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Le même argument que dans (b) montre que les jt sont des fonctions

modulaires sur r0(26), puis, en appliquant (5.4), que ce sont des formes

modulaires 2-adiques de poids 0 sur SL2(Z).

Remarques.

(a) On peut aussi déduire (5.4) et (5.5) de la définition « géométrique »

des formes modulaires /-adiques adoptée par Katz dans son exposé à

Anvers (Lect. Notes 350, p. 69-190).

(b) Le théorème (5.2) « explique » que l'on ait des congruences sur

c (n) (mod/) lorsque n est, soit divisible par /, soit tel que (jj - ^9
cf. Kolberg [7], ainsi que les exercices du § 6.

(c) Lorsque / 2, on a j\ j3 j5 j' «= j" 0 (mod 2), de sorte

que
00

JS X c(8» -l )q8n'1(mod 2),
« 0

et le théorème (5.2) ne fournit aucun renseignement sur ces coefficients

(mod 2). Il serait intéressant de voir s'ils sont répartis « au hasard », comme
cela semble le cas pour la fonction de partition, cf. [13].

§ 6. EXERCICES

Formes modulaires de poids 1.

(6.1) Les hypothèses étant celles de (4.2 ii), montrer que a <3/4, et

qu'il y a égalité si et seulement si l'image de Gai (.Kf/Q) dans PGL2(C)
GL2(C)/C* est isomorphe au groupe diédral D2 d'ordre 4 (cf. exemple

(4.4)).

(6.2) On suppose que/est de type (1, s) sur (mais pas nécessairement

que c'est une fonction propre des opérateurs de Hecke). Montrer que,
si

(*) N { n < x : a, *0}o (x/log3/4x)

on a/ 0. (Observer que l'espace des/ satisfaisant à (*) est stable par les

opérateurs de Hecke; s'il n'est pas nul, il contient un vecteur propre;
conclure en appliquant (6.1).)
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Formes modulaires (mod m).

(6.3) Montrer que, sous les hypothèses de (4.7 ii±), on a a (m) < 3/4
(même méthode que pour (6.1)). En déduire un résultat analogue à (6.2).

(6.4) On fixe k, m, N, s et l'on note m la norme de m. Soit A l'ensemble
des séries formelles £ an #"> a coefficients dans 0F/m9 qui sont réduction
(mod m) de formes modulaires de type (k9 e) sur ro(N), à coefficients
dans 0F; c'est un 0Fjm-module libre de type fini. Les opérateurs de Hecke
Tn définissent des endomorphismes TnA de A. Montrer que l'application
P1"^ TPtÂ est frobénienne au sens suivant: pour tout u e End (A), l'ensemble
Pu des nombres premiers p, ne divisant pas Nm, tels que TPfÄ u est

frobénien (et peut être défini par une extension galoisienne finie de Q non
ramifiée en dehors de Nm). Soit P 2 l'ensemble des p== 1 (mod Mrt) qui
appartiennent à P2 (i.e. tels que f\ Tp 2f pour tout / e A), et soit P~0

l'ensemble des p — 1 (mod TVrrt) qui appartiennent à P0 (i.e. tels que

f\Tp 0 pour tout / e A). Montrer que P2 et Pq ont une densité > 0

(cf. [5], 9.6, où est traité le cas analogue des formes de poids 1). Si p eP2,
on a Tpr A r + 1, et si p ePÖ> on a T TiA (—l)r/2 si r est pair, et

Tpr)A 0 si r est impair. Si / Yjan^n est un élément de A, on a donc

(6.5) On conserve les notations de (6.4). Soit / £ an qn un élément
de A. Montrer, en utilisant les dernières formules de (6.4), que l'ensemble
des valeurs prises par les an («>1) est un sous-ensemble de 0F/m stable

par multiplication par Z. (En particulier, si 0F Z et si l'un des an est

inversible dans Z/mZ, alors les an prennent toutes les valeurs possibles.)
Si a appartient à ce sous-ensemble, et si 2^ m, on a

N { n < x : an a dans 0FIm} >> x(loglogx)h/logx

quel que soit h. (Choisir r > 1 tel que ar 2~ft_1 a, et remarquer que

an a lorsque n est de la forme p0 ...ph r, où p0, ...>ph sont des éléments

de P2 ne divisant pas r, et deux à deux distincts.)

Formes modulaires (mod 2).

