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DIVISIBILITE DE CERTAINES FONCTIONS ARITHMETIQUES

par Jean-Pierre SERRE

On connait de nombreux exemples de fonctions arithmétiques nt> a,
jouissant de la propriété suivante: pour tout entier m > 1, ’ensemble des n
tels que a, = 0 (mod m) est de densité 1; autrement dit, on a

a,= 0 (mod m) pour « presque tout » entier n .

Il en est notamment ainsi lorsque les a, sont les coefficients d’'une forme
modulaire de poids entier sur un sous-groupe de congruence de SL,(Z):
cela se démontre en appliquant la méthode de Landau [8] aux fonctions L
d’Artin fournies par la théorie de Deligne [4]. Cette démonstration est
esquissée dans la Note [23]. Je reprends ici la question, en donnant davan-
tage de détails: les §§ 1 a 3 rappellent les résultats généraux de Landau,
Watson, Raikov, Delange, ...; les §§4 a 5 appliquent ces résultats aux
coefficients de formes modulaires, ainsi qu’a ceux de la fonction j; le § 6
contient divers compléments, rédigés sous forme d’exercices, avec esquisses
de démonstrations.

A des changements mineurs prés, le texte qui suit est extrait du Sémi-
naire DELANGE-P1soT-Portou 1974/75. Je remercie les organisateurs de ce
Séminaire de m’avoir autorisé a le reproduire.
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§ 1. ENSEMBLES DE NOMBRES PREMIERS

Soit P un ensemble de nombres premiers. Considérons les propriétés
suivantes:

(1.1) > 1p = + o0;

peP
(1.2) P est de densité o > 0, i.e. le nombre des p € P qui sont < x est
égal a ax/log x + o (x/log x) quand x — oo.
(1.3) P est régulier de densité « > 0, au sens de Delange [3], i.c.
2, P =alog 1/(s—1) + 0p(s),

peP

ou 6, (s) se prolonge en une fonction holomorphe pour £ (s) > 1.

(1.4) P est frobénien de densité « > 0, i. e. il existe une extension finie
galoisienne K/Q, et une partie H du groupe G = Gal (K/Q) telles que

(a) H est stable par conjugaison,

(b) |H|/lG| = oc(onnotelX
fini X),

(c) pour tout p assez grand, on a pe P < 0,(K/Q) € H, ol 7, (K/Q)

désigne la substitution de Frobenius [1] de p dans G (définie & conjugaison
prés lorsque p ne divise pas le discriminant de K).

le nombre d’éléments d’un ensemble

ProposITION 1.5. Ona (1.4) = (1.3) = (1.2) = (1.1).

L’implication (1.2) = (1.1) est facile. L’implication (1.3) = (1.2) est
prouvée dans [3], p. 57, comme conséquence d’un théoréme taubérien.
D’autre part, sous les hypothéses de (1.4), on a

L 1 )
(1.6) Y p == 7(H) log L(s, )Y +4(s),
peP I G I X
ou:
¥ parcourt ’ensemble des caractéres irréductibles de G,
L (s, x) est la fonction L d’Artin [1] relative a I’extension K/Q et au

caractere y,

1) Ici, comme au §2, la détermination choisie de «log» est celle que 'on obtient
par prolongement analytique sur les horizontales & partir de la détermination « évidente »
pour 2 (s) > 1 (i. e. celle fournie par le développement en série — on peut aussi la
caractériser par le fait qu’elle tend vers 0 quand 2 (s) tend vers + ).
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g est une série de Dirichlet qui converge absolument pour Z (s) > 1/2
(donc est holomorphe pour £ (s) > 1),
p(H) = Y 7(h).

heH

Il résulte alors des propriétés élémentaires des fonctions L (s, x) que
log L (s, ) =0,logl/(s—1) +0,(s), ou 5, =0 (resp. 6,=1) si y # 1
(resp. si x=1), et 0, (s) est holomorphe pour Z (s) > 1. La propri¢té (1.3)
en résulte.

Exemples.
(1) Si a et m sont des entiers > 1 tels que (a¢, m) = 1, I’ensemble des
nombres premiers p tels que p = a (mod m) est frobénien de densité 1/¢ (m).

(2) L’ensemble des nombres premiers qui se décomposent comple-
tement (resp. ont un facteur premier de degré 1) dans une extension finie
de Q est frobénien de densité > 0.

(3) Soit 7 la fonction de Ramanujan (cf. [6], [19], [27]). Si m est un
entier > 1, ’ensemble des p tels que 7(p) = 0 (mod m) est frobénien de
densité o (m) > 0; cela résulte de Deligne [4] (voir aussi [19], [27], ainsi
que le §4 ci-apres). Lorsque m est premier, on peut calculer o (1) grace a [27].
On trouve:

1,1/2,1/4,1/2,1/2,1/690 si m = 2,3,5,7,23,691
a(m) = 5 .
mf[(m* — 1) sinon,

Remarque. Lorsque P est frobénien, on peut préciser un peu le compor-
tement de la fonction fp(s) = > p~° & gauche de la droite critique

peP
R(s) = 1:

PROPOSITION 1.7.  La fonction fp se prolonge en une fonction holomorphe
dans une région de la forme

(1.8) R (s) >1 — bllogT, avec b, A >0, T=24+]|5()]
' J(s)#0 ou s réel >1,
et y admet une majoration

(1.9) | fp(s)] = O(loglog T) pour T—- 0.

Cela se démontre de la maniére suivante: vu (1.6), il suffit de prouver
’énoncé analogue pour logL (s, y); grice au théoréme d’induction de
Brauer, on peut en outre supposer que y est un caractére de degré 1 de
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Gal (K/E), ou E est un sous-corps de K. On peut alors appliquer 4 log L (s,%)
les méthodes classiques de Hadamard et de La Vallée Poussin, cf. par
exemple [10], p. 336-337. [En fait, [10] se borne & prouver Pexistence d’une
région (1.8) o L = L (s, ) est holomorphe # 0, et ot |L’/L| = O (log*T).
Pour passer de la a la majoration

|log L(s, )| = O(loglog T),

on distingue deux cas, suivant que Z (s) est ou non >1 + 1/log“T. Dans
le premier cas, on a:

| log L(s, ) | < [E: Q] log {(#(s)) < [E: Q] 4 loglog T + 0 (1)
= O(loglog T). ‘

Le deuxiéme cas se raméne au premier: on applique le théoréme des
accroissements finis au segment horizontal 7 joignant s au point s, tel que

I(s0) = F(), Z(sp) =1+ 1/log"T,
et I’on obtient

| log L(s, x) | <| log L(se, )| + |s—s¢| supger, | L'/L(0, ¥) |
= O(loglog T) + O (1) = O(loglog T).]

§2. THEOREMES DE DENSITE

2.1. Définitions. Soit E une partie de ’ensemble N* des entiers > 0;
on note E’ le complémentaire N* — E de E. St x e N*, on note E (x) le
nombre des n < x qui appartiennent a E; ona E (x) + E'(x) = x. Lorsque
E est I’ensemble des » satisfaisant a une relation R, on écrit aussi

N{n<x:R(n)}
a la place de E (x).
On dit que E est de densité ¢ silim E (x)/x = c, autrement dit si

E(x) = c¢x +0(x) pour x — 0.

Soit P un ensemble de nombres premiers. Nous dirons que P est associé
a E si, pour tout p € P et tout entier m > 1 non divisible par p, on a pm € E.

