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Gal (.K\E), où E est un sous-corps de K. On peut alors appliquer à log L {s,x)
les méthodes classiques de Hadamard et de La Vallée Poussin, cf. par
exemple [10], p. 336-337. [En fait, [10] se borne à prouver l'existence d'une
région (1.8) où L L (s, x) est holomorphe ^ 0, et où | LjL | O (log^E).
Pour passer de là à la majoration

I log L(s, x) I 0(loglog T),

on distingue deux cas, suivant que &(s) est ou non > 1 + 1/1ogAT. Dans
le premier cas, on a:

| log L(s, x) 1 < [E: Q] log C (« (s)) < [E: Q] A loglog T + O (1)

O(loglog T)

Le deuxième cas se ramène au premier: on applique le théorème des

accroissements finis au segment horizontal Is joignant ^ au point s0 tel que

*(s0) S (s), 0(so) 1 + l/logAT,
et l'on obtient

I log L(s> x) I < I log L(S0,x)I+ I I sup<rsJs | L'/L(<7, I

O(loglog T) +O(1)0(loglog T). ]

§2. THÉORÈMES DE DENSITÉ

2.1. Définitions. SoitE une partie de l'ensemble N* des entiers > 0;
on note E' le complémentaire N* — E de E. Si x g N*, on note E (x) le

nombre des n < x qui appartiennent à E; on a E (x) + E'(x) x. Lorsque
E est l'ensemble des n satisfaisant à une relation E, on écrit aussi

N{n<x:R(n)}
à la place de E (x).

On dit que E est de densité c si lim E (x)/x c, autrement dit si
*-»•00

E (x) ex + o (x) pour x -> oo

Soit P un ensemble de nombres premiers. Nous dirons que P est associé

à E si, pour tout p e P et tout entier m > 1 non divisible par p, on a pm g E.

Théorème 2.2. Si P est associé à E, et si P jouit de la propriété (1.1),
à savoir 1 \p — + oo, alors E est de densité 1.

peP
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Soit I une partie finie de P, et soit Er l'ensemble des entiers de la forme

pm, avec p e I et m > 1 non divisible par p. Le complémentaire Ex de Et
est l'ensemble des entiers n > 1 tels que

7tfip, 2p 3p, (p-l)p (mod p2) pour tout pel.
Sa densité est c'j H (1 ~~ Mais, vu (1.1), le produit

peI
infini n (1 ~ (P~^)/p2) diverge, i.e. tend vers 0. Les cf tendent donc

psP

vers 0, et comme E' est contenu dans tous les Eb on a

lim sup E' (x)/x < lim c\ 0,

d'où le fait que E' est de densité 0.

Le cas régulier. D'après (2.2), on a Er (x) o (v) pour x -> oo. Nous
allons voir que l'on peut préciser ce résultat, à condition de faire des hypothèses

supplémentaires sur P. Tout d'abord:

Théorème 2.3. Supposons que P soit associé à E, et soit régulier de

densité a > 0. On a alors :

(a) E' (x) O (x/logax) si a < 1 ;

(b) E' (x) O {x1'5), avec ô > 0 si a 1

Disons d'autre part que E est multiplicatif s'il possède la propriété :

(M) Si n1 et n2 sont des entiers > 1 premiers entre eux, on a

n1n2eE o {nleE ou n2eE).

Théorème 2.4. Supposons E multiplicatif et soit P l'ensemble des
nombres premiers appartenant à E. Alors :

(a) Si P est régulier de densité a, avec 0 < a < 1, on a

E' {x) ~ cx/logax avec c > 0

(b) Si P est régulier de densité 1, on a

E' (x) 0{xx~ô), avec ô > 0.
(Noter qu'il résulte de (M) que P est associé à E.)

Démonstration de (2.4) (d'après Raikov, Wintner, Delange). — Posons
bn 0 si n e E, et bn 1 si n e E\ de sorte que:

E'(x) E Kl
n^x
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la condition (M) signifie que bn est une fonction multiplicative de n. On a

b± 1 (mis à part le cas trivial oùE' 0). Considérons la série de Dirichlet

/0) £ bnn~* £
neE'

qui converge absolument pour Mis) > 1. On a

f(.s) Y\fp(s), où £ p"ms.
p pmeE'