(6.6) Soit S la F2-algèbre des formes modulaires (mod 2) sur SL2(Z),
autrement dit (cf. [21], [27]) l'algèbre des polynômes en la série

an? (r + 1)«n Si PePt
\ 0 si pePo, r impair

a"pr (_i)r/2fln si pePZ, r pair.

A q + q9 + q25 + q49 +
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à coefficients dans F2. Soit S0 (resp. Sx) le sous-espace de S engendré par

les A1 pour i > 1 (resp. par les AlJ\ pour j > 0); on a S F2 © S0. Soit

/ ^ un élément de S0.

(a) Montrer que, si f e Sx et / ^ 0, il existe c > 0 tel que

iV { n < x : 1} ~ cx1/2

(b) On peut prouver (cf. [22]) que les Tp sont localement nilpotents

sur S0. Admettant ce fait, il existe un entier /z > 0 tel que/soit annulé par
tous les produits TPo... TPh, pt premier A 2. Montrer que an 1 entraîne

que n est de la forme bc2, où b a au plus h facteurs premiers # 2 (raisonner

par récurrence sur h et n). En déduire:

iV{n<x: an 1} << x(loglogx)h~1llogx.

(c) On suppose / $Sl9 et l'on choisit l'entier h de (b) minimal; on a
h > 1. Il résulte alors de (6.4) qu'il existe des ensembles frobéniens

Pl9 ...,Ph de densités > 0, ainsi qu'un élément non nul g de S0, tels que

/| TP1... TPh gsi

Si le r-ième coefficient de g est égal à 1, on a 1 pour tout n de la
forme p1 ...ph r, avec pt ePi9 les pt étant distincts, et ne divisant pas r. En
conclure que

N {n <x : an 1} >> x (loglog x)ft~1/log x

d'où, en vertu de (b):

Ar{n<x:a/Î l} x x(loglogx)Ä~1/logx.

(d) Il résulte de (a) et (c) que / e S1 équivaut à

N {n x : an 1} o (x/log x)
ainsi qu'à

iV{n<x: an 1} 0 (x1/2).

(6.7) On pose A3 et l'on note E l'ensemble des n tels que
en m 0 (mod 2). Montrer que le complémentaire E' de E est formé des
entiers n de la forme ^4m + 1 a2, avec p premier, a impair non divisible par p,
m entier > 0, et p 3 (mod 8). (Utiliser la congruence

OO

AX <ï(2"+1)2 (mod 2).)
n 0
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La série de Dirichlet/(Y) £ neE, n~s associée à E' est égale à

(1 — 2~2s) C(2s) { £ p~si(l+p-2*)}.
p 3 (mod 8)

On peut l'écrire sous la forme

f(s) C log 1/(5-1) +h(s),
où h est holomorphe pour 0L (s) > 1, et c tl2/32. En déduire (grâce au
théorème b de [3], p. 26), que l'on a

N {n < x : 1 (mod 2)} ~ cx/log x

Montrer que

A3 | Tpee
A (mod 2) si p 3 (mod 8)

0 (mod 2) sinon

Montrer que les mêmes résultats valent pour A5, à condition de

remplacer p 3 (mod 8) par p 5 (mod 8).

Divisibilité des an par une puissance d'un idéal premier.

(6.8) Soit n\-> an une fonction multiplicative à valeurs dans l'anneau 0F
des entiers d'une extension finie F de Q, et soit v la valuation de F définie

par un idéal premier p ^ 0 de 0F. Pour tout r > 0, notons Nr (resp. Pr)
l'ensemble des entiers n > 1 (resp. des nombres premiers) tels que
v (<an) r, et posons

fris) X /T' et A (s) X T'/,(s),
neIVr r — 0

où T est une indéterminée.

(a) Montrer que
v(a m)

A(s)=ri(i+x^ p~ms),
p m— 1

où l'on convient de supprimer le coefficient de p~ms si v (<apm) oo, i.e. si

Clpm P»

En déduire que

A (s) exp { X + (s)) }
r 0

où <pPr (s) YjpePrP S' et *es ^r ^ sont holomorphes pour ^ (.s) > 1/2.
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(b) On suppose que les Pr sont réguliers de densité ar > 0 et que

0 < a0 < 1 ; on note m la borne inférieure des i > 1 tels que cq > 0. Montrer

que fr (s) est de la forme

f'(s) qzip {.4 CrJ (s) (log 1/(s ~ } '

où h (r) est la partie entière de r/m, et où les crJ (s) sont holomorphes pour
& (s) > 1. Cela entraîne :

fois) + +fr(s) ^ _ ^a0 I Z drJ(s)(log l/(5 —1))J| 5

où les drJ(s) sont holomorphes pour âë (s) > 1. Montrer que l'on a

drJ (1) > 0 pour j h (r). En déduire, grâce au théorème b de [3], p. 26,

que
N { n < x : an # 0 (mod pr+1) } - crx (ioglog x)ft(r)/log1_aox

avec cr drJ (1) / T (a0).

