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Exemples.

(a) (cf. Scourfield [17], [18]) On suppose que p — 4, est une fonction
polynomiale de p, i.e. quiil existe un polynoéme ¢, (T), a coefficients dans
Or/m, tel que @, = ¢, (p) pour tout p. L’ensemble P, est alors frobénien;
pour qu'il soit de densité > 0, il faut et il suffit que ¢, «représente 0 »,
i.e. qu’il existe un entier #, premier a m, tel que ¢,, (t) = 0. (Exemple . on
prend a, = o,,(n) = Y d"d°®, avec r pair et s impair, d’ol

dd’'=n
0, (T)=T"+T%ete,(t)=0pourt = —1)

S

(b) On suppose que la série Y a,n”° est associée a un « systéme F-
rationnel de représentations I-adiques » (cf. [20], chap. I, § 2, ainsi que [4],
[19], [27]). Cela entraine l’existence d’une extension galoisienne finie K,
de Q, et d’une représentation linéaire

P Gal (K,/Q) = GLy(Of/m)

telles que Tr (p,, (0, (K,/Q))) = a, (mod m) pour tout nombre premier p,
a l’exception d’un nombre fini. Si 'on suppose en outre qu’il existe
celm(p,,) tel que Tr (o) =0, alors (3.6.1) est vérifié; on peut souvent
prendre pour ¢ 'image par p, de la conjugaison complexe (« Frobenius
réel »): c’est le cas pour les systémes de représentations /-adiques définis
par une forme modulaire (cf. § 4), ou par la cohomologie H'(X), 7 impair,
d’une variété projective non singuliere X définie sur Q.

§4. EXEMPLES MODULAIRES

Pour les définitions et notations concernant les formes modulaires sur
SL,(Z) et ses sous-groupes d’indice fini, on renvoie a [5], [19], [25], [27].
Rappelons seulement que 'on pose ¢ = e*™, avec £ (z) > 0.

4.1. Formes de poids 1 (cf. [5], §9). — Soit f = > 4, ¢" une forme modu-
laire de poids 1 sur un sous-groupe de congruence de SL,(Z).
THEOREME 4.2.
(1) Il existe o > 0 tel que
N{n<x:a,#0} = 0(x/log').

(i) Soit N un entier >1, et soit & un caractére de (Z/NZ)*. Sup-
posons que f soit une forme modulaire de type (1,&) sur I'y(N), et soit
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Jonction propre des opérateurs de Hecke T, (pour pyYN) et U, (pour
p | N), cf. [5),§1.Si f+# O, on aun développement asymptotique

N{n<x:a, #0} = (co +ci/logx +...),

log*x
avec 0 <o <1 et ¢y, > 0.

Placons-nous d’abord dans le cas (ii). Quitte a multiplier / par une
constante, on peut supposer que a, = 1, et la fonction n|— a, est alors
multiplicative. De plus, d’aprés [5], il existe une extension galoisienne finie
K, de Q, et une représentation

p,: Gal (K;/Q) > GL,(C)

dont la fonction L d’Artin coincide (2 un nombre fini de facteurs prés)
avec la série de Dirichlet ) a,n7°. Si 'on note G I'image de p,, et H la
partie de G formée des éléments de trace nulle, on a H # & car H contient
I’image de la conjugaison complexe ([5], n° 4.5) et H # G car H ne contient
pas 1. L’ensemble P, des p tels que a, = 0 est frobénien, et défini par H.
Sa densité o = | H|/| G| est # 0, 1: toutes les conditions de (3.4) sont
bien vérifiées. D’ou (ii).

L’assertion (i) résulte de (ii) et du fait bien connu!) que toute forme
modulaire est somme de fonctions z - f; (d;z), ou les d; sont des entiers
> 1 et les f; des formes modulaires de type (i1).

Exemples.
(4.3) La forme

0% = (1+29+2¢* +2¢° +..)* = Y ¢
a,beZ

est du type (ii), avec N = 4, et ¢ (n) = (—4/n) = (=1 V/2; la repré-
sentation correspondante est la représentation réductible 1 @ ¢; on a
o = 1/2. On retrouve une nouvelle fois ’exemple de Landau (3.1).

