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Gal (K/E), ou E est un sous-corps de K. On peut alors appliquer 4 log L (s,%)
les méthodes classiques de Hadamard et de La Vallée Poussin, cf. par
exemple [10], p. 336-337. [En fait, [10] se borne & prouver Pexistence d’une
région (1.8) o L = L (s, ) est holomorphe # 0, et ot |L’/L| = O (log*T).
Pour passer de la a la majoration

|log L(s, )| = O(loglog T),

on distingue deux cas, suivant que Z (s) est ou non >1 + 1/log“T. Dans
le premier cas, on a:

| log L(s, ) | < [E: Q] log {(#(s)) < [E: Q] 4 loglog T + 0 (1)
= O(loglog T). ‘

Le deuxiéme cas se raméne au premier: on applique le théoréme des
accroissements finis au segment horizontal 7 joignant s au point s, tel que

I(s0) = F(), Z(sp) =1+ 1/log"T,
et I’on obtient

| log L(s, x) | <| log L(se, )| + |s—s¢| supger, | L'/L(0, ¥) |
= O(loglog T) + O (1) = O(loglog T).]

§2. THEOREMES DE DENSITE

2.1. Définitions. Soit E une partie de ’ensemble N* des entiers > 0;
on note E’ le complémentaire N* — E de E. St x e N*, on note E (x) le
nombre des n < x qui appartiennent a E; ona E (x) + E'(x) = x. Lorsque
E est I’ensemble des » satisfaisant a une relation R, on écrit aussi

N{n<x:R(n)}
a la place de E (x).
On dit que E est de densité ¢ silim E (x)/x = c, autrement dit si

E(x) = c¢x +0(x) pour x — 0.

Soit P un ensemble de nombres premiers. Nous dirons que P est associé
a E si, pour tout p € P et tout entier m > 1 non divisible par p, on a pm € E.

THEOREME 2.2. Si P estassoci¢ a E, et si P jouit de la propriété (1.1),

a savoir Y. 1/p = + oo, alors E est de densité 1.
peP




T
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Soit I une partie finie de P, et soit E; ’ensemble des entiers de la forme
pm, avec p el et m > 1 non divisible par p. Le complémentaire E; de E;
est 'ensemble des entiers n > 1 tels que

nZp, 2p, 3p, ..., (p—1p (mod p?) pourtoutpel.
Sa densité est ¢; = [] (1= (p—1)/p?). Mais, vu (1.1), le produit
pel

infini [T (1— (p—1)/p?) diverge, i.e. tend vers 0. Les c; tendent donc

peP
vers 0, et comme E’ est contenu dans tous les £}, on a

lim sup E'(x)/x < lim ¢; = 0,
d’otu le fait que £’ est de densité O.

Le cas régulier. D’aprés (2.2), on a E' (x) = o (x) pour x - 0. Nous
allons voir que ’on peut préciser ce résultat, a condition de faire des hypo-
théses supplémentaires sur P. Tout d’abord:

THEOREME 2.3. Supposons que P soit associ¢ a E, et soit régulier de
densité o > 0. On a alors:

(a) E' (x) = O (x/log"x) si a<l1;
b) E'(x) = 0(x'"%, avec 6§ >0, si a=1.

Disons d’autre part que E est multiplicatif s’il posséde la propriété:
(M) Si nq et n, sont des entiers > 1 premiers entre eux, on a

nin,eE <« {n;eE ou n,eE}.

THEOREME 2.4. Supposons E multiplicatif, et soit P [’ensemble des
nombres premiers appartenant @ E. Alors :

(@) Si P est régulier de densité o, avec 0 <o <1, ona
E'(x) ~cx/log® , avec ¢ > 0.
(b) Si P est régulier de densité 1, on a
E'(x) = 0(xx'"%, avec 6>0.
(Noter qu’il résulte de (M) que P est associé A E.)

Démonstration de (2.4) (d’aprés Raikov, Wintner, Delange). — Posons
b, =0sinekE,eth, = 1sinekE’, de sorte que:

E'(x) = ), by

n=x




— 232 —

la condition (M) signifie que b, est une fonction multiplicative de n. On a
by = 1 (mis a part le cas trivial ol E’=g). Considérons la série de Dirichlet

f(s) = > bp™* = > n*°,

neE’

qui converge absolument pour Z (s) > 1. On a
f() =110, ot f,( = Y p™.
. ;