La série fp (5) commence par le terme 1 + p~s si et seulement si p
n'appartient pas à P. On peut donc écrire / sous la forme

us) n
p$p p

où le produit des hp est absolument convergent pour M (s) > 1/2. On a donc

(2.5) log fis) Y P~s +
p$p

oil 6 i is) est holomorphe et bornée dans tout demi-plan M (s) > c, avec

c > 1/2. Plaçons-nous dans le cas (a), i. e. supposons P régulier de densité a,

avec 0 < a < 1; le complémentaire de P est régulier de densité 1 - a;
vu (1.3), et la formule ci-dessus, on a

log f(s) (1 — ce) log 1/(5-1) + 02 (s),

où 02 C5) est holomorphe pour ^ (5) > 1. Revenant à /, on obtient

(2-6) /(*) =^—L_.ù(s)>

où h is) exp 92 is) est holomorphe et ^ 0 pour M (5) > 1. D'après une
variante du théorème taubérien de Ikehara (cf. [2], [3], [14], [15], [29]),
ceci entraîne

(2.7) Yj bn ~ cx/logax avec c h (1)/T (1 — a)
n^x

d'où (2.4) dans le cas a < 1. Si d'autre part a 1, le même argument montre

que /(s) est holomorphe pour M is) > 1 ; comme c'est une série à coefficients

positifs, il en résulte, d'après un lemme classique de Landau, qu'elle

converge en un point s l - ô, avec ô > 0; on en déduit aussitôt la

majoration cherchée:

£ù„ 0(x1-5).
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Démonstration de (2.3). Soit E (P) l'ensemble des entiers de la forme pm,

avec p e P et m > 1 premier à p. On a E (P) c= E, d'où E' (x) < E(P)f (x).
D'autre part, E (P) est multiplicatif, et son intersection avec l'ensemble des

nombres premiers est P. En appliquant (2.4) à E(P), on obtient

E Cpy (x) O (x/1ogax) dans le cas (a),'

E(P)' (x) O (x1"5), avec ô > 0, dans le cas (b),

d'où (2.3) puisque E' (x) < E (.P)' (x).

Le cas frobénien. Revenons aux hypothèses de (2.4 a); on a

E' (x) cx/logax + o (x/1ogax), avec c > 0

Si P est frobénien, on peut remplacer le terme d'erreur o (x/logax) par
O (x/log1+ax), et même donner un développement asymptotique de E' (x):

1+ico 2+ioo

1-Ô

1 -ioo 2-ioo

Théorème 2.8. Supposons que E
soit multiplicatif et que l'ensemble P
des nombres premiers appartenant à E
soit frobénien de densité oc, avec 0 <
a < 1. Il existe alors des nombres

c0, clt..., ckf..., avec c0 > 0

tels que, pour tout entier k > 0, on ait

E'{X) =io^(Co+Cl/logx + -- +

ckllog**+ O (l./log*+ 1x)).

La démonstration utilise une
méthode due à Landau [8] ; je me bornerai
à la résumer, renvoyant à [8] ou [28]

pour plus de détails:

Soit /O) y bnn~s y
neE'

comme ci-dessus. On montre au moyen
de (2.5) et (1.7) que / se prolonge en

une fonction holomorphe dans une
région du type ci-contre (les branches
infinies C et D étant définies par
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Mis) 1 - b/logAT, avec T 2 + | f (s) | et que l'on a dans cette

région
|/(5) I O(log^T) pour T-> 00

Posons alors
b 0) X bn logO/n).

n^x
On vérifie que

2 + i 00b(x)—- \ /(s)
2lJZ J 2 — i 00

La formule de Cauchy montre que cette intégrale est égale à l'intégrale

analogue prise sur le bord gauche de la région considérée. Les
contributions des branches infinies C et D sont négligeables devant x/1ogNx,

quel que soit N; celle du cercle centré en 1 tend vers 0 avec le rayon du
cercle. Le terme principal est donc fourni par les deux intégrales sur
le segment horizontal joignant 1 — ô à 1 ; ces dernières s'évaluent sans

difficulté, à partir du développement de / (V) au voisinage de ^ 1. On
trouve que:

b (x) —— (d0 +J1/logx + +dkl\ogkx + 0 (l/logfc+1x))
log x

En appliquant ce résultat à x + ôx, avec ô ~ 1/1ogK+1x, et en retranchant,

on obtient facilement l'estimation cherchée pour E' (x) bn

(cf. [17], p. 277, ou [28], p. 723-724).
De façon plus précise, si le développement de f(s)/s au voisinage de

v 1 est:

/(5)/5 7 -ni-a (^0 + ^1 (5 ~ 1) + • • • + ek (s — + • • •) *(s- 1)

on trouve pour E' (x) le développement asymptotique

£'(x) -^(c0+cJlogx + ...+cJIog*x+O(l/log*+1x)),
logax

avec

(2.9) ck ejra-k-x).
Remarques.