THEOREME 2.2. Si P estassoci¢ a E, et si P jouit de la propriété (1.1),

a savoir Y. 1/p = + oo, alors E est de densité 1.
peP




T
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Soit I une partie finie de P, et soit E; ’ensemble des entiers de la forme
pm, avec p el et m > 1 non divisible par p. Le complémentaire E; de E;
est 'ensemble des entiers n > 1 tels que

nZp, 2p, 3p, ..., (p—1p (mod p?) pourtoutpel.
Sa densité est ¢; = [] (1= (p—1)/p?). Mais, vu (1.1), le produit
pel

infini [T (1— (p—1)/p?) diverge, i.e. tend vers 0. Les c; tendent donc

peP
vers 0, et comme E’ est contenu dans tous les £}, on a

lim sup E'(x)/x < lim ¢; = 0,
d’otu le fait que £’ est de densité O.

Le cas régulier. D’aprés (2.2), on a E' (x) = o (x) pour x - 0. Nous
allons voir que ’on peut préciser ce résultat, a condition de faire des hypo-
théses supplémentaires sur P. Tout d’abord:

THEOREME 2.3. Supposons que P soit associ¢ a E, et soit régulier de
densité o > 0. On a alors:

(a) E' (x) = O (x/log"x) si a<l1;
b) E'(x) = 0(x'"%, avec 6§ >0, si a=1.

Disons d’autre part que E est multiplicatif s’il posséde la propriété:
(M) Si nq et n, sont des entiers > 1 premiers entre eux, on a

nin,eE <« {n;eE ou n,eE}.

THEOREME 2.4. Supposons E multiplicatif, et soit P [’ensemble des
nombres premiers appartenant @ E. Alors :

(@) Si P est régulier de densité o, avec 0 <o <1, ona
E'(x) ~cx/log® , avec ¢ > 0.
(b) Si P est régulier de densité 1, on a
E'(x) = 0(xx'"%, avec 6>0.
(Noter qu’il résulte de (M) que P est associé A E.)

Démonstration de (2.4) (d’aprés Raikov, Wintner, Delange). — Posons
b, =0sinekE,eth, = 1sinekE’, de sorte que:

E'(x) = ), by

n=x
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la condition (M) signifie que b, est une fonction multiplicative de n. On a
by = 1 (mis a part le cas trivial ol E’=g). Considérons la série de Dirichlet

f(s) = > bp™* = > n*°,

neE’

qui converge absolument pour Z (s) > 1. On a
f() =110, ot f,( = Y p™.
. ;

La série f, (s) commence par le terme 1 + p~ 7 si et seulement si p n’ap-
partient pas & P. On peut donc écrire f sous la forme

f&) =11 A+p™) [Th,(9),

p¢P

ou le produit des /4, est absolument convergent pour Z (s) > 1/2. On a donc

(2.5) log f(s) = > p " +0:(5),

p¢pP
ol 0, (s) est holomorphe et bornée dans tout demi-plan Z(s) > ¢, avec
¢ > 1/2. Plagons-nous dans le cas (a), i. e. supposons P régulier de densité «,
avec 0 < o < 1; le complémentaire de P est régulier de densité 1 — o;
vu (1.3), et la formule ci-dessus, on a

log f(s) = (1—a) log 1/(s=1) + 0,(s),

ou 0, (s) est holomorphe pour £ (s) > 1. Revenant a f, on obtient

1
2.6 = ———h(s),
(2.6) 1) = ot
ou & (s) = exp 0, (s) est holomorphe et # 0 pour £ (s) > 1. D’apres une
variante du théoréme taubérien de Ikehara (cf. [2], [3], [14], [15], [29]),
ceci entraine
2.7) > b, ~cxflog’x, avec ¢ = h(1)/I'(1—a),
d’ou1 (2.4) dansle cas o < 1. Sid’autre part « = 1, le méme argument montre
que f(s) est holomorphe pour £ (s) > 1; comme c’est une série a coefli-
cients positifs, il en résulte, d’aprés un lemme classique de Landau, qu’elle
converge en un point s = 1 — §, avec 0 > 0; on en déduit aussitdt la
majoration cherchée:

S b, = 0(x'79.

n=x
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Démonstration de (2.3). Soit E (P) I’ensemble des entiers de la forme pm,
avec pe P et m > 1 premier a p. On a E(P) < E, d’ou E' (x) < E(P) ().
D’autre part, E (P) est multiplicatif, et son intersection avec I’ensemble des
nombres premiers est P. En appliquant (2.4) a E (P), on obtient

E (PY (x) = O (x/log"x) dans le cas (a),
E(P) (x) = O(x'7?, avec 6 > 0, dans le cas (b),
d’ot (2.3) puisque E’ (x) < E (P)’ (x).
Le cas frobénien. Revenons aux hypothéses de (2.4 a); on a
E' (x) = cx/log"x + o(x/log*x), avec ¢ > 0.

Si P est frobénien, on peut remplacer le terme d’erreur o (x/log*x) par
O (x/log!™*x), et méme donner un développement asymptotique de E’ (x):

2+io0 THFOREME 2.8. Supposons que E
soit multiplicatif, et que [’ensemble P
des nombres premiers appartenant a E
soit frobénien de densité o, avec 0 <
o < 1. Il existe alors des nombres

1+i00

Cos Cis-ves Cpy-ery aveC co > 0,

So=

tels que, pour tout entier k >0, on ait

WA

X
' / El(x) — 1Og0€x (CO +C1/10gx+... -
A

Al IVAP N 4 O c/loghx +0 (1/log"* 1x)).

La démonstration utilise une mé-
thode due a Landau [8]; je me bornerai
a la résumer, renvoyant a [8] ou [2§]
pour plus de détails:

Soit f(s) = Y bn =3 ns

nekE’

comme ci-dessus. On montre au moyen
de (2.5) et (1.7) que f se prolonge en
une fonction holomorphe dans une
région du type ci-contre (les branches
infinies C et D étant définies par

T

AN

1

o
3

2-ico
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R(s) = 1 — b/logT, avec T = 2+ [f(s) | ), et que 'on a dans cette
région

1 f(s)| = O(log?T) pour T— co.
Posons alors

b(x) = > b, log(x/n).

On vérifie que B
1 2 +in
b(x) = —_—\ F(s) x*ds/s? .
21'7( cz—iOO

La formule de Cauchy montre que cette intégrale est égale a Il'inté-
grale analogue prise sur le bord gauche de la région considérée. Les contri-
butions des branches infinies C et D sont négligeables devant x/log"x,
quel que soit N; celle du cercle centré en 1 tend vers 0 avec le rayon du
cercle. Le terme principal est donc fourni par les deux intégrales sur
le segment horizontal joignant 1 — ¢ & 1; ces derniéres s’évaluent sans
difficulté, a partir du développement de f(s) au voisinage de s = 1. On
trouve que:

X

b(x) =

Too? (do+diflogx +... +d,flogx + O (1/log"" 'x)).
0g*x
En appliquant ce résultat & x + dx, avec & ~ 1/logk™1x, et en retran-
chant, on obtient facilement I’estimation cherchée pour E’'(x) = ) b,
(cf. [17], p. 277, ou [28], p. 723-724). .
De fagon plus précise, si le développement de f(s)/s au voisinage de
s = 1 est:

f(s)]s = (ep+es(s—1) + .. +e(5—=1DF+..),

on trouve pour E’ (x) le développement asymptotique

E'(x) = lo;‘x (co+c1flogx + ... +floghx +0 (1/log"* 1x)),
avee
(2.9) ¢, = e¢/Il'(1l—k—a).
Remarques.