La série f, (s) commence par le terme 1 + p~ 7 si et seulement si p n’ap-
partient pas & P. On peut donc écrire f sous la forme

f&) =11 A+p™) [Th,(9),

p¢P

ou le produit des /4, est absolument convergent pour Z (s) > 1/2. On a donc

(2.5) log f(s) = > p " +0:(5),

p¢pP
ol 0, (s) est holomorphe et bornée dans tout demi-plan Z(s) > ¢, avec
¢ > 1/2. Plagons-nous dans le cas (a), i. e. supposons P régulier de densité «,
avec 0 < o < 1; le complémentaire de P est régulier de densité 1 — o;
vu (1.3), et la formule ci-dessus, on a

log f(s) = (1—a) log 1/(s=1) + 0,(s),

ou 0, (s) est holomorphe pour £ (s) > 1. Revenant a f, on obtient

1
2.6 = ———h(s),
(2.6) 1) = ot
ou & (s) = exp 0, (s) est holomorphe et # 0 pour £ (s) > 1. D’apres une
variante du théoréme taubérien de Ikehara (cf. [2], [3], [14], [15], [29]),
ceci entraine
2.7) > b, ~cxflog’x, avec ¢ = h(1)/I'(1—a),
d’ou1 (2.4) dansle cas o < 1. Sid’autre part « = 1, le méme argument montre
que f(s) est holomorphe pour £ (s) > 1; comme c’est une série a coefli-
cients positifs, il en résulte, d’aprés un lemme classique de Landau, qu’elle
converge en un point s = 1 — §, avec 0 > 0; on en déduit aussitdt la
majoration cherchée:

S b, = 0(x'79.

n=x
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Démonstration de (2.3). Soit E (P) I’ensemble des entiers de la forme pm,
avec pe P et m > 1 premier a p. On a E(P) < E, d’ou E' (x) < E(P) ().
D’autre part, E (P) est multiplicatif, et son intersection avec I’ensemble des
nombres premiers est P. En appliquant (2.4) a E (P), on obtient

E (PY (x) = O (x/log"x) dans le cas (a),
E(P) (x) = O(x'7?, avec 6 > 0, dans le cas (b),
d’ot (2.3) puisque E’ (x) < E (P)’ (x).
Le cas frobénien. Revenons aux hypothéses de (2.4 a); on a
E' (x) = cx/log"x + o(x/log*x), avec ¢ > 0.

Si P est frobénien, on peut remplacer le terme d’erreur o (x/log*x) par
O (x/log!™*x), et méme donner un développement asymptotique de E’ (x):

2+io0 THFOREME 2.8. Supposons que E
soit multiplicatif, et que [’ensemble P
des nombres premiers appartenant a E
soit frobénien de densité o, avec 0 <
o < 1. Il existe alors des nombres

1+i00

Cos Cis-ves Cpy-ery aveC co > 0,

So=

tels que, pour tout entier k >0, on ait

WA

X
' / El(x) — 1Og0€x (CO +C1/10gx+... -
A

Al IVAP N 4 O c/loghx +0 (1/log"* 1x)).

La démonstration utilise une mé-
thode due a Landau [8]; je me bornerai
a la résumer, renvoyant a [8] ou [2§]
pour plus de détails:

Soit f(s) = Y bn =3 ns

nekE’

comme ci-dessus. On montre au moyen
de (2.5) et (1.7) que f se prolonge en
une fonction holomorphe dans une
région du type ci-contre (les branches
infinies C et D étant définies par

T

AN

1

o
3

2-ico
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R(s) = 1 — b/logT, avec T = 2+ [f(s) | ), et que 'on a dans cette
région

1 f(s)| = O(log?T) pour T— co.
Posons alors

b(x) = > b, log(x/n).

On vérifie que B
1 2 +in
b(x) = —_—\ F(s) x*ds/s? .
21'7( cz—iOO

La formule de Cauchy montre que cette intégrale est égale a Il'inté-
grale analogue prise sur le bord gauche de la région considérée. Les contri-
butions des branches infinies C et D sont négligeables devant x/log"x,
quel que soit N; celle du cercle centré en 1 tend vers 0 avec le rayon du
cercle. Le terme principal est donc fourni par les deux intégrales sur
le segment horizontal joignant 1 — ¢ & 1; ces derniéres s’évaluent sans
difficulté, a partir du développement de f(s) au voisinage de s = 1. On
trouve que:

X

b(x) =

Too? (do+diflogx +... +d,flogx + O (1/log"" 'x)).
0g*x
En appliquant ce résultat & x + dx, avec & ~ 1/logk™1x, et en retran-
chant, on obtient facilement I’estimation cherchée pour E’'(x) = ) b,
(cf. [17], p. 277, ou [28], p. 723-724). .
De fagon plus précise, si le développement de f(s)/s au voisinage de
s = 1 est:

f(s)]s = (ep+es(s—1) + .. +e(5—=1DF+..),

on trouve pour E’ (x) le développement asymptotique

E'(x) = lo;‘x (co+c1flogx + ... +floghx +0 (1/log"* 1x)),
avee
(2.9) ¢, = e¢/Il'(1l—k—a).
Remarques.

