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On trouvera dans Lang-Trotter [9] une étude numérique du cas k = 2,
ainsi qu’une conjecture plus précise que (4.11, ?), & savoir:

(4.11,77) N{p<x:a, =0} ~cx'?llogx (si k = 2),
avec une valeur explicite de c. h

(4.12) On peut se demander si (4.21) et (4.7 1) restent valables lorsque
/= a,q" est une forme modulaire sur un sous-groupe d’indice fini de
SL,(Z) qui n’est pas un sous-groupe de congruence (il est alors raisonnable
de supposer, non plus que les @, sont entiers, mais que ce sont des « S-
entiers »). On manque d’exemples.

(4.13) 11 est probable que ’on ne peut pas étendre (4.7 i) aux formes
de poids demi-entier, du moins en dehors des deux cas suivants

(a) Op/m est de caractéristique 2: en effet, on se raméne alors au cas
d’un poids entier en multipliant f par la série

0 =1+2q +29% +24¢° + ...

qui est congrue a 1 (mod 2);

(b) la forme f = ) a, ¢" est de poids 1/2: on peut alors montrer qu’il
existe des entiers 7, ..., #, tels que @, = 0 si n n’est pas produit de I'un des
t; par un carré; cela entraine

N{n<x:a,#0} =0(x'?.

Il serait par exemple intéressant de voir ce qui se passe pour la forme
modulaire 0° = ) r; (1) ¢": comment se répartissent les r; (n) modulo 3, 5,
etc ?

§ 5. DIVISIBILITE DES COEFFICIENTS DE j

5.1. Rappelons que l'invariant modulaire j est défini par j = Q3/4,

ot Q=E, =1+240) 05(m)q", 4=q][(1—¢")** Ona

n=1 n=1
[e0]

J=q ' +744 +196884g + ... = Y c(n)q".
n=-—1
Les resultats du §4 ne s’appliquent pas directement 2 j, car j a un péle
simple a I'infini, et n’est donc pas une « forme » modulaire. J’ignore d’ailleurs
si les ¢ (n) sont presque toujours divisibles par tout entier donné; c’est peu
probable. On peut toutefois obtenir des renseignements sur certains des
¢ (n) grace au résultat suivant:
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THEOREME 5.2. Soit | un nombre premier. Alors :

(a) Les séries

J =2 cmg et jr= 3 cmq

n=0 (mod]l)
sont des formes modulaires [-adiques de poids 0, au sens de [21], § 1.

(b) Si I # 2, il en est de méme de la série

j- = c(n)q".
(T) -1
(¢) Si [ = 2, il en est de méme des trois séries
=) g (=13,9).
n=i (mod 8)
[Dans (b), la sommation porte sur les » premiers a / qui sont résidus
quadratiques (mod /) si /= —1 (mod 4), et non résidus si /= 1 (mod 4).
Dans les deux cas, cela exclut » = —1. Si/ = 2, la méme remarque s’ap-

plique aux j, pouri = 1, 3, 5.]

Si f est une forme modulaire /-adique, et r un entier > 0, il existe une
forme modulaire au sens usuel, a coefficients entiers, qui est congrue a
fmodulo /". En appliquant (4.7 i) & cette forme, on obtient:

COROLLAIRE 5.3. Pour tout | premier # 2, et tout r, il existe o > 0
tel que

N {x <n:c(n)£0 (modl") et (%) # <:ll>} = 0 (x/log*x).

On trouvera d’autres applications de (5.2) dans les exercices du § 6.

Démonstration de (5.2).

(a) Le fait que j* = j| U soit modulaire /-adique de poids 0 est di a
Deligne, cf. par exemple [21], p. 228. Comme j” = j’ l V, il en est de méme
de j” ([21], th. 4, p. 209).

(b) Soit n}—> e(n) = <1;> le caractére de Legendre, et notons j, la série

déduite de j par « torsion » au moyen de &, i.e.

o0

je= Y emec(mq”.

n=-1

On a
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. - —1 g > !
ey I e Je—J"

et il suffit donc de montrer que g = j — <—li> je est modulai\r'e [-adique
de poids 0. Cela peut se faire de la maniére suivante (pour une autre méthode,
voir exerc. 6.15): tout d’abord, un argument standard, basé sur le fait
que ¢ = 1, montre que j, est une fonction modulaire de poids O sur le
groupe I, (I?), holomorphe en dehors des pointes. Il est donc de méme
de g; de plus, le développement en série de g montre que g n’a pas de pole
a la pointe . Le fait que g soit modulaire /-adique résulte alors du
théoréme général suivant:

THEOREME 5.4. Soit g =) a,q" une fonction modulaire de poids k
sur Ty (I™), a coefficients a, e Q. On suppose que g est holomorphe dans le
demi-plan ¢ (z) > 0, ainsi qu’a la pointe o (i.e.a, = 0sin < 0). Alors g
est une forme modulaire l-adique de poids k sur SL,(Z).

Commengons par le cas particulier oll g est une forme modulaire de
poids k >4, et ou les coefficients a, sont l-entiers. On raisonne alors par
récurrence sur m. Le cas m = 1 est traité¢ dans [21], n® 3.2. Si m > 2,
définissons des formes modulaires f;, g; de poids k/° (i > 0) au moyen des
formules de récurrence:

1
fo=0, go=9, fi = (gi—-l)l | U, g, = ’l‘ (Ekli—l(l—l) gi-1 — )@ =1).