(1) En utilisant (1.6) on peut ramener le calcul des e; et des ¢; a celui,
d’une part de séries absolument convergentes (donc évaluables numéri-
quement), et d’autre part de valeurs des dérivées des L (s,y) au point
s = 1; pour un exemple de tel calcul, voir [24].
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(2) La méthode de Landau suivie ci-dessus a 1’avantage, non seulement
de donner un développement asymptotique, mais encore de fournir un
terme d’erreur que 1’on peut effectivement majorer, pourvu bien sir que
I’on dispose de majorations effectives de f(s), ce qui est le plus souvent
faisable (mais rarement fait...). On ne peut rien déduire de tel des théoréemes
taubériens a la Ikehara, du moins sous leur forme actuelle.

(3) Alaplace de I’intégrale de f(s) x*/s?, on pourrait songer & utiliser celle
de f(s) x°/s, qui conduit directement & ) b&,. Malheureusement, il ne

n=x
semble pas facile de majorer cette derniére intégrale sur les branches infinies
Cet D.

Voici maintenant une variante du théoréme (2.8), dans le cas ou I’en-
semble P est frobénien de densité 1, i. e. de complémentaire fini:

THEOREME 2.10.  Supposons que E soit multiplicatif, et contienne tous les
nombres premiers, a [’exception d’un nombre fini. Alors :

(@) Ona E'(x) = O (x!?).
(b) Sil’ensemble des nombres premiers p tels que p* e E' est régulier de

densité 6 > 0, on a
E’ (x) ~ cx'?/log! %x, avec ¢ > 0.

L’assertion (a) est facile, et peut d’ailleurs se ramener 4 (b). Plagons-
nous donc dans le cas (b), et posons ici encore

f() =Y n*=Ybn".

neE’

Les hypothéses faites sur E entrainent que

log f(s) = 2 p™*" +0,(s) = 6 log 1/Q2s—1) + 0,(s),

p2eE’
ou les 0; (s) sont holomorphes pour £ (s) > 1/2. 1l en résulte que
1
(s—1)
ou / (s) est holomorphe et # O pour Z (s) > 1. En appliquant a f (s/2) les
théorémes taubériens cités plus haut (cf. [2], [14], [29]), on en déduit

>, by ~cixflogh™x, avec ¢; = h(1)/I(5);

Jn<x

f(s/2) = h(s),

en remplagant x par x'/2, on obtient le résultat cherché:

E'(x) ~ cx'/*[log' ~%x, avec ¢ = 217%, .
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Remarque. Dans le cas (b), si ’ensemble des p tels que p? € E’ est frobé-
nien, on peut utiliser la méthode de Landau pour obtenir un développement
asymptotique de E’ (x).

Exemple. Prenons pour E I’ensemble des entiers de la forme pm, avec p
premier, et (p, m) = 1; I'’ensemble E’ est formé des entiers n > 1 tels que
p|n = p*|n pour tout p premier; les hypothéses de (2.10 b) sont vérifiées
avec 0 = 1. On a

. 4. ~ l_p—s+p—2s
fo =11A+p™>+p > +p ™ +..)=]]
p

p I —p™°
B 1 _]_p—3s B 1 . p—6s
- H L—p2 £1<1-p—2s><1-p—3s>
= {(25){(39)/C(65) .

D’aprés (2.10b), on a E’(x) ~ cx'/?, avec ¢ = {(3/2)/{ (3). On
connait en fait des résultats bien plus précis, par exemple celui-ci (Bateman-
Grosswald, Illinois J. Math., 2, 1958):

E'(x) = cx'? + dx'? + O (x"/° exp (- Alogx)), avec A,B > 0.

§3. PREMIERS EXEMPLES

3.1. Sommes de deux carrés. C’est I'exemple traité initialement par
Landau [8] (voir aussi [6], [24], [26]):

On prend pour E’ I’ensemble des entiers n > 1 qui sont de la forme
a’? + b2, avec a,beZ (ou a, b e Q, cela revient au méme); on a ainsi:

E'(x)=N{n<x: n=/[2]}.

Soit P ’ensemble des nombres premiers p tels que p= — 1 (mod 4).
On sait qu’un entier n appartient a E’ si et seulement si, pour tout p € P,
I’exposant v, (n) de p dans n est pair. Il en résulte que le complémentaire E
de E’ est multiplicatif (au sens du §2), et que P est ’ensemble des nombres
premiers appartenant & E. Comme P est frobénien de densité 1/2, le théo-
réme (2.8) montre I’existence de constantes ¢y, ¢y, ... telles que

X
Jlog x

pour tout k£ > 0. On trouvera dans Shanks [24] (rectifiant Ramanujan [6]

E'(x) = (co +eyflogx + ... +¢floghx + O (1/log" " 'x))
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et Stanley [26]) une étude numérique de E’ (x) pour x << 22°, ainsi qu’une
détermination des deux premiers coeflicients ¢, et ¢;:

¢o = (2 [T (1—=p~2)"1/% = 0,76422365 ...

peP

c, = 0,44473893 ...

3.2.  Fonctions multiplicatives. Soit n— a, une fonction multiplicative
a valeurs dans un anneau commutatif A4, et soit P, I’ensemble des nombres
premiers p tels que a, = 0. Il est clair que P, est associé a ’ensemble E, des
entiers n tels que a, = 0. En appliquant (2.2) on en déduit:

THEOREME 3.3. Supposons que P, soit régulier de densité o > 0. On
a alors

O (x/log” L a <1
N{n x 8 a,,;éO}—{ (x/log™) St

O(x") avec y<1 si a=1.

(Ainsi, « presque tous » les a, sont nuls.)
Si A est intégre, E, est multiplicatif. D’aprés (2.4) et (2.8), on en tire:
THEOREME 3.4. Si A est intégre, et oo < 1, on a

N{n<x:a,#0} ~ cx/log’x, avec ¢>0.

Si de plus P, est frobénien, on a un développement asymptotique

N{n<x:a, #0} =10xx(co+cl/logx+...).

Donnons maintenant quelques exemples de fonctions multiplicatives
auxquelles on peut appliquer les théorémes 3.3 et 3.4:

3.5. Coefficients de fonctions L. — On prend pour A4 le corps C, et
 pour g, les coefficients d’une fonction L d’Artin

1 L(S> X) = Z ann—sa

ou y est un caractére de degré d > 1 d’un groupe de Galois G = Gal (K/Q),
cf. §1. Faisons I’hypothése:

(3.5.1) Le sous-ensemble H de G formé des éléments g € G tels que
% (g) = 0 est non vide.

R AR T BT e
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L’ensemble P, des nombres premiers p tels que a, = 0 est alors frobénien
de densité o = | H|/| G |: cela résulte de (1.3) puisque a, = x (o, (K/Q))
pour tout p ne divisant pas le discriminant de K.

Toutes les conditions de (3.4) sont alors satisfaites (noter que « < 1,
car | H| # | G|, 'élément neutre n’appartenant pas & H). On en déduit
un développement asymptotique de N {n < x: a, # 0}.

Exemple. Soit k un corps de nombres de degré > 1; choisissons pour K
une extension galoisienne de Q contenant k, et soit G, = Gal (K/k) le
sous-groupe de G = Gal (K/Q) correspondant & k. Prenons pour y le
caractére de la représentation de permutation de G dans G/G,; on a

x (g) = nombre d’¢léments de G/G, laissés fixes par g
et

L(s,x) = G(s) = ), Nq~*,

ou a parcourt les idéaux entiers % 0 du corps k. L’ensemble H de (3.5.1)
est égal a
G — {union des conjugués de G,} .

On a H # @ d’aprés un résultat élémentaire sur les groupes finis (cf. par
exemple Bourbaki, A 1.130, exerc. 6). Appliquant (3.5), on en déduit:

N {n < x: n est norme d’'un idéal de k} ~ (co+cq/logx+...),

log*x

résultat da a Odoni (cf. [11], [12]). Lorsque £ = Q (i), on retrouve ’exemple
de Landau (3.1).