(c) On suppose que les an sont les coefficients d'une forme modulaire
de type (4.7 iit). Montrer que les conditions de (b) sont satisfaites (les Pr

sont même frobéniens) et que l'on a

a0 + cq + + oq + -1-a^t
où aœ est la densité des p tels que ap 0.

(d) Etendre les résultats ci-dessus au cas de produits de puissances
p^1 p/7 d'idéaux premiers (utiliser des séries formelles en T1,...,Tj).

(6.9) Soit / un nombre premier ^ 2. Soit P1 (/) l'ensemble des nombres

premiers p / / tels que t (p) soit divisible par /, mais pas par l2. Montrer
que Pt (/) est de densité > 0. [Soit Gt le sous-groupe de GL2(QZ) image de

la représentation /-adique attachée à À, cf. [19], [27]. La densité de Px (/)
est égale à la mesure de l'ouvert Hx de Gt formé des éléments s tels que
r, Tr(s)) 1 ; il revient au même de prouver que Ht # 0, que P1 (/) ^ 0,
ou que la densité de P± (/) est > 0. Or, on a Ht ^ 0 pour / ^ 3, 5, 7, 23,
691, vu la « grosseur » de G), cf. [27]. Pour l 3, 7, 23, on a 5 6^ (/)
puisque t (5) 2. 3. 5. 7. 23; pour / 5, on a 19 ePt (/) puisque
t(19) 22. 5. 72. 11. 23. 43; pour l 691, un calcul sur machine montre,
paraît-il, que 1381 ePx (/).]

Déduire de là, et de l'exercice précédent, que, pour tout r > 0, il
existe une constante cl r > 0 telle que
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N { n< x : t (n) =£ 0 (mod lr+1)} ~ chrx (loglog x)r/loga(/) x

où a (/) est donné par la formule de l'exemple 3 du § 1.

Equidistribution des valeurs des an (mod m).

(6.10) Soit n i-> an une fonction multiplicative à valeurs dans un anneau
commutatif fini A. On note r l'ordre du groupe multiplicatif A* des éléments

inversibles de A. Si X e A*, on note PÀ l'ensemble des nombres premiers p
tels que ap X. On fait les hypothèses suivantes:

(i) Les Pk sont réguliers de densités ax telles que

0 <£«*<!.
(ii) Le groupe A* est engendré par les éléments X tels que ocÀ > 0.

On note X le groupe des caractères de A* ; un élément cp de X est un
homomorphisme de A* dans C* ; on le prolonge à A en posant cp (X) 0

si X n'est pas inversible.

(a) Si X g A* et cp e X, on pose

fx(s)y n~s et fv(s) y
an= X n

Montrer que

/;. - E •

r <peX

(b) Décomposer en produit eulérien, et en déduire que

log fç (s) ß (cp) log l/(s -1) + h(p (s),

où ß (cp) ocx cp (2), et hy (s) est holomorphe pour M (s) > 1.

On a 0t (ß (cp)) < a, avec a ocx, et il n'y a égalité que si cp est le

caractère unité de yl*.

(c) Si ß est un nombre complexe, on convient de noter 1 / (^— 1)^ la
fonction exp {ß log 1 / (s -1)}. Montrer, en combinant (a) et (b), que l'on a

h (s) c (s)/(s-iy+ X cux (s)/(s -1)" î

i I

où c (.s-) et les ci>x (s) sont holomorphes pour 01 (s) > 1, les ßt sont tels que [

01 (ßi) < a, et c (1) > 0.

En déduire (cf. [3], p. 25, th. a) que

JV {n < x : an X} ~ cx/Iog1*"0^
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avec c c (1) / f (a) > 0. (Noter que c est indépendant de 2 : il y a

équidistribution des valeurs de (.cin) dans A*.)

