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On trouvera dans Lang-Trotter [9] une étude numérique du cas k — 2,

ainsi qu'une conjecture plus précise que (4.112 à savoir:

(4.112??) N{p<x: ap 0} ~ cx1/2/logx (si fe 2),

avec une valeur explicite de c.

(4.12) On peut se demander si (4.2 i) et (4.7 i) restent valables lorsque

/ J]anqn est une forme modulaire sur un sous-groupe d'indice fini de

SL2(Z) qui n 'est pas un sous-groupe de congruence (il est alors raisonnable
de supposer, non plus que les an sont entiers, mais que ce sont des « S-

entiers »). On manque d'exemples.

(4.13) Il est probable que l'on ne peut pas étendre (4.7 i) aux formes
de poids demi-entier, du moins en dehors des deux cas suivants

(a) 0Fjm est de caractéristique 2: en effet, on se ramène alors au cas

d'un poids entier en multipliant/par la série

9 1 + 2q + 2q4 + 2q9 +

qui est congrue à 1 (mod 2) ;

(b) la forme / Yjan est de poids 1/2: on peut alors montrer qu'il
existe des entiers tu tr tels que an 0 si n n'est pas produit de l'un des

ti par un carré; cela entraîne

V { n < x : ^ 0} O (x1/2)

Il serait par exemple intéressant de voir ce qui se passe pour la forme
modulaire O3 ]Tr3 (n) qn : comment se répartissent les r3 (n) modulo 3, 5,

etc

§ 5. DIVISIBILITÉ DES COEFFICIENTS DE j
5.1. Rappelons que l'invariant modulaire j est défini par j= Q3/A,

00 00

où Q Ea 1 + 240£*3 (n)q",Aq\[ (1-g")24. On a
«=1 n=1

00

j— <jf_1 + 744 + 1968844 + X c(n)q".

Les résultats du § 4 ne s'appliquent pas directement à car j a un pôle
simple à l'infini, et n'est donc pas une « forme » modulaire. J'ignore d'ailleurs
si les c (ri) sont presque toujours divisibles par tout entier donné; c'est peu
probable. On peut toutefois obtenir des renseignements sur certains des
c (ri) grâce au résultat suivant:
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Théorème 5.2. Soit 7 un nombre premier. Alors :

(a) Les séries

y £ c (In)q"etj" £
n= 0 (mod/)

sont des formes modulaires l-adiques de poids 0, au sens de [21], § 1.

(b) Si 7^2, il en est de même de la série

j- £
fr") -

(c) Si 1 2, il en est de même des trois sériesh=£ c(»)3" 0 1,3,5).
n=i (mod 8)

[Dans (b), la sommation porte sur les n premiers à / qui sont résidus

quadratiques (mod /) si 7 -1 (mod 4), et non résidus si 7 1 (mod 4).
Dans les deux cas, cela exclut n -1. Si 7 2, la même remarque
s'applique aux ji9 pour z =l,3, 5.]

Si / est une forme modulaire 7-adique, et r un entier > 0, il existe une
forme modulaire au sens usuel, à coefficients entiers, qui est congrue à

/modulo F. En appliquant (4.7 i) à cette forme, on obtient:

Corollaire 5.3. Pour tout l premier ^ 2, et tout r, il existe a > 0

tel que

N <x < n : c (n) 0 (mod V) et ^ )1 O (x/logax).jj v i

On trouvera d'autres applications de (5.2) dans les exercices du § 6.

Démonstration de (5.2).

(a) Le fait que j' j | U soit modulaire 7-adique de poids 0 est dû à

Deligne, cf. par exemple [21], p. 228. Comme j" f | V, il en est de même

de j" ([21], th. 4, p. 209).

(b) Soit «H s(n) le caractère de Legendre, et notons je la série

déduite de j par « torsion » au moyen de s, i.e.

00

Â= £ £ (n) (n)
n=- 1

On a
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2J-~' ~(rr)
et il suffit donc de montrer que g j — E est m°dulaire /-adique

de poids 0. Cela peut se faire de la manière suivante (pour une autre méthode,

voir exerc. 6.15): tout d'abord, un argument standard, basé sur le fait

que £2 — 1, montre que je est une fonction modulaire de poids 0 sur le

groupe r0 (/2), holomorphe en dehors des pointes. Il est donc de même

de g ; de plus, le développement en série de g montre que g n'a pas de pôle
à la pointe oo. Le fait que g soit modulaire /-adique résulte alors du

théorème général suivant:

Théorème 5.4. Soit g une fonction modulaire de poids k
sur ro (/m), à coefficients an e Q. On suppose que g est holomorphe dans le

demi-plan ß (z) > 0, ainsi qu 'à la pointe go (i.e. an 0 si n < 0). Alors g
est une forme modulaire l-adique de poids k sur SL2(Z).

Commençons par le cas particulier où g est une forme modulaire de

poids k > 4, et où les coefficients an sont l-entiers. On raisonne alors par
récurrence sur m. Le cas m 1 est traité dans [21], n° 3.2. Si m > 2,
définissons des formes modulaires fi9 g t de poids kl1 (z > 0) au moyen des

formules de récurrence :

/o 0 g0 d fi —(gi-i)' I u ,g,y gi_1 (i > 1).