(Rappelons que E, désigne la série d’Eisenstein de poids r normalisée
de telle sorte que son terme constant soit 1; on a E,= 1 (mod /** 1) si r est
divisible par /¢ (I—1).)

On vérifie tout de suite que les coefficients des f; et g; sont [-entiers. De
plus, les f; sont des formes modulaires sur I'o(/™ ™ 1), car il est bien connu que
si m > 2, Popérateur U fait passer de I'y(I") & I'o(I™™1). Vu I’hypothése
de récurrence, les f; sont donc des formes modulaires l-adiques de poids kl'.

Pour tout i > 0, posons

o0
Ai = H Ekla(l—~1)>
a=1

le produit infini ayant un sens du fait que Ee -, est congru a 1
(mod /**%). La série 4; est une forme modulaire /-adique de poids

Y ki*(1=1) = (0, — kI') dans Z/I—-1)Z x Z,.
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On vérifie sans peine I’identité

Aog = Ay fi + 1A, 1, + ... + 7Y ASf + ...
Les séries A; f; sont modulaires /~adiques de poids

0, =kl + (kI', kI) = (kI', 0) = (k, 0).

Il en résulte que 4, g est modulaire /-adique de poids (k, 0). Mais le fait
que A, = 1 (mod /) entraine que 4, * = lim_, , A4’ ! est modulaire /-adique
de poids (0, k). Comme g = A, ' (4,9), on voit bien que g est modulaire
l[~adique de poids (k, k) = k, ce qui démontre (5.4) dans le cas particulier
considéré.

Passons au cas général. Si N est assez grand, la fonction g’ = A¥g est
holomorphe en toutes les pointes, et son poids k' = k + 12N est > 4.
C’est donc une forme modulaire, et ses coefficients «,, ont des dénominateurs
bornés (cf. [5], prop. 2.7 ou bien [25], Th. 3.52). Quitte a la multiplier par
une puissance de /, on peut donc s’arranger pour que ses coefficients soient
[-entiers. D’aprés ce que I'on vient de voir, c’est donc une forme modulaire
l-adique de poids k + 12N sur SL,(Z). De plus, ses coefficients «, sont
nuls pour n < N. Le fait que g = g’/4¥ soit modulaire /-adique résulte
alors du lemme élémentaire suivant (appliqué N fois):

o0

LEMME 5.5. Soit G = Y ¢, q" une forme modulaire Il-adique de poids
n=0

K. Si ¢, =0, lasérie H= G/A est une forme modulaire I-adique de
poids K — 12,

Par hypothése, G est limite de formes modulaires usuelles G,;, de poids
K; tendant vers K (au sens de [21], §1). Les termes constants ¢, ; des G;
tendent vers 0. Choisissons, pour chaque i, un mondme M; en les séries
d’Eisenstein Q = E, et R = E, qui soit de poids K;. On peut alors écrire
G, sous la forme '
G, = ¢o;M; + 4H;,

ou H,; est une forme modulaire de poids K; — 12. On a
lim.A4H, =G =4H, dou lim.H; = H,
ce qui montre bien que H est modulaire /-adique de poids K — 12.

(¢) Si I = 2, notons ¢, ¢, ¥ les trois caractéres d’ordre 2 de (Z/8Z)*,
et soient j,, j,, j, les séries déduites de j par torsion au moyen de ¢, ¢, .
On a

4; =j —J" +e@je + 0@, + ¥y
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Le méme argument que dans (b) montre que les j; sont des fonctions
modulaires sur I'y(2°), puis, en appliquant (5.4), que ce sont des formes
modulaires 2-adiques de poids 0 sur SL,(Z).

Remarques.

(a) On peut aussi déduire (5.4) et (5.5) de la définition « géométrique »
des formes modulaires /-adiques adoptée par Katz dans son expos€ a
Anvers (Lect. Notes 350, p. 69-190).

(b) Le théoréme (5.2) «explique» que I'on ait des congruences sur
n —1
¢ (n) (mod/) lorsque 7 est, soit divisible par /, soit tel que <7> = — (—l—> ,
cf. Kolberg [7], ainsi que les exercices du § 6.

(c) Lorsque /=2, on a j; = j; =js =) = j” = 0(mod 2), de sorte
que

o0
j= > ¢B8n—1)¢*"" (mod 2),
n=0
et le théoréme (5.2) ne fournit aucun renseignement sur ces coefficients
(mod 2). 1l serait intéressant de voir s’ils sont répartis « au hasard », comme
cela semble le cas pour la fonction de partition, cf. [13].

§ 6. EXERCICES

Formes modulaires de poids 1.

(6.1) Les hypothéses étant celles de (4.2 ii), montrer que o < 3/4, et
quil y a égalité si et seulement si I'image de Gal (K;/Q) dans PGL,(C)
= GL,(C)/C* est isomorphe au groupe diédral D, d’ordre 4 (cf. exemple
4.4)).

(6.2) On suppose que fest de type (1, &) sur I'o(N) (mais pas nécessaire-
ment que c’est une fonction propre des opérateurs de Hecke). Montrer que,
si

(*) N{n<x:a,#0} = o(x/log’*x),

on a f = 0. (Observer que ’espace des f satisfaisant & (*) est stable par les
operateurs de Hecke; s’il n’est pas nul, il contient un vecteur propre;
conclure en appliquant (6.1).)
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