3.6. Réduction modm de fonctions multiplicatives. Soit n}> a, une
fonction multiplicative & valeurs dans I’anneau Oj des entiers d’un corps
de nombres algébriques F. Soit m un idéal non nul de Oy, et notons &,
I’image de a, dans I’anneau fini Op/m; soit P, Iensemble des nombres
premiers p tels que a, = 0 (mod nt). Si Pon fait I'hypothése:

(3.6.1) P, ., est régulier de densité o (m) > 0,

on peut appliquer (3.3) a la fonction n — 4,, et I’'on en déduit:

THEOREME 3.7. N{n <x: a, # 0 (mod m)} = O (x/log®™ x),

ainsi que des résultats plus précis lorsqu’on suppose en outre que P, est
frobénien et que m est premier.
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Exemples.

(a) (cf. Scourfield [17], [18]) On suppose que p — 4, est une fonction
polynomiale de p, i.e. quiil existe un polynoéme ¢, (T), a coefficients dans
Or/m, tel que @, = ¢, (p) pour tout p. L’ensemble P, est alors frobénien;
pour qu'il soit de densité > 0, il faut et il suffit que ¢, «représente 0 »,
i.e. qu’il existe un entier #, premier a m, tel que ¢,, (t) = 0. (Exemple . on
prend a, = o,,(n) = Y d"d°®, avec r pair et s impair, d’ol

dd’'=n
0, (T)=T"+T%ete,(t)=0pourt = —1)

S

(b) On suppose que la série Y a,n”° est associée a un « systéme F-
rationnel de représentations I-adiques » (cf. [20], chap. I, § 2, ainsi que [4],
[19], [27]). Cela entraine l’existence d’une extension galoisienne finie K,
de Q, et d’une représentation linéaire

P Gal (K,/Q) = GLy(Of/m)

telles que Tr (p,, (0, (K,/Q))) = a, (mod m) pour tout nombre premier p,
a l’exception d’un nombre fini. Si 'on suppose en outre qu’il existe
celm(p,,) tel que Tr (o) =0, alors (3.6.1) est vérifié; on peut souvent
prendre pour ¢ 'image par p, de la conjugaison complexe (« Frobenius
réel »): c’est le cas pour les systémes de représentations /-adiques définis
par une forme modulaire (cf. § 4), ou par la cohomologie H'(X), 7 impair,
d’une variété projective non singuliere X définie sur Q.

§4. EXEMPLES MODULAIRES

Pour les définitions et notations concernant les formes modulaires sur
SL,(Z) et ses sous-groupes d’indice fini, on renvoie a [5], [19], [25], [27].
Rappelons seulement que 'on pose ¢ = e*™, avec £ (z) > 0.

4.1. Formes de poids 1 (cf. [5], §9). — Soit f = > 4, ¢" une forme modu-
laire de poids 1 sur un sous-groupe de congruence de SL,(Z).
THEOREME 4.2.
(1) Il existe o > 0 tel que
N{n<x:a,#0} = 0(x/log').

(i) Soit N un entier >1, et soit & un caractére de (Z/NZ)*. Sup-
posons que f soit une forme modulaire de type (1,&) sur I'y(N), et soit
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Jonction propre des opérateurs de Hecke T, (pour pyYN) et U, (pour
p | N), cf. [5),§1.Si f+# O, on aun développement asymptotique

N{n<x:a, #0} = (co +ci/logx +...),

log*x
avec 0 <o <1 et ¢y, > 0.

Placons-nous d’abord dans le cas (ii). Quitte a multiplier / par une
constante, on peut supposer que a, = 1, et la fonction n|— a, est alors
multiplicative. De plus, d’aprés [5], il existe une extension galoisienne finie
K, de Q, et une représentation

p,: Gal (K;/Q) > GL,(C)

dont la fonction L d’Artin coincide (2 un nombre fini de facteurs prés)
avec la série de Dirichlet ) a,n7°. Si 'on note G I'image de p,, et H la
partie de G formée des éléments de trace nulle, on a H # & car H contient
I’image de la conjugaison complexe ([5], n° 4.5) et H # G car H ne contient
pas 1. L’ensemble P, des p tels que a, = 0 est frobénien, et défini par H.
Sa densité o = | H|/| G| est # 0, 1: toutes les conditions de (3.4) sont
bien vérifiées. D’ou (ii).

L’assertion (i) résulte de (ii) et du fait bien connu!) que toute forme
modulaire est somme de fonctions z - f; (d;z), ou les d; sont des entiers
> 1 et les f; des formes modulaires de type (i1).

Exemples.
(4.3) La forme

0% = (1+29+2¢* +2¢° +..)* = Y ¢
a,beZ

est du type (ii), avec N = 4, et ¢ (n) = (—4/n) = (=1 V/2; la repré-
sentation correspondante est la représentation réductible 1 @ ¢; on a
o = 1/2. On retrouve une nouvelle fois ’exemple de Landau (3.1).

(4.4) La forme

1/12 12m\2 __ b _a2+b2
f=4"17%0122) = q ] (1—-¢"")* = Y, (=1)q
m=1 a=1 (mod 3)
b= 0 (mod 3)
a+b=1 (mod 2)

est du type (ii), avec N = 144, et ¢ (n) = (—4/n); la représentation corres-
pondante est la représentation irréductible de degré 2 du groupe

1) Mais pour lequel je ne connais pas de référence satisfaisante, en dehors du cas
des formes paraboliques qui se traite facilement grace a la théorie des formes primitives
(« newforms ») d’Atkin-Lehner-Miyake-Casselman-Li.
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Gal (Q (7, 4/12), Q), groupe qui est isomorphe au groupe diédral D,
d’ordre 8 (E. Hecke, Math. Werke, p. 426 et 448); on a « = 3/4.

4.5. Remarques. 1l devrait €tre possible de préciser (1) en montrant que,
sif # 0,1l existe « > 0O tel que

N{n<x:a,#0} = xflog’,

et cela sans supposer que f soit fonction propre des opérateurs de Hecke.
Peut-€tre y a-t-il méme un développement asymptotique du genre

N{n<x:a,#0} = cxflog’x + cpxfloglx + ... 0 <a<f<..)?

Des questions analogues se posent pour N {n < x: a, = a}, ol a est
un nombre complexe non nul donné.

4.6. Réduction mod m des formes de poids entier (cf. [23]). — Soit
/= a, q" une forme modulaire de poids entier k£ > 1 sur un sous-groupe
de congruence de SL,(Z). Supposons que les coefficients @, de f appar-
tiennent pour n >1 & lanneau O des entiers d’une extension finie F
de Q, et soit m un idéal non nul de Op. L’analogue « mod mt » de (4.2) est
alors vrai, & de légéres modifications preés:

THEOREME 4.7.

(1) 1/ existe o (m) > 0 ftel que
N{n<x:a,#0 (modm)} = O (x/log"™yx).

(ii) Supposons que f soit de type (k,e) sur I'o(N), soit fonction propre
des T, (pour p¥ N) et des U,(pour p|N), cf. [5], §1, et que a, = 1.
Supposons que m soit un idéal premier. Alors :

(ii;) Si la caractéristique du corps Og/m est différente de 2, ou s’il
existe pf2N tel que a, # 0 (mod m), on a un développement asymptotique

X
N{n<x:a,#0 (modm)} = —gm—);c—(co-l—cl/logxﬁ—...)
avec 0 <oa(m) <1 et ¢y > 0.

