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§ 1. ENSEMBLES DE NOMBRES PREMIERS

Soit Pun ensemble de nombres premiers. Considérons les propriétés
suivantes :

(1.1) X 1/p + oo ;
PeP

(1.2) P est de densité a > 0, i.e. le nombre des p eP qui sont < x est

égal à ax/log x + o (x/log x) quand x -> oo.

(1.3) P est régulier de densité a > 0, au sens de Delange [3], i.e.

E P"! a log l/(s-l) + dp (s),
PeP

où 6p (s) se prolonge en une fonction holomorphe pour M (s) > 1.

(1.4) P est frobénien de densité a > 0, i. e. il existe une extension finie
galoisienne K\Q, et une partie H du groupe G Gai (K/Q) telles que

(a) H est stable par conjugaison,

(b) | H | /1 G | *= a (on note | X | le nombre d'éléments d'un ensemble

fini X),
(c) pour tout p assez grand, on a p e P o ap (.K/Q) e H, où ap (K/Q)

désigne la substitution de Frobenius [1] de p dans G (définie à conjugaison
près lorsque p ne divise pas le discriminant de K).

Proposition 1.5. On a (1.4) =*> (1.3) => (1.2) => (1.1).

L'implication (1.2) => (1.1) est facile. L'implication (1.3) => (1.2) est

prouvée dans [3], p. 57, comme conséquence d'un théorème taubérien.
D'autre part, sous les hypothèses de (1.4), on a

(1.6) £ P's ~lx(H) log L(s,x)1) + ^(5)
peP

I ^ I
X

où:

X parcourt l'ensemble des caractères irréductibles de G,

L (s, x) est la fonction L d'Artin [1] relative à l'extension K/Q et au
caractère x?

1) Ici, comme au §2, la détermination choisie de « log » est celle que l'on obtient
par prolongement analytique sur les horizontales à partir de la détermination « évidente »

pour m (s) > 1 (i. e. celle fournie par le développement en série — on peut aussi la
caractériser par le fait qu'elle tend vers 0 quand st (s) tend vers + co).
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g est une série de Dirichlet qui converge absolument pour 0t (s) > 1/2

(donc est holomorphe pour M (s) > 1),

X(H) Z f(ù).
heH

Il résulte alors des propriétés élémentaires des fonctions L (s, x) que

logL (s, x) öx log 1/(^—1) + 9X (s)9 où öx 0 (resp. ôx= 1) si x ^ 1

(resp. si x= 1), et 6X (s) est holomorphe pour M (s) > 1. La propriété (1.3)

en résulte.

Exemples.

(1) Si a et m sont des entiers > 1 tels que (a, m) 1, l'ensemble des

nombres premiersp tels quep a (mod m) est frobénien de densité 1/cp (m).

(2) L'ensemble des nombres premiers qui se décomposent complètement

(resp. ont un facteur premier de degré 1) dans une extension finie
de Q est frobénien de densité > 0.

(3) Soit t la fonction de Ramanujan (cf. [6], [19], [27]). Si m est un
entier > 1, l'ensemble des p tels que x(p) 0 (mod m) est frobénien de

densité a (m) > 0; cela résulte de Deligne [4] (voir aussi [19], [27], ainsi

que le §4 ci-après). Lorsque m est premier, on peut calculer a (m) grâce à [27].
On trouve:

/ f 1, 1/2, 1/4,1/2,1/2, 1/690 si m 2, 3, 5,7,23,691
a (m) <

l ml(m — 1) sinon.

Remarque. Lorsque P est frobénien, on peut préciser un peu le comportement

de la fonction fP (s) Z P~s à gauche de la droite critique
peP

M (s) 1 :

Proposition 1.7. La fonction fP se prolonge en une fonction holomorphe
dans une région de la forme

(18) f > 1 ~ b/logAT, avec 0, 2 + | ./(s) |

J*(s)7^ 0 ou s réel > 1

et y admet une majoration

(1-9) \fP(s)\0(loglog T) pour T-* oo

Cela se démontre de la manière suivante: vu (1.6), il suffit de prouver
l'énoncé analogue pour log Z, (j, *) ; grâce au théorème d'induction de
Brauer, on peut en outre supposer que i est un caractère de degré 1 de
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Gal (.K\E), où E est un sous-corps de K. On peut alors appliquer à log L {s,x)
les méthodes classiques de Hadamard et de La Vallée Poussin, cf. par
exemple [10], p. 336-337. [En fait, [10] se borne à prouver l'existence d'une
région (1.8) où L L (s, x) est holomorphe ^ 0, et où | LjL | O (log^E).
Pour passer de là à la majoration

I log L(s, x) I 0(loglog T),

on distingue deux cas, suivant que &(s) est ou non > 1 + 1/1ogAT. Dans
le premier cas, on a:

| log L(s, x) 1 < [E: Q] log C (« (s)) < [E: Q] A loglog T + O (1)

O(loglog T)

Le deuxième cas se ramène au premier: on applique le théorème des

accroissements finis au segment horizontal Is joignant ^ au point s0 tel que

*(s0) S (s), 0(so) 1 + l/logAT,
et l'on obtient

I log L(s> x) I < I log L(S0,x)I+ I I sup<rsJs | L'/L(<7, I

O(loglog T) +O(1)0(loglog T). ]

§2. THÉORÈMES DE DENSITÉ

2.1. Définitions. SoitE une partie de l'ensemble N* des entiers > 0;
on note E' le complémentaire N* — E de E. Si x g N*, on note E (x) le

nombre des n < x qui appartiennent à E; on a E (x) + E'(x) x. Lorsque
E est l'ensemble des n satisfaisant à une relation E, on écrit aussi

N{n<x:R(n)}
à la place de E (x).

On dit que E est de densité c si lim E (x)/x c, autrement dit si
*-»•00

E (x) ex + o (x) pour x -> oo

Soit P un ensemble de nombres premiers. Nous dirons que P est associé

à E si, pour tout p e P et tout entier m > 1 non divisible par p, on a pm g E.

Théorème 2.2. Si P est associé à E, et si P jouit de la propriété (1.1),
à savoir 1 \p — + oo, alors E est de densité 1.

peP
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