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Remarque. Dans le cas (b), si ’ensemble des p tels que p? € E’ est frobé-
nien, on peut utiliser la méthode de Landau pour obtenir un développement
asymptotique de E’ (x).

Exemple. Prenons pour E I’ensemble des entiers de la forme pm, avec p
premier, et (p, m) = 1; I'’ensemble E’ est formé des entiers n > 1 tels que
p|n = p*|n pour tout p premier; les hypothéses de (2.10 b) sont vérifiées
avec 0 = 1. On a

. 4. ~ l_p—s+p—2s
fo =11A+p™>+p > +p ™ +..)=]]
p

p I —p™°
B 1 _]_p—3s B 1 . p—6s
- H L—p2 £1<1-p—2s><1-p—3s>
= {(25){(39)/C(65) .

D’aprés (2.10b), on a E’(x) ~ cx'/?, avec ¢ = {(3/2)/{ (3). On
connait en fait des résultats bien plus précis, par exemple celui-ci (Bateman-
Grosswald, Illinois J. Math., 2, 1958):

E'(x) = cx'? + dx'? + O (x"/° exp (- Alogx)), avec A,B > 0.

§3. PREMIERS EXEMPLES

3.1. Sommes de deux carrés. C’est I'exemple traité initialement par
Landau [8] (voir aussi [6], [24], [26]):

On prend pour E’ I’ensemble des entiers n > 1 qui sont de la forme
a’? + b2, avec a,beZ (ou a, b e Q, cela revient au méme); on a ainsi:

E'(x)=N{n<x: n=/[2]}.

Soit P ’ensemble des nombres premiers p tels que p= — 1 (mod 4).
On sait qu’un entier n appartient a E’ si et seulement si, pour tout p € P,
I’exposant v, (n) de p dans n est pair. Il en résulte que le complémentaire E
de E’ est multiplicatif (au sens du §2), et que P est ’ensemble des nombres
premiers appartenant & E. Comme P est frobénien de densité 1/2, le théo-
réme (2.8) montre I’existence de constantes ¢y, ¢y, ... telles que

X
Jlog x

pour tout k£ > 0. On trouvera dans Shanks [24] (rectifiant Ramanujan [6]

E'(x) = (co +eyflogx + ... +¢floghx + O (1/log" " 'x))
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et Stanley [26]) une étude numérique de E’ (x) pour x << 22°, ainsi qu’une
détermination des deux premiers coeflicients ¢, et ¢;:

¢o = (2 [T (1—=p~2)"1/% = 0,76422365 ...

peP

c, = 0,44473893 ...

3.2.  Fonctions multiplicatives. Soit n— a, une fonction multiplicative
a valeurs dans un anneau commutatif A4, et soit P, I’ensemble des nombres
premiers p tels que a, = 0. Il est clair que P, est associé a ’ensemble E, des
entiers n tels que a, = 0. En appliquant (2.2) on en déduit:

THEOREME 3.3. Supposons que P, soit régulier de densité o > 0. On
a alors

O (x/log” L a <1
N{n x 8 a,,;éO}—{ (x/log™) St

O(x") avec y<1 si a=1.

(Ainsi, « presque tous » les a, sont nuls.)
Si A est intégre, E, est multiplicatif. D’aprés (2.4) et (2.8), on en tire:
THEOREME 3.4. Si A est intégre, et oo < 1, on a

N{n<x:a,#0} ~ cx/log’x, avec ¢>0.

Si de plus P, est frobénien, on a un développement asymptotique

N{n<x:a, #0} =10xx(co+cl/logx+...).

Donnons maintenant quelques exemples de fonctions multiplicatives
auxquelles on peut appliquer les théorémes 3.3 et 3.4:

3.5. Coefficients de fonctions L. — On prend pour A4 le corps C, et
 pour g, les coefficients d’une fonction L d’Artin

1 L(S> X) = Z ann—sa

ou y est un caractére de degré d > 1 d’un groupe de Galois G = Gal (K/Q),
cf. §1. Faisons I’hypothése:

(3.5.1) Le sous-ensemble H de G formé des éléments g € G tels que
% (g) = 0 est non vide.

R AR T BT e
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L’ensemble P, des nombres premiers p tels que a, = 0 est alors frobénien
de densité o = | H|/| G |: cela résulte de (1.3) puisque a, = x (o, (K/Q))
pour tout p ne divisant pas le discriminant de K.

