢c) On suppose f ¢S, et 'on choisit I’entier # de (b) minimal; on a
h >1. 11 résulte alors de (6.4) qu’il existe des ensembles frobéniens
Py, ..., P, de densités > 0, ainsi qu'un élément non nul g de S,, tels que

fl Ph_'g si plepls'“:pheph'

Si le r-ieme coeflicient de g est égal a 1, on a @, = 1 pour tout n de la
forme p; ... p, 1, avec p; € P;, les p, étant distincts, et ne divisant pas r. En
conclure que

N{n<x:a, =1} >> x(loglogx)"!/logx,
d’ou, en vertu de (b):
N{n<x:a, =1} = x(loglogx)" !/logx.
(d) II résulte de (a) et (c) que fe S, équivaut a

N{n<x:a, =1} = o(x/logx)
ainsi qu’a
N{n<x:a, =1} = 0(x'?.

(6.7) On pose 4° = ) ¢,q", et 'on note E I'ensemble des 7 tels que

= 0 (mod 2). Montrer que le complémentaire £’ de E est formé des
entiers »n de la forme p*™ ™! a2, avec p premier, a impair non divisible par p,
m entier >0, et p=3 (mod 8). (Utiliser la congruence

Z @1+ (mod 2) )
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La série de Dirichlet f(s) = ), . n~° associée & E’ est égale a

A=270@sy{ Y plA+p )},

P=3 (mod38)

On peut I’écrire sous la forme

f(s) = clog 1/(s=1) + h(s),

ou & est holomorphe pour £ (s) > 1, et ¢ = n?/32. En déduire (grice au
théoréme b de [3], p. 26), que I’'on a

N{n<x:e =1 (mod2} ~ cxflogx.

Montrer que

£IT, = 4 (mod 2) si p =3 (mod8)
P 0 (mod 2) sinon.

Montrer que les mémes résultats valent pour 4°, 4 condition de rem-
placer p = 3 (mod 8) par p = 5 (mod 8).

------

(6.8) Soit n> a, une fonction multiplicative a valeurs dans I’anneau O
des entiers d’une extension finie F de Q, et soit v la valuation de F définie
par un idéal premier p 5% 0 de Op. Pour tout r > 0, notons N, (resp. P,)
I’ensemble des entiers n >1 (resp. des nombres premiers) tels que
v (a,) = r, et posons

L = T 07 et £ = % T,

neN,

ou 7 est une indéterminée.

(a) Montrer que
v(a,m)

= T+ 31 7,

ou I’on convient de supprimer le coefficient de p™™¢ si v (@,m) = o0, i.e. si
Am = 0.
En déduire que

7109 = &b { T T (02,9 +0,))

olt pp () = ), ep, P 5 et ot les 6, (s) sont holomorphes pour Z (s) > 1/2.
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(b) On suppose que les P, sont réguliers de densité¢ o, >0 et que
0 < o, < 1; onnote m la borne inférieure des i > 1 tels que o; > 0. Montrer
que f, (s) est de la forme

1 h(r) ;
fr(s) = G—1)y {Z ¢,,;(s) (log 1/(s—1)) }

j=0

ol % () est la partie entiére de r/m, et ol les ¢, ; (s) sont holomorphes pour
Z (s) > 1. Cela entraine:

Jo(9) + ... +f.(5) =

(s —1)%

ol les d,;(s) sont holomorphes pour £ (s) >1. Montrer que I'on a
d.; (1) > 0 pour j = h(r). En déduire, grace au théoréme b de [3], p. 26,
que

N{n<x:a,20 (mod p™)} ~ ¢x (loglogx)""/log' *x,

h(r)
{ Z dr,j (S) (IOg 1/<S - 1))1} ’

j=0

avec ¢, = d, ; (1) | I ().

(c) On suppose que les a, sont les coefficients d’une forme modulaire
de type (4.7 1i,). Montrer que les conditions de (b) sont satisfaites (les P,
sont méme frobéniens) et que I'on a

o + 0oty + ..+, +... =1 =0,

ou o, est la densité des p tels que ¢, = 0.

(d) Etendre les résultats ci-dessus au cas de produits de puissances
pit...p; d’idéaux premiers (utiliser des séries formelles en T7, ..., T)).