(4.4) La forme

1/12 12m\2 __ b _a2+b2
f=4"17%0122) = q ] (1—-¢"")* = Y, (=1)q
m=1 a=1 (mod 3)
b= 0 (mod 3)
a+b=1 (mod 2)

est du type (ii), avec N = 144, et ¢ (n) = (—4/n); la représentation corres-
pondante est la représentation irréductible de degré 2 du groupe

1) Mais pour lequel je ne connais pas de référence satisfaisante, en dehors du cas
des formes paraboliques qui se traite facilement grace a la théorie des formes primitives
(« newforms ») d’Atkin-Lehner-Miyake-Casselman-Li.
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Gal (Q (7, 4/12), Q), groupe qui est isomorphe au groupe diédral D,
d’ordre 8 (E. Hecke, Math. Werke, p. 426 et 448); on a « = 3/4.

4.5. Remarques. 1l devrait €tre possible de préciser (1) en montrant que,
sif # 0,1l existe « > 0O tel que

N{n<x:a,#0} = xflog’,

et cela sans supposer que f soit fonction propre des opérateurs de Hecke.
Peut-€tre y a-t-il méme un développement asymptotique du genre

N{n<x:a,#0} = cxflog’x + cpxfloglx + ... 0 <a<f<..)?

Des questions analogues se posent pour N {n < x: a, = a}, ol a est
un nombre complexe non nul donné.

4.6. Réduction mod m des formes de poids entier (cf. [23]). — Soit
/= a, q" une forme modulaire de poids entier k£ > 1 sur un sous-groupe
de congruence de SL,(Z). Supposons que les coefficients @, de f appar-
tiennent pour n >1 & lanneau O des entiers d’une extension finie F
de Q, et soit m un idéal non nul de Op. L’analogue « mod mt » de (4.2) est
alors vrai, & de légéres modifications preés:

THEOREME 4.7.

(1) 1/ existe o (m) > 0 ftel que
N{n<x:a,#0 (modm)} = O (x/log"™yx).

(ii) Supposons que f soit de type (k,e) sur I'o(N), soit fonction propre
des T, (pour p¥ N) et des U,(pour p|N), cf. [5], §1, et que a, = 1.
Supposons que m soit un idéal premier. Alors :

(ii;) Si la caractéristique du corps Og/m est différente de 2, ou s’il
existe pf2N tel que a, # 0 (mod m), on a un développement asymptotique

X
N{n<x:a,#0 (modm)} = —gm—);c—(co-l—cl/logxﬁ—...)
avec 0 <oa(m) <1 et ¢y > 0.

(ii,) Sila caractéristiqgue de Op/m est 2, et si a, = 0 (mod m) pour
tout p¥2N, il existe ¢ > 0 tel que

N{n<x:a,#0 (modm)} ~ cx'/2,

Comme pour (4.2), le cas (i) se ram3ne au cas (ii). Supposons donc que f
satisfasse aux conditions (ii), ce qui entraine en particulier que la fonction

L’Enseignement mathém., t. XXII, fasc. 3-4, 15
.
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n|— a, est multiplicative. Soit / la caractéristique du corps Og/m. D’aprés
Deligne (cf. [4], ainsi que [5], §6), il existe une extension galoisienne finie
K = K, . de Q, non ramifiée en dehors de /N, et une représentation semi-
simple

Pw: Gal (K/Q) — GL,(Og/m)

telles que, pour tout p Y /N, on ait

Trp,,(0,(K/Q)) =a, (modm)
et

det p,,, (0, (K/Q)) = p*" " &(p) (mod m).

[Cela revient a dire que, pour tout p ¥ IN, le p-iéme facteur de la série
de Dirichlet ) a,n™*® est congru (mod m) au p-iéme facteur de la « série L »
de la représentation p., cette derniére étant considérée comme une série
de Dirichlet formelle a coefficients dans O p/m.]