(ii,) Sila caractéristiqgue de Op/m est 2, et si a, = 0 (mod m) pour
tout p¥2N, il existe ¢ > 0 tel que

N{n<x:a,#0 (modm)} ~ cx'/2,

Comme pour (4.2), le cas (i) se ram3ne au cas (ii). Supposons donc que f
satisfasse aux conditions (ii), ce qui entraine en particulier que la fonction

L’Enseignement mathém., t. XXII, fasc. 3-4, 15
.
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n|— a, est multiplicative. Soit / la caractéristique du corps Og/m. D’aprés
Deligne (cf. [4], ainsi que [5], §6), il existe une extension galoisienne finie
K = K, . de Q, non ramifiée en dehors de /N, et une représentation semi-
simple

Pw: Gal (K/Q) — GL,(Og/m)

telles que, pour tout p Y /N, on ait

Trp,,(0,(K/Q)) =a, (modm)
et

det p,,, (0, (K/Q)) = p*" " &(p) (mod m).

[Cela revient a dire que, pour tout p ¥ IN, le p-iéme facteur de la série
de Dirichlet ) a,n™*® est congru (mod m) au p-iéme facteur de la « série L »
de la représentation p., cette derniére étant considérée comme une série
de Dirichlet formelle a coefficients dans O p/m.]

Notons encore G I'image de p., et H la partie de G formée des €léments
de trace 0; on a H # &, car H contient 'image de la conjugaison complexe.
Distinguons alors deux cas:

(1i;) Ona H # G.[Cestlecassi/ # 2, car 1 ¢ H; c’est aussi le cas
sil =2, etsip,, n’est pas la représentation unité, ce qui revient aussi a dire
qu’il existe p f 2N tel que a, 7% 0 (mod m). Ce sont bien la les conditions
de (ii;).] Comme l'ensemble P, des p tels que a,= 0 (mod m) est fro-
bénien, et défini par H, on peut appliquer (3.4) avec a(m) = | H|/| G
et ’on obtient le développement asymtotique cherché.

b

(ii,) Ona H = G, ce qui signifie que / = 2, et que p, est la représenta-
tion unité. On a alors

a,=0 (modm) et a, =1 (modm) pourtout pjy2N,
et ’on peut appliquer (2.10 b) avec 6 = 0, d’ous le résultat cherché:
N{n<x:a,#0 (modm)} ~ cx'/2.

Exemples. Prenons F = Q, de sorte que Op = Z et m = mZ, avec
m > 1.

(4.8) Soit & (X) = & (X, ..., X,,) une forme quadratique positive
non dégénérée a 2k variables, et a coefficients entiers. Soit a, le nombre de
représentations de n par @, i.e. le nombre de points x € Z** tels que
@ (x) = n. On sait que la série

0p = Y a,q" = Y q®®
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est modulaire de poids k. On peut donc lui appliquer (4.7 i); en particulier,
quel que soit m > 1, les a, sont « presque toujours » divisibles par m.

(4.9) La série

o0

4=q]]A-¢7" =) (¢
r=1 n=
satisfait aux hypothéses de (4.7ii) avec N =1, ¢ = 1, k = 12. Si m est
premier # 2, elle est de type (ii,), avec un exposant o (m) facile a déterminer
(cf. § 1, exemple 3); on en déduit

N{n<x:t(n)*0 (modm)} = ——ﬁ(ao+c1/logx+...).

[Ce résultat était connu (cf. Watson [28]) pour m = 3, 5, 7, 691, car
la représentation p,, correspondante est alors réductible, ce qui se traduit
par une congruence (mod m) reliant 7 (n) & 'une des fonctions élémentaires
o, (n), cf. [19], [27]; dans ce cas, ainsi que dans celui o m = 23, on
pourrait méme calculer explicitement les valeurs des constantes c,, ¢y, ...,
calcul qui parait par contre fort difficile pour les autres valeurs de m, faute
de renseignements sur les corps K,, qui interviennent, ainsi que sur leurs
fonctions L d’Artin.]

Le cas m = 2 est exceptionnel: la représentation p, est la représentation
unité, on se trouve dans le cas (ii,). On a d’ailleurs

[ 1 (mod 2) si 7 est un carré impair
T (I’l) =

10 (mod 2) sinon,

de sorte que

N{n<x: z(n)¢0(modz)}_[ (1+\[)] \/§+0(1)

en accord avec (4.7 ii,).

Questions.

(4.10) 11 devrait étre possible de préciser (4.71) en donnant une esti-
mation de

N{n<x:a,##0 (modm)}

ou méme un développement asymptotique modulo O (x/log"x), N arbi-
traire, de

N{n<x:a, =2 (modm)} pour A donné.
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Lorsque n = a, est multiplicative, Delange m’a signalé que ’on peut
résoudre affirmativement la premiére question, en utilisant la méthode
de [3], §§4, 5 (cf. exerc. 6.8, ainsi que Scourfield [17], [18]). L’estimation
obtenue est

N{n<x:a,#20 (modm)} ~ cx(loglogx)"/log™x,

avec ¢ > 0, o > 0, h entier > 0 (mis a part un cas exceptionnel, analogue a
(4.7 ii,), oli ’on a une majoration en x*/2).

Le cas général devrait étre analogue, a cela prés qu’il y intervient, non
seulement les x (loglog x)"/log” x, mais aussi leurs produits par les termes
oscillants

cos(y loglog x) et sin(y loglog x), 7yeR.

On trouvera dans les exercices du § 6 quelques résultats dans cette
direction.

(4.11) Soit f = ) a,q" une forme parabolique de type (4.7ii), de
poids k > 2, et a coefficients dans Z. Ecartons le cas « a multiplication
complexe » ou il existe un caractére @ d’ordre 2 tel que @w (p) = — 1 entraine
a, = 0; cela revient a demander que les représentations /-adiques attachées
a f aient pour images des sous-groupes ouverts de GL,. On devrait alors
pouvoir montrer que ’ensemble des » tels que a, # 0 a une densité > 0,
contrairement a ce qui se passe pour k = 1. Il est d’ailleurs plus intéressant
de se poser la question de la nullité, et de la croissance, des a,, pour p

premier. D’aprés Deligne on a
a,| < 2p% 2,

On sait d’autre part que ’ensemble des p tels que @, = 0 est de densité
0 (cf. [19], 4.4). Des arguments probabilistes simples (qui m’ont été signalés
par Atkin) rendent vraisemblable ) la minoration
(4.11,7) la,| >> pk—32-e (si k>4

pour tout ¢ > 0, minoration qui entrainerait que a, tend vers I'infini en
valeur absolue, et ne peut donc s’annuler qu’un nombre fini de fois. Pour
k = 2, 3, des arguments analogues suggérent:

(4.11,9) N{p<x:a, =0} =<x'"?/logx (si k =2)
(4.11,7) N{p<x:a, = 0} x<loglogx (si k = 3).

1) Si Pon écrit a, sous la forme 2p (k=1)/2 cos ¢p, avec 0 <qp < m, (4.11;?) équivaut
A dire que |op—m/2] »1/pl+e, autrement dit que ¢p ne s’approche «pas trop» de w/2.
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On trouvera dans Lang-Trotter [9] une étude numérique du cas k = 2,
ainsi qu’une conjecture plus précise que (4.11, ?), & savoir:

(4.11,77) N{p<x:a, =0} ~cx'?llogx (si k = 2),
avec une valeur explicite de c. h

(4.12) On peut se demander si (4.21) et (4.7 1) restent valables lorsque
/= a,q" est une forme modulaire sur un sous-groupe d’indice fini de
SL,(Z) qui n’est pas un sous-groupe de congruence (il est alors raisonnable
de supposer, non plus que les @, sont entiers, mais que ce sont des « S-
entiers »). On manque d’exemples.

