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Remarque. Dans le cas (b), si l'ensemble des p tels que p2 eE' est frobé-
nien, on peut utiliser la méthode de Landau pour obtenir un développement
asymptotique de E' (x).

Exemple. Prenons pour 1E l'ensemble des entiers de la forme pm, avec p
premier, et (p, m) 1 ; l'ensemble E' est formé des entiers n > 1 tels que

p | n => p2 | n pour tout p premier; les hypothèses de (2.10 b) sont vérifiées

avec ô 1. On a

1 — p~s + p~2s
/{s) Yia+p-2s+p-3s+p-*s+n

p i

P i -P~2S V(i-p~2s)
C(2s)C(3s)/C(6s).

D'après (2.10 b), on a E' (x) ~ ex112, avec c Ç (3/2)/( (3). On
connaît en fait des résultats bien plus précis, par exemple celui-ci (Bateman-
Grosswald, Illinois J. Math., 2, 1958):

E'(x) cx1/2 + dx1/3 + O (x1/6 exp — A\ogBx)) avec A,B > 0.

§3. PREMIERS EXEMPLES

3.1. Sommes de deux carrés. C'est l'exemple traité initialement par
Landau [8] (voir aussi [6], [24], [26]):

On prend pour E' l'ensemble des entiers n > 1 qui sont de la forme
a2 + b2, avec a,b e Z (ou a,b e Q, cela revient au même); on a ainsi:

Ef(x)=N{n<x : n |T| }

Soit P l'ensemble des nombres premiers p tels que p - 1 (mod 4).

On sait qu'un entier n appartient à E' si et seulement si, pour tout p eP,
l'exposant vp (n) de p dans n est pair. Il en résulte que le complémentaire E
de E' est multiplicatif (au sens du § 2), et que P est l'ensemble des nombres

premiers appartenant à E. Comme P est frobénien de densité 1/2, le théorème

(2.8) montre l'existence de constantes c0, cl9 telles que

E'(x) ~—(c0 +c1/logx +... +cfe/log*x +0(l/log*+1x))
Vlogx

pour tout k > 0. On trouvera dans Shanks [24] (rectifiant Ramanujan [6]
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et Stanley [26]) une étude numérique de Er (x) pour x < 226, ainsi qu'une
détermination des deux premiers coefficients c0 et cx:

co (2 II (1 —^~2))"1/2 0,76422365...
peP

cx 0,44473893

3.2. Fonctions multiplicatives. Soit n an une fonction multiplicative
à valeurs dans un anneau commutatif A, et soit Pa l'ensemble des nombres

premiers p tels que ap 0. Il est clair que Pa est associé à l'ensemble Ea des

entiers n tels que an 0. En appliquant (2.2) on en déduit:

Théorème 3.3. Supposons que Pa soit régulier de densité a > 0. On

a alors
O (x/logax) si a < 1

O (xy) avec y < 1 si a 1
N { n < x : an ^ 0 } j

(Ainsi, « presque tous » les an sont nuls.)

Si A est intègre, Ea est multiplicatif. D'après (2.4) et (2.8), on en tire:

Théorème 3.4. Si A est intègre, et a < 1, on a

N{n<^x:an^0} ~ ex/logax, avec c > 0.

Si de plus Pa est frobénien, on a un développement asymptotique

x
N {n < x : an ^0} - — (c0 + cxllog x +

log x

Donnons maintenant quelques exemples de fonctions multiplicatives
auxquelles on peut appliquer les théorèmes 3.3 et 3.4:

3.5. Coefficients de fonctions L. — On prend pour A le corps C, et

pour an les coefficients d'une fonction L d'Artin

X) Z an"~s,

où x est un caractère de degré d > 1 d'un groupe de Galois G Gal {KjQ),
cf. §1. Faisons l'hypothèse:

(3.5.1.) Le sous-ensemble H de G formé des éléments g e G tels que
X (s) 0 est non vide.
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L'ensemble Pa des nombres premiers p tels que ap 0 est alors frobénien
de densité a | H\/\ G |: cela résulte de (1.3) puisque ap x(?P(K/Q))
pour tout p ne divisant pas le discriminant de K.