Notons encore G I'image de p., et H la partie de G formée des €léments
de trace 0; on a H # &, car H contient 'image de la conjugaison complexe.
Distinguons alors deux cas:

(1i;) Ona H # G.[Cestlecassi/ # 2, car 1 ¢ H; c’est aussi le cas
sil =2, etsip,, n’est pas la représentation unité, ce qui revient aussi a dire
qu’il existe p f 2N tel que a, 7% 0 (mod m). Ce sont bien la les conditions
de (ii;).] Comme l'ensemble P, des p tels que a,= 0 (mod m) est fro-
bénien, et défini par H, on peut appliquer (3.4) avec a(m) = | H|/| G
et ’on obtient le développement asymtotique cherché.

b

(ii,) Ona H = G, ce qui signifie que / = 2, et que p, est la représenta-
tion unité. On a alors

a,=0 (modm) et a, =1 (modm) pourtout pjy2N,
et ’on peut appliquer (2.10 b) avec 6 = 0, d’ous le résultat cherché:
N{n<x:a,#0 (modm)} ~ cx'/2.

Exemples. Prenons F = Q, de sorte que Op = Z et m = mZ, avec
m > 1.

(4.8) Soit & (X) = & (X, ..., X,,) une forme quadratique positive
non dégénérée a 2k variables, et a coefficients entiers. Soit a, le nombre de
représentations de n par @, i.e. le nombre de points x € Z** tels que
@ (x) = n. On sait que la série

0p = Y a,q" = Y q®®



P
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est modulaire de poids k. On peut donc lui appliquer (4.7 i); en particulier,
quel que soit m > 1, les a, sont « presque toujours » divisibles par m.

(4.9) La série

o0

4=q]]A-¢7" =) (¢
r=1 n=
satisfait aux hypothéses de (4.7ii) avec N =1, ¢ = 1, k = 12. Si m est
premier # 2, elle est de type (ii,), avec un exposant o (m) facile a déterminer
(cf. § 1, exemple 3); on en déduit

N{n<x:t(n)*0 (modm)} = ——ﬁ(ao+c1/logx+...).

[Ce résultat était connu (cf. Watson [28]) pour m = 3, 5, 7, 691, car
la représentation p,, correspondante est alors réductible, ce qui se traduit
par une congruence (mod m) reliant 7 (n) & 'une des fonctions élémentaires
o, (n), cf. [19], [27]; dans ce cas, ainsi que dans celui o m = 23, on
pourrait méme calculer explicitement les valeurs des constantes c,, ¢y, ...,
calcul qui parait par contre fort difficile pour les autres valeurs de m, faute
de renseignements sur les corps K,, qui interviennent, ainsi que sur leurs
fonctions L d’Artin.]

Le cas m = 2 est exceptionnel: la représentation p, est la représentation
unité, on se trouve dans le cas (ii,). On a d’ailleurs

[ 1 (mod 2) si 7 est un carré impair
T (I’l) =

10 (mod 2) sinon,

de sorte que

N{n<x: z(n)¢0(modz)}_[ (1+\[)] \/§+0(1)

en accord avec (4.7 ii,).

Questions.

(4.10) 11 devrait étre possible de préciser (4.71) en donnant une esti-
mation de

N{n<x:a,##0 (modm)}

ou méme un développement asymptotique modulo O (x/log"x), N arbi-
traire, de

N{n<x:a, =2 (modm)} pour A donné.
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Lorsque n = a, est multiplicative, Delange m’a signalé que ’on peut
résoudre affirmativement la premiére question, en utilisant la méthode
de [3], §§4, 5 (cf. exerc. 6.8, ainsi que Scourfield [17], [18]). L’estimation
obtenue est

N{n<x:a,#20 (modm)} ~ cx(loglogx)"/log™x,

avec ¢ > 0, o > 0, h entier > 0 (mis a part un cas exceptionnel, analogue a
(4.7 ii,), oli ’on a une majoration en x*/2).

Le cas général devrait étre analogue, a cela prés qu’il y intervient, non
seulement les x (loglog x)"/log” x, mais aussi leurs produits par les termes
oscillants

cos(y loglog x) et sin(y loglog x), 7yeR.