(4.13) 11 est probable que ’on ne peut pas étendre (4.7 i) aux formes
de poids demi-entier, du moins en dehors des deux cas suivants

(a) Op/m est de caractéristique 2: en effet, on se raméne alors au cas
d’un poids entier en multipliant f par la série

0 =1+2q +29% +24¢° + ...

qui est congrue a 1 (mod 2);

(b) la forme f = ) a, ¢" est de poids 1/2: on peut alors montrer qu’il
existe des entiers 7, ..., #, tels que @, = 0 si n n’est pas produit de I'un des
t; par un carré; cela entraine

N{n<x:a,#0} =0(x'?.

Il serait par exemple intéressant de voir ce qui se passe pour la forme
modulaire 0° = ) r; (1) ¢": comment se répartissent les r; (n) modulo 3, 5,
etc ?

§ 5. DIVISIBILITE DES COEFFICIENTS DE j

5.1. Rappelons que l'invariant modulaire j est défini par j = Q3/4,

ot Q=E, =1+240) 05(m)q", 4=q][(1—¢")** Ona

n=1 n=1
[e0]

J=q ' +744 +196884g + ... = Y c(n)q".
n=-—1
Les resultats du §4 ne s’appliquent pas directement 2 j, car j a un péle
simple a I'infini, et n’est donc pas une « forme » modulaire. J’ignore d’ailleurs
si les ¢ (n) sont presque toujours divisibles par tout entier donné; c’est peu
probable. On peut toutefois obtenir des renseignements sur certains des
¢ (n) grace au résultat suivant:
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THEOREME 5.2. Soit | un nombre premier. Alors :

(a) Les séries

J =2 cmg et jr= 3 cmq

n=0 (mod]l)
sont des formes modulaires [-adiques de poids 0, au sens de [21], § 1.

(b) Si I # 2, il en est de méme de la série

j- = c(n)q".
(T) -1
(¢) Si [ = 2, il en est de méme des trois séries
=) g (=13,9).
n=i (mod 8)
[Dans (b), la sommation porte sur les » premiers a / qui sont résidus
quadratiques (mod /) si /= —1 (mod 4), et non résidus si /= 1 (mod 4).
Dans les deux cas, cela exclut » = —1. Si/ = 2, la méme remarque s’ap-

plique aux j, pouri = 1, 3, 5.]

Si f est une forme modulaire /-adique, et r un entier > 0, il existe une
forme modulaire au sens usuel, a coefficients entiers, qui est congrue a
fmodulo /". En appliquant (4.7 i) & cette forme, on obtient:

COROLLAIRE 5.3. Pour tout | premier # 2, et tout r, il existe o > 0
tel que

N {x <n:c(n)£0 (modl") et (%) # <:ll>} = 0 (x/log*x).

On trouvera d’autres applications de (5.2) dans les exercices du § 6.

Démonstration de (5.2).

(a) Le fait que j* = j| U soit modulaire /-adique de poids 0 est di a
Deligne, cf. par exemple [21], p. 228. Comme j” = j’ l V, il en est de méme
de j” ([21], th. 4, p. 209).

(b) Soit n}—> e(n) = <1;> le caractére de Legendre, et notons j, la série

déduite de j par « torsion » au moyen de &, i.e.

o0

je= Y emec(mq”.

n=-1

On a
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. - —1 g > !
ey I e Je—J"

et il suffit donc de montrer que g = j — <—li> je est modulai\r'e [-adique
de poids 0. Cela peut se faire de la maniére suivante (pour une autre méthode,
voir exerc. 6.15): tout d’abord, un argument standard, basé sur le fait
que ¢ = 1, montre que j, est une fonction modulaire de poids O sur le
groupe I, (I?), holomorphe en dehors des pointes. Il est donc de méme
de g; de plus, le développement en série de g montre que g n’a pas de pole
a la pointe . Le fait que g soit modulaire /-adique résulte alors du
théoréme général suivant:

THEOREME 5.4. Soit g =) a,q" une fonction modulaire de poids k
sur Ty (I™), a coefficients a, e Q. On suppose que g est holomorphe dans le
demi-plan ¢ (z) > 0, ainsi qu’a la pointe o (i.e.a, = 0sin < 0). Alors g
est une forme modulaire l-adique de poids k sur SL,(Z).

Commengons par le cas particulier oll g est une forme modulaire de
poids k >4, et ou les coefficients a, sont l-entiers. On raisonne alors par
récurrence sur m. Le cas m = 1 est traité¢ dans [21], n® 3.2. Si m > 2,
définissons des formes modulaires f;, g; de poids k/° (i > 0) au moyen des
formules de récurrence:

1
fo=0, go=9, fi = (gi—-l)l | U, g, = ’l‘ (Ekli—l(l—l) gi-1 — )@ =1).

(Rappelons que E, désigne la série d’Eisenstein de poids r normalisée
de telle sorte que son terme constant soit 1; on a E,= 1 (mod /** 1) si r est
divisible par /¢ (I—1).)

On vérifie tout de suite que les coefficients des f; et g; sont [-entiers. De
plus, les f; sont des formes modulaires sur I'o(/™ ™ 1), car il est bien connu que
si m > 2, Popérateur U fait passer de I'y(I") & I'o(I™™1). Vu I’hypothése
de récurrence, les f; sont donc des formes modulaires l-adiques de poids kl'.

Pour tout i > 0, posons

o0
Ai = H Ekla(l—~1)>
a=1

le produit infini ayant un sens du fait que Ee -, est congru a 1
(mod /**%). La série 4; est une forme modulaire /-adique de poids

Y ki*(1=1) = (0, — kI') dans Z/I—-1)Z x Z,.
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On vérifie sans peine I’identité

Aog = Ay fi + 1A, 1, + ... + 7Y ASf + ...
Les séries A; f; sont modulaires /~adiques de poids

0, =kl + (kI', kI) = (kI', 0) = (k, 0).

Il en résulte que 4, g est modulaire /-adique de poids (k, 0). Mais le fait
que A, = 1 (mod /) entraine que 4, * = lim_, , A4’ ! est modulaire /-adique
de poids (0, k). Comme g = A, ' (4,9), on voit bien que g est modulaire
l[~adique de poids (k, k) = k, ce qui démontre (5.4) dans le cas particulier
considéré.

Passons au cas général. Si N est assez grand, la fonction g’ = A¥g est
holomorphe en toutes les pointes, et son poids k' = k + 12N est > 4.
C’est donc une forme modulaire, et ses coefficients «,, ont des dénominateurs
bornés (cf. [5], prop. 2.7 ou bien [25], Th. 3.52). Quitte a la multiplier par
une puissance de /, on peut donc s’arranger pour que ses coefficients soient
[-entiers. D’aprés ce que I'on vient de voir, c’est donc une forme modulaire
l-adique de poids k + 12N sur SL,(Z). De plus, ses coefficients «, sont
nuls pour n < N. Le fait que g = g’/4¥ soit modulaire /-adique résulte
alors du lemme élémentaire suivant (appliqué N fois):

o0

LEMME 5.5. Soit G = Y ¢, q" une forme modulaire Il-adique de poids
n=0

K. Si ¢, =0, lasérie H= G/A est une forme modulaire I-adique de
poids K — 12,

Par hypothése, G est limite de formes modulaires usuelles G,;, de poids
K; tendant vers K (au sens de [21], §1). Les termes constants ¢, ; des G;
tendent vers 0. Choisissons, pour chaque i, un mondme M; en les séries
d’Eisenstein Q = E, et R = E, qui soit de poids K;. On peut alors écrire
G, sous la forme '
G, = ¢o;M; + 4H;,

ou H,; est une forme modulaire de poids K; — 12. On a
lim.A4H, =G =4H, dou lim.H; = H,
ce qui montre bien que H est modulaire /-adique de poids K — 12.