(6.9) Soit / un nombre premier # 2. Soit P, (/) I'’ensemble des nombres
premiers p # [ tels que 7 (p) soit divisible par /, mais pas par [*. Montrer
que P, (/) est de densité > 0. [Soit G, le sous-groupe de GL,(Q,) image de
la représentation /-adique attachée a 4, cf. [19], [27]. La densité de P, (/)
est égale a la mesure de Pouvert H, de G, formé des éléments s tels que
v, ( Tr(s)) = 1; il revient au méme de prouver que H, # @, que P, (/) # &,
ou que la densité de P, (/) est > 0. Or,ona H, # @ pour [ # 3,5, 7, 23,
691, vu la « grosseur » de G, cf. [27]. Pour [ = 3,7,23, on a 5P, (/)
puisque 7(5) =2.3.5.7.23; pour /=35, on a 19 e P, (I) puisque
7(19) = 2%. 5. 7%. 11. 23. 43; pour / = 691, un calcul sur machine montre,
parait-il, que 1381 e P, (/).]

Déduire de 13, et de D’exercice précédent, que, pour tout r >0, il
existe une constante ¢;, > 0 telle que
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N{n<x:t(n)#0 (mod I''H)} ~ ¢,x (loglogx)/log"®x,

ou « (/) est donné par la formule de I’exemple 3 du § 1.

Equidistribution des valeurs des a, (mod m).

(6.10) Soit n— a, une fonction multiplicative a valeurs dans un anneau
commutatif fini 4. On note r I'ordre du groupe multiplicatif A* des éléments
inversibles de A. Si A € A*, on note P, I’ensemble des nombres premiers p
tels que a, = A. On fait les hypothéses suivantes:

(1) Les P, sont réguliers de densités «, telles que
0<Ya,<l1.
(i) Le groupe A* est engendré par les éléments A tels que «; > O.

On note X le groupe des caractéres de A*; un élément ¢ de X est un
homomorphisme de A* dans C*; on le prolonge & A en posant ¢ (1) = 0
si A n’est pas inversible.

(a) Si e A* et @ € X, on pose
fi(s) = X n™* et f,(5) = ) @la)n™".

ap=2~24

Montrer que

1
Ja = p 2 (A,

peX

(b) Décomposer f, en produit eulérien, et en déduire que

log f,(s) = f(e) log 1/(s—=1) + h, (),

ol B(p) = >, a; ¢ (4), et h, (s) est holomorphe pour £ (s) > 1.
On a Z (B (p)) <a, avec o = ) a,, et il n’y a égalité que si ¢ est le
caractére unité de A*.

(c) Si B est un nombre complexe, on convient de noter 1/ (s—1)? la
fonction exp {f log 1 / (s—1)}. Montrer, en combinant (a) et (b), que I'on a

fi(e) = c®(s=1)" + iZ ¢;,2 (8)/(s = 1)Ft,

ou ¢ (s) et les c; , (s) sont holomorphes pour Z (s) > 1, les f; sont tels que
Z(PB)<a,etc(l) >0.
En déduire (cf. [3], p. 25, th. a) que

N{n<x:a, =1} ~ cx/logh™%,




— 255 —

avec ¢ = ¢(1)/I' (¢) > 0. (Noter que ¢ est indépendant de A: il y a
équidistribution des valeurs de (a,) dans A4*.)

(d) Appliquer la méthode de Landau aux f; et f,,, en supposant les P,
frobéniens. En déduire, pour tout N > 1, un développement asymptotique
de N {n <X x: a, = A} modulo O (x/log" x).

(e) Enoncer et démontrer des résultats analogues pour
N{n<x:a® =1..,a" =21},

ou les a,') sont des fonctions multiplicatives & valeurs dans des anneaux
commutatifs finis 4;. (Se ramener au cas d’une suite unique a valeurs dans
A=A, % o X A)

(6.11) Soit m un entier impair > 3. On considére la fonction multiplicative
nt 1 (n) (mod m), a valeurs dans A = Z/mZ .