On trouvera dans les exercices du § 6 quelques résultats dans cette
direction.

(4.11) Soit f = ) a,q" une forme parabolique de type (4.7ii), de
poids k > 2, et a coefficients dans Z. Ecartons le cas « a multiplication
complexe » ou il existe un caractére @ d’ordre 2 tel que @w (p) = — 1 entraine
a, = 0; cela revient a demander que les représentations /-adiques attachées
a f aient pour images des sous-groupes ouverts de GL,. On devrait alors
pouvoir montrer que ’ensemble des » tels que a, # 0 a une densité > 0,
contrairement a ce qui se passe pour k = 1. Il est d’ailleurs plus intéressant
de se poser la question de la nullité, et de la croissance, des a,, pour p

premier. D’aprés Deligne on a
a,| < 2p% 2,

On sait d’autre part que ’ensemble des p tels que @, = 0 est de densité
0 (cf. [19], 4.4). Des arguments probabilistes simples (qui m’ont été signalés
par Atkin) rendent vraisemblable ) la minoration
(4.11,7) la,| >> pk—32-e (si k>4

pour tout ¢ > 0, minoration qui entrainerait que a, tend vers I'infini en
valeur absolue, et ne peut donc s’annuler qu’un nombre fini de fois. Pour
k = 2, 3, des arguments analogues suggérent:

(4.11,9) N{p<x:a, =0} =<x'"?/logx (si k =2)
(4.11,7) N{p<x:a, = 0} x<loglogx (si k = 3).

1) Si Pon écrit a, sous la forme 2p (k=1)/2 cos ¢p, avec 0 <qp < m, (4.11;?) équivaut
A dire que |op—m/2] »1/pl+e, autrement dit que ¢p ne s’approche «pas trop» de w/2.
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On trouvera dans Lang-Trotter [9] une étude numérique du cas k = 2,
ainsi qu’une conjecture plus précise que (4.11, ?), & savoir:

(4.11,77) N{p<x:a, =0} ~cx'?llogx (si k = 2),
avec une valeur explicite de c. h

(4.12) On peut se demander si (4.21) et (4.7 1) restent valables lorsque
/= a,q" est une forme modulaire sur un sous-groupe d’indice fini de
SL,(Z) qui n’est pas un sous-groupe de congruence (il est alors raisonnable
de supposer, non plus que les @, sont entiers, mais que ce sont des « S-
entiers »). On manque d’exemples.

(4.13) 11 est probable que ’on ne peut pas étendre (4.7 i) aux formes
de poids demi-entier, du moins en dehors des deux cas suivants

(a) Op/m est de caractéristique 2: en effet, on se raméne alors au cas
d’un poids entier en multipliant f par la série

0 =1+2q +29% +24¢° + ...

qui est congrue a 1 (mod 2);

(b) la forme f = ) a, ¢" est de poids 1/2: on peut alors montrer qu’il
existe des entiers 7, ..., #, tels que @, = 0 si n n’est pas produit de I'un des
t; par un carré; cela entraine

N{n<x:a,#0} =0(x'?.

Il serait par exemple intéressant de voir ce qui se passe pour la forme
modulaire 0° = ) r; (1) ¢": comment se répartissent les r; (n) modulo 3, 5,
etc ?

§ 5. DIVISIBILITE DES COEFFICIENTS DE j

5.1. Rappelons que l'invariant modulaire j est défini par j = Q3/4,

ot Q=E, =1+240) 05(m)q", 4=q][(1—¢")** Ona

n=1 n=1
[e0]

J=q ' +744 +196884g + ... = Y c(n)q".
n=-—1
Les resultats du §4 ne s’appliquent pas directement 2 j, car j a un péle
simple a I'infini, et n’est donc pas une « forme » modulaire. J’ignore d’ailleurs
si les ¢ (n) sont presque toujours divisibles par tout entier donné; c’est peu
probable. On peut toutefois obtenir des renseignements sur certains des
¢ (n) grace au résultat suivant:
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