(Rappelons que Er désigne la série d'Eisenstein de poids r normalisée
de telle sorte que son terme constant soit 1 ; on a Er 1 (mod la+1) si r est
divisible par la (/— 1).)

On vérifie tout de suite que les coefficients des/f et gt sont /-entiers. De
plus, lesf sont des formes modulaires sur ro(lm~x), car il est bien connu que
si m >2, l'opérateur U fait passer de T0(/m) à ro(/m_1). Vu l'hypothèse
de récurrence, les f sont donc des formes modulaires l-adiques de poids kl\

Pour tout i > 0, posons
00

FI Ekla(l-1) 5

a i

le produit infini ayant un sens du fait que Ekl<l est congru à 1

(mod /a+1). La série At est une forme modulaire /-adique de poids
00

x kr (l -1) (0, - kl') dans Z/(/ — 1) Z x Z,.
a i
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On vérifie sans peine l'identité

A0g A1f1 + IA2J2 + -" + ll 1 Aifi +

Les séries A^f sont modulaires /-adiques de poids

(0, -fcf) +(kll9 kl1) (kl*, 0) (fc, 0).

Il en résulte que ^40 g est modulaire /-adique de poids (k, 0). Mais le fait
que A0 1 (mod /) entraîne que Aq1 lim^^ Aq'1 est modulaire /-adique
de poids (0, k). Comme g Aq1 (.A0g), on voit bien que g est modulaire
/-adique de poids (k, k) k, ce qui démontre (5.4) dans le cas particulier
considéré.

Passons au cas général. Si N est assez grand, la fonction g' ANg est

holomorphe en toutes les pointes, et son poids k' k + 12N est > 4.

C'est donc une forme modulaire, et ses coefficients a„ ont des dénominateurs
bornés (cf. [5], prop. 2.7 ou bien [25], Th. 3.52). Quitte à la multiplier par
une puissance de /, on peut donc s'arranger pour que ses coefficients soient
/-entiers. D'après ce que l'on vient de voir, c'est donc une forme modulaire
/-adique de poids k + 12N sur SL2(Z). De plus, ses coefficients a„ sont
nuls pour n < N. Le fait que g g'/AN soit modulaire /-adique résulte
alors du lemme élémentaire suivant (appliqué N fois) :

00

Lemme 5.5. Soit G ^ cn qn une forme modulaire l-adique de poids
n— 0

K. Si c0 0, la série H G/A est une forme modulaire l-adique de

poids K — 12.

Par hypothèse, G est limite de formes modulaires usuelles Gh de poids

Ki tendant vers K (au sens de [21], § 1). Les termes constants c0 i des Gt

tendent vers 0. Choisissons, pour chaque /, un monôme en les séries

d'Eisenstein Q EA et R E6 qui soit de poids Kt. On peut alors écrire

Gi sous la forme
— c0>iMt + A Hi9

où Ht est une forme modulaire de poids Kt — 12. On a

lim A Ht G A H d'où lim Ht H

ce qui montre bien que H est modulaire /-adique de poids K — 12.

(c) Si / » 2, notons s, <p, \j/ les trois caractères d'ordre 2 de (Z/8Z)*,
et soient y£, j(p, jxl/ les séries déduites de j par torsion au moyen de s, cp, \//.

On a

4 U=j-j"+ ê(0 je
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Le même argument que dans (b) montre que les jt sont des fonctions

modulaires sur r0(26), puis, en appliquant (5.4), que ce sont des formes

modulaires 2-adiques de poids 0 sur SL2(Z).

Remarques.

(a) On peut aussi déduire (5.4) et (5.5) de la définition « géométrique »

des formes modulaires /-adiques adoptée par Katz dans son exposé à

Anvers (Lect. Notes 350, p. 69-190).

(b) Le théorème (5.2) « explique » que l'on ait des congruences sur

c (n) (mod/) lorsque n est, soit divisible par /, soit tel que (jj - ^9
cf. Kolberg [7], ainsi que les exercices du § 6.

(c) Lorsque / 2, on a j\ j3 j5 j' «= j" 0 (mod 2), de sorte

que
00

JS X c(8» -l )q8n'1(mod 2),
« 0

et le théorème (5.2) ne fournit aucun renseignement sur ces coefficients

(mod 2). Il serait intéressant de voir s'ils sont répartis « au hasard », comme
cela semble le cas pour la fonction de partition, cf. [13].

§ 6. EXERCICES

Formes modulaires de poids 1.

(6.1) Les hypothèses étant celles de (4.2 ii), montrer que a <3/4, et

qu'il y a égalité si et seulement si l'image de Gai (.Kf/Q) dans PGL2(C)
GL2(C)/C* est isomorphe au groupe diédral D2 d'ordre 4 (cf. exemple

(4.4)).

(6.2) On suppose que/est de type (1, s) sur (mais pas nécessairement

que c'est une fonction propre des opérateurs de Hecke). Montrer que,
si

(*) N { n < x : a, *0}o (x/log3/4x)

on a/ 0. (Observer que l'espace des/ satisfaisant à (*) est stable par les

opérateurs de Hecke; s'il n'est pas nul, il contient un vecteur propre;
conclure en appliquant (6.1).)
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