Montrer que la condition (i) de (6.10) est satisfaite, et qu’il en est de
méme de (i1) pourvu que m ne soit pas divisible par 7. [On peut supposer
que m est une puissance d’un nombre premier /, cf. [19], 4.2. 11 faut alors
vérifier que, si / # 2,7, les t(p), p premier # [, qui ne sont pas divisibles
par / engendrent le groupe multiplicatif (Z//?Z)*. Pour [ # 3, 5, 23 et 691,
cela résulte de ce que 7 (p) peut prendre n’importe quelle valeur modulo /2,
cf. [27]. Pour [ = 3,5, 23, 691, remarquer que le sous-groupe de (Z/I*Z)*
engendré par les 7 (p), p # [, se projette sur (Z/IZ)* et contient 2 d’aprés
(6.4); utiliser alors le fait connu que 2'~* 2 1 (mod %) pour / < 1093.]

En déduire ’équidistribution des valeurs de t(n) appartenant a
(Z/mZ)*, lorsque m n’est pas divisible par 7.

(6.12) Montrer qu’il existe deux constantes ¢, c_, avec ¢, > c_ > 0

telles que
( 1/2 . A
c.x/log'’*x si = = ]

N{n<x:1(n) =21 (mod7)} ~ ,
c_x/log'?x  si (?> = -1,

(Utiliser une méthode analogue a celle de (6.10).)

Exemple de minoration de ] a, l pour p — 0.

(6.13) Soit a— x(a) un caractére de Hecke d’un corps imaginaire
quadratique K. Soit f le conducteur de y. On suppose que y est d’exposant
entier d > 1, autrement dit que
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7 ((2)) = z? pour tout z € K* tel que z = 1 (mod*7).
Posons
> 2(@q"® =} aq",
de sorte que :

Yan” =L = [T (1-z@N®™)™".
PAT
On sait que la série ) a, ¢" est une forme modulaire parabolique de
poids & = 1 + d et que c’est une fonction propre des opérateurs de Hecke.
Si o est le caractére d’ordre 2 qui correspond a K,ona a, = Osi w (n) = — 1.
Soit P I'ensemble des nombres premiers p ne divisant pas N (), et tels
que o (p) = 1.SipeP,ona

a, =z + 7,
ol p et p sont les idéaux premiers de Oy divisant p. Montrer que

(k—3)/2—c¢

la,| >>p pour tout ¢ > 0.

[On peut se restreindre au cas ou p est contenu dans la classe mod N ()
d’un idéal fixe a. Sil’on écrit alors p = a (2), avec z = 1 (mod * N (f)), on
a a, = y(a)z* + z(a)z = 4;(x,»), ol x,y sont les coordonnées de z
par rapport a une Z-base de a” ', et ol 4; est un polyndme homogéne de
degré 4. Les coefficients de A, sont des nombres algébriques, et 4; n’a

aucun facteur multiple. D’aprés le théoréme de Roth, on a

Ay (x,¥)>> (sup (|x], [»]))*"27° pour x, y premiers entre eux,

d’ou aussitot le résultat cherché.]

Soit 6 un nombre > O tel que, pour tout secteur angulaire de C de lar-
geur ~ 1/N, il existe p << N?tel que I’élément z correspondant appartienne
au secteur angulaire donné. (D’aprés KovalCik, Dokl., t. 219, 1974, on peut
prendre pour ¢ tout nombre > 4.) Montrer qu’il existe alors une constante
¢ > 0 telle que

lapl < Cp(k—l)/Z—l/é

pour une infinité de p tels que w (p) = 1.

Passage des fonctions modulaires aux formes modulaires.

(6.14) Soit f= > ,~_,a,q"une fonction modulaire sur SL,(Z) de
poids k € Z, a coefficients rationnels. On suppose f holomorphe dans le
demi-plan £ (z) > 0 mais pas nécessairement a la pointe oo.

o

e
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(a) Soit / un nombre premier tel que @, = 0 pour tout #» < 0 divisible
par /. Montrer que les séries

fr=Yaq" et f"=) aq"

In
sont des formes modulaires /-adiques de poids k, au sens de [21]. ..

(b) Soient / un nombre premier # 2, et ¢ = + 1 tels que g, = 0 pour

N\

n :
tout n < 0 tel que ( 7) = &. Montrer que la série

fo = a,q"
() -

est une forme modulaire /-adique de poids k. (Méme méthode que pour
5.2.)