Toutes les conditions de (3.4) sont alors satisfaites (noter que a < 1,

car | H\ # | G |, l'élément neutre n'appartenant pas à H). On en déduit

un développement asymptotique de N {n < x: an ^ 0}.

Exemple. Soit k un corps de nombres de degré > 1 ; choisissons pour K
une extension galoisienne de Q contenant k, et soit Gk Gai (K/k) le

sous-groupe de G Gal (K/Q) correspondant à k. Prenons pour x le

caractère de la représentation de permutation de G dans GjGk\ on a

X (g) nombre d'éléments de G/Gk laissés fixes par g
et

L(s, X)Cuis) I
où a parcourt les idéaux entiers ^ 0 du corps k. L'ensemble H de (3.5.1)
est égal à

G — {union des conjugués de Gk}

On a H ^ 0 d'après un résultat élémentaire sur les groupes finis (cf. par
exemple Bourbaki, A 1.130, exerc. 6). Appliquant (3.5), on en déduit:

x
n est norme d'un idéal de k } ~ —— (c0 +ci/l°gx +

logax

résultat dû à Odoni (cf. [11], [12]). Lorsque k Q (z), on retrouve l'exemple
de Landau (3.1).

3.6. Réduction mod m de fonctions multiplicatives. Soit n\-> an une
fonction multiplicative à valeurs dans l'anneau 0F des entiers d'un corps
de nombres algébriques F. Soit m un idéal non nul de 0Fi et notons ân

l'image de an dans l'anneau fini 0Fjm; soit Pa>m l'ensemble des nombres

premiers p tels que ap 0 (mod m). Si l'on fait l'hypothèse:

(3.6.1) Pfl5În est régulier de densité a (m) > 0

on peut appliquer (3.3) à la fonction n àn9 et l'on en déduit:

Théorème 3.7. N {n <x: an ^ 0 (mod m)} O (x/loga(m) x),

ainsi que des résultats plus précis lorsqu'on suppose en outre que Pa m est

frobénien et que m est premier.
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Exemples.

(a) (cf. Scourfield [17], [18]) On suppose que p\-+ap est une fonction

polynomiale de p, i.e. qu'il existe un polynôme cpm (T), à coefficients dans

Ofjm, tel que ap (pm (p) pour tout p. L'ensemble Pa)M est alors frobénien;

pour qu'il soit de densité > 0, il faut et il suffit que cpm « représente 0 »,

i.e. qu'il existe un entier t, premier à m, tel que cpm (t) 0. (.Exemple : on

prend an <7r,s (n) £ dr d'\ avec r pair et 5 impair, d'où
àd'=n

cpm (T) Tr + Ts, et <pm (0 0 pour t= - 1.)

(b) On suppose que la série ^ann~s est associée à un «système F-
rationnel de représentations l-adiques » (cf. [20], chap. I, § 2, ainsi que [4],

[19], [27]). Cela entraîne l'existence d'une extension galoisienne finie Km
de Q, et d'une représentation linéaire

pm: Gal (KJQ) -> GLjV(Of/m)

telles que Tr (pm (ap (Km/Q))) ap (mod m) pour tout nombre premier p,
à l'exception d'un nombre fini. Si l'on suppose en outre qu'il existe

<7elm(pm) tel que Tr (a) 0, alors (3.6.1) est vérifié; on peut souvent

prendre pour a l'image par pm de la conjugaison complexe (« Frobenius
réel ») : c'est le cas pour les systèmes de représentations /-adiques définis

par une forme modulaire (cf. § 4), ou par la cohomologie H\X), i impair,
d'une variété projective non singulière X définie sur Q.

§4. EXEMPLES MODULAIRES

Pour les définitions et notations concernant les formes modulaires sur
SL2(Z) et ses sous-groupes d'indice fini, on renvoie à [5], [19], [25], [27].
Rappelons seulement que l'on pose q e2niz, avec f (z) > 0.

4.1. Formes de poids 1 (cf. [5], §9). — Soit/= £ an qn une forme modulaire

de poids 1 sur un sous-groupe de congruence de SL2(Z).

Théorème 4.2.

(i) Il existe a > 0 tel que

N {n < x : an A0} O (x/logax).

(ii) Soit N un entier >1, et soit s un caractère de (Z/NZ)^.
Supposons que f soit une forme modulaire de type (1, s) sur T0 (IV), et soit
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