(d) Appliquer la méthode de Landau aux fx et fÇ9 en supposant les Px

frobéniens. En déduire, pour tout A > 1, un développement asymptotique
de N {n < x: an 2} modulo O (xj\ogN x).

(e) Enoncer et démontrer des résultats analogues pour

où les a„(/) sont des fonctions multiplicatives à valeurs dans des anneaux
commutatifs finis At. (Se ramener au cas d'une suite unique à valeurs dans

A A1 x x Ar.)

(6.11) Soit m un entier impair > 3. On considère la fonction multiplicative

Montrer que la condition (i) de (6.10) est satisfaite, et qu'il en est de

même de (ii) pourvu que m ne soit pas divisible par 7. [On peut supposer
que m est une puissance d'un nombre premier /, cf. [19], 4.2. Il faut alors
vérifier que, si / ^ 2,7, les t (/?), p premier ^ h qui ne sont pas divisibles

par / engendrent le groupe multiplicatif (Z//2Z)*. Pour / ^ 3, 5, 23 et 691,
cela résulte de ce que t (p) peut prendre n'importe quelle valeur modulo /2,
cf. [27]. Pour / 3, 5, 23, 691, remarquer que le sous-groupe de (Z//2Z)ï!î
engendré par les t (/?), /? # /, se projette sur (Z//Z)* et contient 2 d'après
(6.4); utiliser alors le fait connu que 2i_1 ^ 1 (mod/2) pour / < 1093.]

En déduire l'équidistribution des valeurs de t {n) appartenant à

(Z/mZ)*, lorsque m n'est pas divisible par 7.

(6.12) Montrer qu'il existe deux constantes c+, c_, avec c+ > > 0
telles que

(Utiliser une méthode analogue à celle de (6.10).)

Exemple de minoration de | ap | pour p -> oo.

(6.13) Soit a!->x(cO un caractère de Hecke d'un corps imaginaire
quadratique K. Soit f le conducteur de x- On suppose que x est d'exposant
entier d > 1, autrement dit que

N { n < x : a„(1) À a (r) I 1un An J

n H- t (n) (mod m), à valeurs dans A ZjmZ

iV{n<x: t (n) 2 (mod 7)}
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y ((z)) zd pour tout z eK* tel que z 1 (modxf).

Posons

£ X(a)qN(a)£
a

de sorte que

£ a„n~* L(s, x)£[ (l -x (jp)N (p)~s)~1.
v

On sait que la série £ an qn est une forme modulaire parabolique de

poids k => 1 A- d et que c'est une fonction propre des opérateurs de Hecke.
Si co est le caractère d'ordre 2 qui correspond à K, on a an 0 si co (ri) — 1.

Soit P l'ensemble des nombres premiers p ne divisant pas N (f), et tels

que co (p) 1. Si p e P, on a

ap Z(P) + /(p),
où p et p sont les idéaux premiers de 0K divisant p. Montrer que

I aP I >> p(k~3)/2~e pour tout s > 0

[On peut se restreindre au cas où p est contenu dans la classe mod N (f)
d'un idéal fixe a. Si l'on écrit alors p a (z), avec z 1 (mod x N (f)), on
a aP X (a) z<i P / (a)zd Ad (x, y), où x, y sont les coordonnées de z

par rapport à une Z-base de ci-1, et où Ad est un polynôme homogène de

degré d. Les coefficients de Ad sont des nombres algébriques, et Ad n'a

aucun facteur multiple. D'après le théorème de Roth, on a

Ad (x, >') >> (sup (|x|, \y\))d~2~E pour x, y premiers entre eux,

d'où aussitôt le résultat cherché.]
Soit 8 un nombre > 0 tel que, pour tout secteur angulaire de C de

largeur ~ 1 /2V, il existe p « Nô tel que l'élément z correspondant appartienne
au secteur angulaire donné. (D'après Kovalcik, Dokî., t. 219, 1974, on peut
prendre pour S tout nombre > 4.) Montrer qu'il existe alors une constante

c > 0 telle que
| nJ < Cp^-i)/2-iß

pour une infinité de p tels que m (p) 1.

Passage des fonctions modulaires aux formes modulaires.