Divisibilité des coefficients c (n) de j.

(6.15) Soit D l'opérateur de dérivation ) a,q"+— Y na,q", noté 0
dans [21], [27]. Soient / un nombre premier # 2, et r un entier > 1.

(a) Montrer que, si 4 est une forme modulaire (mod /"), de poids %,
il existe une forme modulaire 4’ (mod /"), de poids k + 2 + "~ 1 (/—1),

telle que
D(h/4) = h'/]4 (mod I").

(Utiliser le lemme 3 de [27], p. 19, ainsi que le fait que
P=E)i;-13-1) (modl").)

(b) Déduire de 1a que, pour tout a > 0, il existe une forme modulaire
fo (mod I"), de poids 12 + a (2+1"" ' (I-1)), telle que

D%(j) =fu/4 (mod I).

1
(c) On prend a = 5 I""1(I—1) . Montrer que

D(j) =j, (mod I"), ou j, = ), G)C(H)CJ"-
n=-—1

En déduire, grice a (b), I'existence d’une forme modulaire # de poids

1
24+ I =0 + S P2 (1-1) = 12 4k,

L’Enseignement mathém., t. XXII, fasc. 3-4. 17
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telle que

j— <:l£> je = h/4 (mod [").

Le terme constant de % est nul. En déduire que & = fA4, ou f est une
forme modulaire (mod I") de poids k, ce qui fournit une autre démonstra-
tion de (5.2 b).

(6.16) On conserve les notations de (6.15), et I'on prend r = 1, i.e. on
calcule (mod /).

(a) Montrer que j'= 744 (mod/) si /= 3,5,7,11, et que j' (mod /)
est de filtration / — 1 (au sens de [27], p. 24) si / > 13. En particulier, on a,
pour tout n > 1:

c(3n) =0 (mod 3)

c(5n) =0 (mod 5)

c(7n) =0 (mod 7)

c(11n) =0 (mod 11)

c(13n) =c(13)t(n) = —1(n) (mod 13)

c(17n) = c(17) t,s(n) = 4t;s(n) (mod 17)

c(19n) = c(19) t;5(n) = 7t;5(n) (mod 19)

c(23n) = c(23)t,,(n) = 4t,,(n) (mod 23),
ou, pour k = 16, 18,22, on note #, (n) le coefficient de ¢" dans I'unique
forme parabolique normalisée de poids k.

(b) On a
D(j) = Q°R/4 = Q°R4A"™ /A",
d’ou
D**1(j) = D*(Q*R4A'1)/4" (mod ). |
Montrer que, si [ > 13, 0% R A"~ 1 est de filtration 12/ + 2. En déduire
que DY(Q?RA*" 1) est de filtration 12/ + 2 + a (I+1) pour a </ — 2.
(¢) On applique (b) avec a = (/—3)/2, de telle sorte que
D*(Q?RA™YHY/A4' = D" (j) =j,, cf. (6.15¢).

————

En déduire que la forme modulaire (mod /) j — <T> j. estde filtration

1 : A
— (I—1)?, et que j_ est de filtration /> — I En particulier, ces formes sont

£ 0 (mod ]).
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—1
(d) Si I = 3 (resp. 5, 7, 11), la forme j — <—l—> j, est nulle (resp. de

filtration 0, 12, 40).

(e) Déduire de (b) et (c) les congruences suivantes (dues a Kolberg [7]):

. n

c(n) =0 (mod?5) si <—5—> = — 1
, n

c(n) = 2no;(n) (mod 7) si <7> =1

c(n) = 9n?a5(n) — 3n*o;3(n) (mod 11)

w

fuly
P
H S~
| =
\’/

li

)—-l

‘N
c(n) =8t (n) —3nas(n) — 2n*o;(n) (mod 13) si <E> = —1

/

(6.17) Soient / un nombre premier >7, et r un entier > 0. Montrer

que, pour tout entier a, il existe une infinité d’entiers n tels que ¢ (n)

~1
— g (mod I") et (-'lf> = - <_—> . (Utiliser les exercices (6.16) et (6.5).)

[1]

(2]

[4]

(5]
[6]
[7]
8]

9]

l
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