(¢) Si I = 2, notons ¢, ¢, ¥ les trois caractéres d’ordre 2 de (Z/8Z)*,
et soient j,, j,, j, les séries déduites de j par torsion au moyen de ¢, ¢, .
On a

4; =j —J" +e@je + 0@, + ¥y
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Le méme argument que dans (b) montre que les j; sont des fonctions
modulaires sur I'y(2°), puis, en appliquant (5.4), que ce sont des formes
modulaires 2-adiques de poids 0 sur SL,(Z).

Remarques.

(a) On peut aussi déduire (5.4) et (5.5) de la définition « géométrique »
des formes modulaires /-adiques adoptée par Katz dans son expos€ a
Anvers (Lect. Notes 350, p. 69-190).

(b) Le théoréme (5.2) «explique» que I'on ait des congruences sur
n —1
¢ (n) (mod/) lorsque 7 est, soit divisible par /, soit tel que <7> = — (—l—> ,
cf. Kolberg [7], ainsi que les exercices du § 6.

(c) Lorsque /=2, on a j; = j; =js =) = j” = 0(mod 2), de sorte
que

o0
j= > ¢B8n—1)¢*"" (mod 2),
n=0
et le théoréme (5.2) ne fournit aucun renseignement sur ces coefficients
(mod 2). 1l serait intéressant de voir s’ils sont répartis « au hasard », comme
cela semble le cas pour la fonction de partition, cf. [13].

§ 6. EXERCICES

Formes modulaires de poids 1.

(6.1) Les hypothéses étant celles de (4.2 ii), montrer que o < 3/4, et
quil y a égalité si et seulement si I'image de Gal (K;/Q) dans PGL,(C)
= GL,(C)/C* est isomorphe au groupe diédral D, d’ordre 4 (cf. exemple
4.4)).

(6.2) On suppose que fest de type (1, &) sur I'o(N) (mais pas nécessaire-
ment que c’est une fonction propre des opérateurs de Hecke). Montrer que,
si

(*) N{n<x:a,#0} = o(x/log’*x),

on a f = 0. (Observer que ’espace des f satisfaisant & (*) est stable par les
operateurs de Hecke; s’il n’est pas nul, il contient un vecteur propre;
conclure en appliquant (6.1).)
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Formes modulaires (mod m).

(6.3) Montrer que, sous les hypothéses de (4.71ii,), on a o (m) < 3/4
(méme méthode que pour (6.1)). En déduire un résultat analogue a (6.2).

(6.4) On fixe k, m, N, ¢ et ’on note m la norme de m. Soit 4 I’ensemble
des séries formelles Y a, ¢", & coefficients dans Ogy/m, qui sont réduction
(mod m) de formes modulaires de type (k, &) sur I'y(N), a coefficients
dans Op; c’est un Op/m-module libre de type fini. Les opérateurs de Hecke
T, définissent des endomorphismes 7, , de 4. Montrer que 1’application
pl= T, 4 est frobénienne au sens suivant: pour tout # € End (4), I’ensemble
P, des nombres premiers p, ne divisant pas Nm, tels que T, 4 = u est
frobénien (et peut €tre défini par une extension galoisienne finie de Q non
ramifiée en dehors de Nm). Soit P; I’ensemble des p = 1 (mod Nm) qui
appartiennent a P, (i.e. tels quefl T, = 2f pour tout fe A4), et soit P,
I’ensemble des p = —1 (mod Nm) qui appartiennent a P, (i.e. tels que
f| T, = 0 pour tout /'€ 4). Montrer que P; et P, ont une densité > 0
(cf. [5], 9.6, oli est traité le cas analogue des formes de poids 1). Si p € P},
onaTl, =r+1 etsipeP;,onaT, =(-1)"7%sirest pair et

Ty 4= 0 si r est impair. Si f = ) a,q" est un élément de A4, on a donc
( a,r = (r+1a, si. peP;
(n,p) = 1= [0 si peP,, r impair

r

”Pzi(——l)”/za,, si peP,, r pair.

(6.5) On conserve les notations de (6.4). Soit /' = Y a, ¢" un élément
de A. Montrer, en utilisant les derniéres formules de (6.4), que ’ensemble
des valeurs prises par les a, (n>>1) est un sous-ensemble de Op/m stable
par multiplication par Z. (En particulier, si Op = Z et si I’'un des q, est
inversible dans Z/mZ, alors les a, prennent toutes les valeurs possibles.)
Si a appartient a ce sous-ensemble, et si 2 /' m, on a

N{n<x:a, =a dans Ogm} >> x(loglogx)"/logx

quel que soit 4. (Choisir r >1 tel que a, = 27" ! g, et remarquer que
a, = a lorsque n est de la forme p, ... p, ¥, ou py, ..., p, sont des éléments
de P} ne divisant pas r, et deux a deux distincts.)

Formes modulaires (mod 2).

(6.6) Soit S la F,-algébre des formes modulaires (mod 2) sur SL,(Z),
autrement dit (cf. [21], [27]) Ialgébre des polyndmes en la série

A~=q+q9+q25+q49+...,
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a coefficients dans F,. Soit S, (resp. S;) le sous-espace de S’ engendré par
les A’ pour i >1 (resp. par les A2], pour j >0);ona S=F, ®S,. Soit
/= a,q" un élément de S,.

(a) Montrer que, si fe S, et f # 0, il existe ¢ > O tel que

N{n<x:a, =1} ~ cx'/?,

(b) On peut prouver (cf. [22]) que les T, sont localement nilpotents
sur S,. Admettant ce fait, il existe un entier 2 > 0 tel que f soit annulé par
tous les produits 75 ... Tp,, p; premier # 2. Montrer que a, = 1 entraine
que n est de la forme bc ou b a au plus 4 facteurs premiers # 2 (raisonner
par récurrence sur 4 et n). En déduire:

N{n<x:a,=1} << x(loglogx)""'/logx.

(¢c) On suppose f ¢S, et 'on choisit I’entier # de (b) minimal; on a
h >1. 11 résulte alors de (6.4) qu’il existe des ensembles frobéniens
Py, ..., P, de densités > 0, ainsi qu'un élément non nul g de S,, tels que

fl Ph_'g si plepls'“:pheph'

Si le r-ieme coeflicient de g est égal a 1, on a @, = 1 pour tout n de la
forme p; ... p, 1, avec p; € P;, les p, étant distincts, et ne divisant pas r. En
conclure que

N{n<x:a, =1} >> x(loglogx)"!/logx,
d’ou, en vertu de (b):
N{n<x:a, =1} = x(loglogx)" !/logx.
(d) II résulte de (a) et (c) que fe S, équivaut a

N{n<x:a, =1} = o(x/logx)
ainsi qu’a
N{n<x:a, =1} = 0(x'?.

(6.7) On pose 4° = ) ¢,q", et 'on note E I'ensemble des 7 tels que

= 0 (mod 2). Montrer que le complémentaire £’ de E est formé des
entiers »n de la forme p*™ ™! a2, avec p premier, a impair non divisible par p,
m entier >0, et p=3 (mod 8). (Utiliser la congruence

Z @1+ (mod 2) )
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La série de Dirichlet f(s) = ), . n~° associée & E’ est égale a

A=270@sy{ Y plA+p )},

P=3 (mod38)

On peut I’écrire sous la forme

f(s) = clog 1/(s=1) + h(s),

ou & est holomorphe pour £ (s) > 1, et ¢ = n?/32. En déduire (grice au
théoréme b de [3], p. 26), que I’'on a

N{n<x:e =1 (mod2} ~ cxflogx.

Montrer que

£IT, = 4 (mod 2) si p =3 (mod8)
P 0 (mod 2) sinon.