(1) En utilisant (1.6) on peut ramener le calcul des e; et des ¢; a celui,
d’une part de séries absolument convergentes (donc évaluables numéri-
quement), et d’autre part de valeurs des dérivées des L (s,y) au point
s = 1; pour un exemple de tel calcul, voir [24].
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(2) La méthode de Landau suivie ci-dessus a 1’avantage, non seulement
de donner un développement asymptotique, mais encore de fournir un
terme d’erreur que 1’on peut effectivement majorer, pourvu bien sir que
I’on dispose de majorations effectives de f(s), ce qui est le plus souvent
faisable (mais rarement fait...). On ne peut rien déduire de tel des théoréemes
taubériens a la Ikehara, du moins sous leur forme actuelle.

(3) Alaplace de I’intégrale de f(s) x*/s?, on pourrait songer & utiliser celle
de f(s) x°/s, qui conduit directement & ) b&,. Malheureusement, il ne

n=x
semble pas facile de majorer cette derniére intégrale sur les branches infinies
Cet D.

Voici maintenant une variante du théoréme (2.8), dans le cas ou I’en-
semble P est frobénien de densité 1, i. e. de complémentaire fini:

THEOREME 2.10.  Supposons que E soit multiplicatif, et contienne tous les
nombres premiers, a [’exception d’un nombre fini. Alors :

(@) Ona E'(x) = O (x!?).
(b) Sil’ensemble des nombres premiers p tels que p* e E' est régulier de

densité 6 > 0, on a
E’ (x) ~ cx'?/log! %x, avec ¢ > 0.

L’assertion (a) est facile, et peut d’ailleurs se ramener 4 (b). Plagons-
nous donc dans le cas (b), et posons ici encore

f() =Y n*=Ybn".

neE’

Les hypothéses faites sur E entrainent que

log f(s) = 2 p™*" +0,(s) = 6 log 1/Q2s—1) + 0,(s),

p2eE’
ou les 0; (s) sont holomorphes pour £ (s) > 1/2. 1l en résulte que
1
(s—1)
ou / (s) est holomorphe et # O pour Z (s) > 1. En appliquant a f (s/2) les
théorémes taubériens cités plus haut (cf. [2], [14], [29]), on en déduit

>, by ~cixflogh™x, avec ¢; = h(1)/I(5);

Jn<x

f(s/2) = h(s),

en remplagant x par x'/2, on obtient le résultat cherché:

E'(x) ~ cx'/*[log' ~%x, avec ¢ = 217%, .
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Remarque. Dans le cas (b), si ’ensemble des p tels que p? € E’ est frobé-
nien, on peut utiliser la méthode de Landau pour obtenir un développement
asymptotique de E’ (x).

Exemple. Prenons pour E I’ensemble des entiers de la forme pm, avec p
premier, et (p, m) = 1; I'’ensemble E’ est formé des entiers n > 1 tels que
p|n = p*|n pour tout p premier; les hypothéses de (2.10 b) sont vérifiées
avec 0 = 1. On a

. 4. ~ l_p—s+p—2s
fo =11A+p™>+p > +p ™ +..)=]]
p

p I —p™°
B 1 _]_p—3s B 1 . p—6s
- H L—p2 £1<1-p—2s><1-p—3s>
= {(25){(39)/C(65) .

D’aprés (2.10b), on a E’(x) ~ cx'/?, avec ¢ = {(3/2)/{ (3). On
connait en fait des résultats bien plus précis, par exemple celui-ci (Bateman-
Grosswald, Illinois J. Math., 2, 1958):

E'(x) = cx'? + dx'? + O (x"/° exp (- Alogx)), avec A,B > 0.

§3. PREMIERS EXEMPLES

3.1. Sommes de deux carrés. C’est I'exemple traité initialement par
Landau [8] (voir aussi [6], [24], [26]):

On prend pour E’ I’ensemble des entiers n > 1 qui sont de la forme
a’? + b2, avec a,beZ (ou a, b e Q, cela revient au méme); on a ainsi:

E'(x)=N{n<x: n=/[2]}.

Soit P ’ensemble des nombres premiers p tels que p= — 1 (mod 4).
On sait qu’un entier n appartient a E’ si et seulement si, pour tout p € P,
I’exposant v, (n) de p dans n est pair. Il en résulte que le complémentaire E
de E’ est multiplicatif (au sens du §2), et que P est ’ensemble des nombres
premiers appartenant & E. Comme P est frobénien de densité 1/2, le théo-
réme (2.8) montre I’existence de constantes ¢y, ¢y, ... telles que

X
Jlog x

pour tout k£ > 0. On trouvera dans Shanks [24] (rectifiant Ramanujan [6]

E'(x) = (co +eyflogx + ... +¢floghx + O (1/log" " 'x))
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