(1) En utilisant (1.6) on peut ramener le calcul des et et des c{ à celui,
d'une part de séries absolument convergentes (donc évaluables

numériquement), et d'autre part de valeurs des dérivées des L {s, x) au point
s 1 ; pour un exemple de tel calcul, voir [24].
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(2) La méthode de Landau suivie ci-dessus a l'avantage, non seulement
de donner un développement asymptotique, mais encore de fournir un
terme d'erreur que l'on peut effectivement majorer, pourvu bien sûr que
l'on dispose de majorations effectives de f(s), ce qui est le plus souvent
faisable (mais rarement fait...). On ne peut rien déduire de tel des théorèmes

taubériens à la Ikehara, du moins sous leur forme actuelle.

(3) A la place de l'intégrale de/(s) xs/s2, on pourrait songer à utiliser celle
de f(s) xs/s, qui conduit directement à £ bn. Malheureusement, il ne

n^x
semble pas facile de majorer cette dernière intégrale sur les branches infinies
C et D.

Voici maintenant une variante du théorème (2.8), dans le cas où
l'ensemble P est frobénien de densité 1, i. e. de complémentaire fini:

Théorème 2.10. Supposons que E soit multiplicatif,\ et contienne tous les

nombres premiers, à l'exception d'un nombre fini. Alors :

(a) On a E' (x) O (x1 2).

(b) Si l'ensemble des nombres premiers p tels que p2 e E' est régulier de

densité ô > 0, on a

E' (x) ~ cx1/2/log1~ôx avec c > 0

L'assertion (a) est facile, et peut d'ailleurs se ramener à (b). Plaçons-
nous donc dans le cas (b), et posons ici encore

fis)E E
neE'

Les hypothèses faites sur E entraînent que

log f(s) E P~2s + #i (s) ô log 1/(2s - 1) + (s),
p2eE'

où les 0i is) sont holomorphes pour M (s) > 1/2. Il en résulte que

/(s/2) =r^h^'(s-1)
où h (s) est holomorphe et ^ 0 pour 01 (j) > 1. En appliquant à/(.y/2) les
théorèmes taubériens cités plus haut (cf. [2], [14], [29]), on en déduit

E bn ~ Cjx/log1-^ avec ù(l)/r((5) ;

qn<x

en remplaçant x par x1'2,onobtient le résultat cherché:

E'ix) ~cxl,2llog1,avec c 21~sc1
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Remarque. Dans le cas (b), si l'ensemble des p tels que p2 eE' est frobé-
nien, on peut utiliser la méthode de Landau pour obtenir un développement
asymptotique de E' (x).

Exemple. Prenons pour 1E l'ensemble des entiers de la forme pm, avec p
premier, et (p, m) 1 ; l'ensemble E' est formé des entiers n > 1 tels que

p | n => p2 | n pour tout p premier; les hypothèses de (2.10 b) sont vérifiées

avec ô 1. On a

1 — p~s + p~2s
/{s) Yia+p-2s+p-3s+p-*s+n

p i

P i -P~2S V(i-p~2s)
C(2s)C(3s)/C(6s).

D'après (2.10 b), on a E' (x) ~ ex112, avec c Ç (3/2)/( (3). On
connaît en fait des résultats bien plus précis, par exemple celui-ci (Bateman-
Grosswald, Illinois J. Math., 2, 1958):

E'(x) cx1/2 + dx1/3 + O (x1/6 exp — A\ogBx)) avec A,B > 0.

§3. PREMIERS EXEMPLES

3.1. Sommes de deux carrés. C'est l'exemple traité initialement par
Landau [8] (voir aussi [6], [24], [26]):

On prend pour E' l'ensemble des entiers n > 1 qui sont de la forme
a2 + b2, avec a,b e Z (ou a,b e Q, cela revient au même); on a ainsi:

Ef(x)=N{n<x : n |T| }

Soit P l'ensemble des nombres premiers p tels que p - 1 (mod 4).

On sait qu'un entier n appartient à E' si et seulement si, pour tout p eP,
l'exposant vp (n) de p dans n est pair. Il en résulte que le complémentaire E
de E' est multiplicatif (au sens du § 2), et que P est l'ensemble des nombres

premiers appartenant à E. Comme P est frobénien de densité 1/2, le théorème

(2.8) montre l'existence de constantes c0, cl9 telles que

E'(x) ~—(c0 +c1/logx +... +cfe/log*x +0(l/log*+1x))
Vlogx

pour tout k > 0. On trouvera dans Shanks [24] (rectifiant Ramanujan [6]
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