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§ 1. ENSEMBLES DE NOMBRES PREMIERS

Soit P un ensemble de nombres premiers. Considérons les propriétés
suivantes:

(1.1) > 1p = + o0;

peP
(1.2) P est de densité o > 0, i.e. le nombre des p € P qui sont < x est
égal a ax/log x + o (x/log x) quand x — oo.
(1.3) P est régulier de densité « > 0, au sens de Delange [3], i.c.
2, P =alog 1/(s—1) + 0p(s),

peP

ou 6, (s) se prolonge en une fonction holomorphe pour £ (s) > 1.

(1.4) P est frobénien de densité « > 0, i. e. il existe une extension finie
galoisienne K/Q, et une partie H du groupe G = Gal (K/Q) telles que

(a) H est stable par conjugaison,

(b) |H|/lG| = oc(onnotelX
fini X),

(c) pour tout p assez grand, on a pe P < 0,(K/Q) € H, ol 7, (K/Q)

désigne la substitution de Frobenius [1] de p dans G (définie & conjugaison
prés lorsque p ne divise pas le discriminant de K).

le nombre d’éléments d’un ensemble

ProposITION 1.5. Ona (1.4) = (1.3) = (1.2) = (1.1).

L’implication (1.2) = (1.1) est facile. L’implication (1.3) = (1.2) est
prouvée dans [3], p. 57, comme conséquence d’un théoréme taubérien.
D’autre part, sous les hypothéses de (1.4), on a

L 1 )
(1.6) Y p == 7(H) log L(s, )Y +4(s),
peP I G I X
ou:
¥ parcourt ’ensemble des caractéres irréductibles de G,
L (s, x) est la fonction L d’Artin [1] relative a I’extension K/Q et au

caractere y,

1) Ici, comme au §2, la détermination choisie de «log» est celle que 'on obtient
par prolongement analytique sur les horizontales & partir de la détermination « évidente »
pour 2 (s) > 1 (i. e. celle fournie par le développement en série — on peut aussi la
caractériser par le fait qu’elle tend vers 0 quand 2 (s) tend vers + ).
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g est une série de Dirichlet qui converge absolument pour Z (s) > 1/2
(donc est holomorphe pour £ (s) > 1),
p(H) = Y 7(h).

heH

Il résulte alors des propriétés élémentaires des fonctions L (s, x) que
log L (s, ) =0,logl/(s—1) +0,(s), ou 5, =0 (resp. 6,=1) si y # 1
(resp. si x=1), et 0, (s) est holomorphe pour Z (s) > 1. La propri¢té (1.3)
en résulte.

Exemples.
(1) Si a et m sont des entiers > 1 tels que (a¢, m) = 1, I’ensemble des
nombres premiers p tels que p = a (mod m) est frobénien de densité 1/¢ (m).

(2) L’ensemble des nombres premiers qui se décomposent comple-
tement (resp. ont un facteur premier de degré 1) dans une extension finie
de Q est frobénien de densité > 0.

(3) Soit 7 la fonction de Ramanujan (cf. [6], [19], [27]). Si m est un
entier > 1, ’ensemble des p tels que 7(p) = 0 (mod m) est frobénien de
densité o (m) > 0; cela résulte de Deligne [4] (voir aussi [19], [27], ainsi
que le §4 ci-apres). Lorsque m est premier, on peut calculer o (1) grace a [27].
On trouve:

1,1/2,1/4,1/2,1/2,1/690 si m = 2,3,5,7,23,691
a(m) = 5 .
mf[(m* — 1) sinon,

Remarque. Lorsque P est frobénien, on peut préciser un peu le compor-
tement de la fonction fp(s) = > p~° & gauche de la droite critique

peP
R(s) = 1:

PROPOSITION 1.7.  La fonction fp se prolonge en une fonction holomorphe
dans une région de la forme

(1.8) R (s) >1 — bllogT, avec b, A >0, T=24+]|5()]
' J(s)#0 ou s réel >1,
et y admet une majoration

(1.9) | fp(s)] = O(loglog T) pour T—- 0.

Cela se démontre de la maniére suivante: vu (1.6), il suffit de prouver
’énoncé analogue pour logL (s, y); grice au théoréme d’induction de
Brauer, on peut en outre supposer que y est un caractére de degré 1 de
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Gal (K/E), ou E est un sous-corps de K. On peut alors appliquer 4 log L (s,%)
les méthodes classiques de Hadamard et de La Vallée Poussin, cf. par
exemple [10], p. 336-337. [En fait, [10] se borne & prouver Pexistence d’une
région (1.8) o L = L (s, ) est holomorphe # 0, et ot |L’/L| = O (log*T).
Pour passer de la a la majoration

|log L(s, )| = O(loglog T),

on distingue deux cas, suivant que Z (s) est ou non >1 + 1/log“T. Dans
le premier cas, on a:

| log L(s, ) | < [E: Q] log {(#(s)) < [E: Q] 4 loglog T + 0 (1)
= O(loglog T). ‘

Le deuxiéme cas se raméne au premier: on applique le théoréme des
accroissements finis au segment horizontal 7 joignant s au point s, tel que

I(s0) = F(), Z(sp) =1+ 1/log"T,
et I’on obtient

| log L(s, x) | <| log L(se, )| + |s—s¢| supger, | L'/L(0, ¥) |
= O(loglog T) + O (1) = O(loglog T).]

§2. THEOREMES DE DENSITE

2.1. Définitions. Soit E une partie de ’ensemble N* des entiers > 0;
on note E’ le complémentaire N* — E de E. St x e N*, on note E (x) le
nombre des n < x qui appartiennent a E; ona E (x) + E'(x) = x. Lorsque
E est I’ensemble des » satisfaisant a une relation R, on écrit aussi

N{n<x:R(n)}
a la place de E (x).
On dit que E est de densité ¢ silim E (x)/x = c, autrement dit si

E(x) = c¢x +0(x) pour x — 0.

Soit P un ensemble de nombres premiers. Nous dirons que P est associé
a E si, pour tout p € P et tout entier m > 1 non divisible par p, on a pm € E.

THEOREME 2.2. Si P estassoci¢ a E, et si P jouit de la propriété (1.1),

a savoir Y. 1/p = + oo, alors E est de densité 1.
peP
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