Toutes les conditions de (3.4) sont alors satisfaites (noter que « < 1,
car | H| # | G|, 'élément neutre n’appartenant pas & H). On en déduit
un développement asymptotique de N {n < x: a, # 0}.

Exemple. Soit k un corps de nombres de degré > 1; choisissons pour K
une extension galoisienne de Q contenant k, et soit G, = Gal (K/k) le
sous-groupe de G = Gal (K/Q) correspondant & k. Prenons pour y le
caractére de la représentation de permutation de G dans G/G,; on a

x (g) = nombre d’¢léments de G/G, laissés fixes par g
et

L(s,x) = G(s) = ), Nq~*,

ou a parcourt les idéaux entiers % 0 du corps k. L’ensemble H de (3.5.1)
est égal a
G — {union des conjugués de G,} .

On a H # @ d’aprés un résultat élémentaire sur les groupes finis (cf. par
exemple Bourbaki, A 1.130, exerc. 6). Appliquant (3.5), on en déduit:

N {n < x: n est norme d’'un idéal de k} ~ (co+cq/logx+...),

log*x

résultat da a Odoni (cf. [11], [12]). Lorsque £ = Q (i), on retrouve ’exemple
de Landau (3.1).

3.6. Réduction modm de fonctions multiplicatives. Soit n}> a, une
fonction multiplicative & valeurs dans I’anneau Oj des entiers d’un corps
de nombres algébriques F. Soit m un idéal non nul de Oy, et notons &,
I’image de a, dans I’anneau fini Op/m; soit P, Iensemble des nombres
premiers p tels que a, = 0 (mod nt). Si Pon fait I'hypothése:

(3.6.1) P, ., est régulier de densité o (m) > 0,

on peut appliquer (3.3) a la fonction n — 4,, et I’'on en déduit:

THEOREME 3.7. N{n <x: a, # 0 (mod m)} = O (x/log®™ x),

ainsi que des résultats plus précis lorsqu’on suppose en outre que P, est
frobénien et que m est premier.
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Exemples.

(a) (cf. Scourfield [17], [18]) On suppose que p — 4, est une fonction
polynomiale de p, i.e. quiil existe un polynoéme ¢, (T), a coefficients dans
Or/m, tel que @, = ¢, (p) pour tout p. L’ensemble P, est alors frobénien;
pour qu'il soit de densité > 0, il faut et il suffit que ¢, «représente 0 »,
i.e. qu’il existe un entier #, premier a m, tel que ¢,, (t) = 0. (Exemple . on
prend a, = o,,(n) = Y d"d°®, avec r pair et s impair, d’ol

dd’'=n
0, (T)=T"+T%ete,(t)=0pourt = —1)

S

(b) On suppose que la série Y a,n”° est associée a un « systéme F-
rationnel de représentations I-adiques » (cf. [20], chap. I, § 2, ainsi que [4],
[19], [27]). Cela entraine l’existence d’une extension galoisienne finie K,
de Q, et d’une représentation linéaire

P Gal (K,/Q) = GLy(Of/m)

telles que Tr (p,, (0, (K,/Q))) = a, (mod m) pour tout nombre premier p,
a l’exception d’un nombre fini. Si 'on suppose en outre qu’il existe
celm(p,,) tel que Tr (o) =0, alors (3.6.1) est vérifié; on peut souvent
prendre pour ¢ 'image par p, de la conjugaison complexe (« Frobenius
réel »): c’est le cas pour les systémes de représentations /-adiques définis
par une forme modulaire (cf. § 4), ou par la cohomologie H'(X), 7 impair,
d’une variété projective non singuliere X définie sur Q.

§4. EXEMPLES MODULAIRES

Pour les définitions et notations concernant les formes modulaires sur
SL,(Z) et ses sous-groupes d’indice fini, on renvoie a [5], [19], [25], [27].
Rappelons seulement que 'on pose ¢ = e*™, avec £ (z) > 0.

4.1. Formes de poids 1 (cf. [5], §9). — Soit f = > 4, ¢" une forme modu-
laire de poids 1 sur un sous-groupe de congruence de SL,(Z).
THEOREME 4.2.
(1) Il existe o > 0 tel que
N{n<x:a,#0} = 0(x/log').

(i) Soit N un entier >1, et soit & un caractére de (Z/NZ)*. Sup-
posons que f soit une forme modulaire de type (1,&) sur I'y(N), et soit
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