(6.14) Soit /= Y^n^-r an une fonction modulaire sur SL2(Z) de

poids k e Z, à coefficients rationnels. On suppose / holomorphe dans le

demi-plan ß (z) > 0 mais pas nécessairement à la pointe oo.
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(a) Soit / un nombre premier tel que an 0 pour tout n < 0 divisible

par /. Montrer que les séries

/' Za;»4" et Z «««"
l\n

sont des formes modulaires /-adiques de poids /c, au sens de [21]. >.

(b) Soient / un nombre premier # 2, et e ± 1 tels que an 0 pour

tout n < 0 tel que (-)=£. Montrer que la série

/- z
(f)-

est une forme modulaire /-adique de poids k. (Même méthode que pour
5.2.)

Divisibilité des coefficients c (n) de j.

(6.15) Soit D l'opérateur de dérivation £ an qn ^ £ n an Qn> 6

dans [21], [27]. Soient / un nombre premier 2, et r un entier > 1.

(a) Montrer que, si h est une forme modulaire (mod /r), de poids k,
il existe une forme modulaire h' (mod /r), de poids k + 2 + r-1 (/-1),
telle que

D (hjA) h'\A (mod lr).

(Utiliser le lemme 3 de [27], p. 19, ainsi que le fait que

P E2+lr_1(l_1) (mod V)

(b) Déduire de là que, pour tout a > 0, il existe une forme modulaire
fa (mod lr), de poids 12 + a(2+ lr~1 (/- 1)), telle que

D"(j) =fj<4(mod
(c) On prend a

1 T-1 (/ -1) Montrer que

D"(j) =jE (mod 0, où j£ Z (j^)c(n)«"-

En déduire, grâce à (b), l'existence d'une forme modulaire h de poids

12 4- Zr-1 (1 — 1) + 12 + k

L'Enseignement mathém., t. XXII, fasc. 3-4. 17
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telle que

j- (~Pj j£ (mod O

Le terme constant de h est nul. En déduire que h — fA, où / est une
forme modulaire (mod F) de poids k, ce qui fournit une autre démonstration

de (5.2 b).

(6.16) On conserve les notations de (6.15), et l'on prend r 1, i.e. on
calcule (mod /).

(a) Montrer que j' 744 (mod /) si / 3, 5, 7,11, et que j' (mod /)
est de filtration / - 1 (au sens de [27], p. 24) si /> 13. En particulier, on a,

pour tout n > 1 :

c (3n) 0 (mod 3)

c (Sri) 0 (mod 5)

c (7ri) 0 (mod 7)

c (11 n) 0 (mod 11)

c (13n) c (13) t (n) — t (n) (mod 13)

c (17n) - c (17) t16 (ri) 4116 (n) (mod 17)

c (19ri) c (19) t18 (ri) lt18 (ri) (mod 19)

c (23ri) c (23) t22 (ri) 4t22 (F) (mod 23),

où, pour k 16, 18, 22, on note tk (ri) le coefficient de qn dans l'unique
forme parabolique normalisée de poids k.

(b) On a

D(j) Q2R/A ß2£zfi-Vdz,
d'où

Da+1(j) Dfl(ô2^zlï~1)/zlz (mod /).

Montrer que, si / > 13, g2 R A1'1 est de filtration 12/ + 2. En déduire

que Da(Q2RAl~1) est de filtration 12/ + 2 + a(/+l) pour a < / — 2.

(c) On applique (b) avec « (/—3)/2, de telle sorte que

Da(ö2^dz-1)/dz Da+1(j) EEje9 cf. (6.15c).

En déduire que la forme modulaire (mod /) j — est de filtration

^ (/ — l)2, et que y_ est de filtration /2 — /. En particulier, ces formes sont

^ 0 (mod /).
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(d) Si / 3 (resp. 5, 7, 11), la forme - est nulle (resp. de

filtration 0, 12, 40).

(e) Déduire de (b) et (c) les congruences suivantes (dues à Kolberg [7]) :

c(n)s0 (mod 5) si - 1

c in) s 2 na3(n)(mod7) si (-) 1

c(n) s 9 n2cr5(n)-3n3a3(n) (mod 11) si ^ 1

c(n)in) —3n3 cr5(n) - 2n4 o3i(mod 13) si ^ - 1

(6.17) Soient / un nombre premier > 7, et r un entier > 0. Montrer

que, pour tout entier a, il existe une infinité d'entiers n tels que c (ri)

(n\ _ -Übw V i
be a (mod V) et - - (Utiliser les exercices (6.16) et (6.5).)
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