Montrer que les mémes résultats valent pour 4°, 4 condition de rem-
placer p = 3 (mod 8) par p = 5 (mod 8).

------

(6.8) Soit n> a, une fonction multiplicative a valeurs dans I’anneau O
des entiers d’une extension finie F de Q, et soit v la valuation de F définie
par un idéal premier p 5% 0 de Op. Pour tout r > 0, notons N, (resp. P,)
I’ensemble des entiers n >1 (resp. des nombres premiers) tels que
v (a,) = r, et posons

L = T 07 et £ = % T,

neN,

ou 7 est une indéterminée.

(a) Montrer que
v(a,m)

= T+ 31 7,

ou I’on convient de supprimer le coefficient de p™™¢ si v (@,m) = o0, i.e. si
Am = 0.
En déduire que

7109 = &b { T T (02,9 +0,))

olt pp () = ), ep, P 5 et ot les 6, (s) sont holomorphes pour Z (s) > 1/2.
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(b) On suppose que les P, sont réguliers de densité¢ o, >0 et que
0 < o, < 1; onnote m la borne inférieure des i > 1 tels que o; > 0. Montrer
que f, (s) est de la forme

1 h(r) ;
fr(s) = G—1)y {Z ¢,,;(s) (log 1/(s—1)) }

j=0

ol % () est la partie entiére de r/m, et ol les ¢, ; (s) sont holomorphes pour
Z (s) > 1. Cela entraine:

Jo(9) + ... +f.(5) =

(s —1)%

ol les d,;(s) sont holomorphes pour £ (s) >1. Montrer que I'on a
d.; (1) > 0 pour j = h(r). En déduire, grace au théoréme b de [3], p. 26,
que

N{n<x:a,20 (mod p™)} ~ ¢x (loglogx)""/log' *x,

h(r)
{ Z dr,j (S) (IOg 1/<S - 1))1} ’

j=0

avec ¢, = d, ; (1) | I ().

(c) On suppose que les a, sont les coefficients d’une forme modulaire
de type (4.7 1i,). Montrer que les conditions de (b) sont satisfaites (les P,
sont méme frobéniens) et que I'on a

o + 0oty + ..+, +... =1 =0,

ou o, est la densité des p tels que ¢, = 0.

(d) Etendre les résultats ci-dessus au cas de produits de puissances
pit...p; d’idéaux premiers (utiliser des séries formelles en T7, ..., T)).

(6.9) Soit / un nombre premier # 2. Soit P, (/) I'’ensemble des nombres
premiers p # [ tels que 7 (p) soit divisible par /, mais pas par [*. Montrer
que P, (/) est de densité > 0. [Soit G, le sous-groupe de GL,(Q,) image de
la représentation /-adique attachée a 4, cf. [19], [27]. La densité de P, (/)
est égale a la mesure de Pouvert H, de G, formé des éléments s tels que
v, ( Tr(s)) = 1; il revient au méme de prouver que H, # @, que P, (/) # &,
ou que la densité de P, (/) est > 0. Or,ona H, # @ pour [ # 3,5, 7, 23,
691, vu la « grosseur » de G, cf. [27]. Pour [ = 3,7,23, on a 5P, (/)
puisque 7(5) =2.3.5.7.23; pour /=35, on a 19 e P, (I) puisque
7(19) = 2%. 5. 7%. 11. 23. 43; pour / = 691, un calcul sur machine montre,
parait-il, que 1381 e P, (/).]

Déduire de 13, et de D’exercice précédent, que, pour tout r >0, il
existe une constante ¢;, > 0 telle que
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N{n<x:t(n)#0 (mod I''H)} ~ ¢,x (loglogx)/log"®x,

ou « (/) est donné par la formule de I’exemple 3 du § 1.

Equidistribution des valeurs des a, (mod m).

(6.10) Soit n— a, une fonction multiplicative a valeurs dans un anneau
commutatif fini 4. On note r I'ordre du groupe multiplicatif A* des éléments
inversibles de A. Si A € A*, on note P, I’ensemble des nombres premiers p
tels que a, = A. On fait les hypothéses suivantes:

(1) Les P, sont réguliers de densités «, telles que
0<Ya,<l1.
(i) Le groupe A* est engendré par les éléments A tels que «; > O.

On note X le groupe des caractéres de A*; un élément ¢ de X est un
homomorphisme de A* dans C*; on le prolonge & A en posant ¢ (1) = 0
si A n’est pas inversible.

(a) Si e A* et @ € X, on pose
fi(s) = X n™* et f,(5) = ) @la)n™".

ap=2~24

Montrer que

1
Ja = p 2 (A,

peX

(b) Décomposer f, en produit eulérien, et en déduire que

log f,(s) = f(e) log 1/(s—=1) + h, (),

ol B(p) = >, a; ¢ (4), et h, (s) est holomorphe pour £ (s) > 1.
On a Z (B (p)) <a, avec o = ) a,, et il n’y a égalité que si ¢ est le
caractére unité de A*.

(c) Si B est un nombre complexe, on convient de noter 1/ (s—1)? la
fonction exp {f log 1 / (s—1)}. Montrer, en combinant (a) et (b), que I'on a

fi(e) = c®(s=1)" + iZ ¢;,2 (8)/(s = 1)Ft,

ou ¢ (s) et les c; , (s) sont holomorphes pour Z (s) > 1, les f; sont tels que
Z(PB)<a,etc(l) >0.
En déduire (cf. [3], p. 25, th. a) que

N{n<x:a, =1} ~ cx/logh™%,
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avec ¢ = ¢(1)/I' (¢) > 0. (Noter que ¢ est indépendant de A: il y a
équidistribution des valeurs de (a,) dans A4*.)

(d) Appliquer la méthode de Landau aux f; et f,,, en supposant les P,
frobéniens. En déduire, pour tout N > 1, un développement asymptotique
de N {n <X x: a, = A} modulo O (x/log" x).

(e) Enoncer et démontrer des résultats analogues pour
N{n<x:a® =1..,a" =21},

ou les a,') sont des fonctions multiplicatives & valeurs dans des anneaux
commutatifs finis 4;. (Se ramener au cas d’une suite unique a valeurs dans
A=A, % o X A)

(6.11) Soit m un entier impair > 3. On considére la fonction multiplicative
nt 1 (n) (mod m), a valeurs dans A = Z/mZ .

Montrer que la condition (i) de (6.10) est satisfaite, et qu’il en est de
méme de (i1) pourvu que m ne soit pas divisible par 7. [On peut supposer
que m est une puissance d’un nombre premier /, cf. [19], 4.2. 11 faut alors
vérifier que, si / # 2,7, les t(p), p premier # [, qui ne sont pas divisibles
par / engendrent le groupe multiplicatif (Z//?Z)*. Pour [ # 3, 5, 23 et 691,
cela résulte de ce que 7 (p) peut prendre n’importe quelle valeur modulo /2,
cf. [27]. Pour [ = 3,5, 23, 691, remarquer que le sous-groupe de (Z/I*Z)*
engendré par les 7 (p), p # [, se projette sur (Z/IZ)* et contient 2 d’aprés
(6.4); utiliser alors le fait connu que 2'~* 2 1 (mod %) pour / < 1093.]

En déduire ’équidistribution des valeurs de t(n) appartenant a
(Z/mZ)*, lorsque m n’est pas divisible par 7.

(6.12) Montrer qu’il existe deux constantes ¢, c_, avec ¢, > c_ > 0

telles que
( 1/2 . A
c.x/log'’*x si = = ]

N{n<x:1(n) =21 (mod7)} ~ ,
c_x/log'?x  si (?> = -1,

(Utiliser une méthode analogue a celle de (6.10).)

Exemple de minoration de ] a, l pour p — 0.

(6.13) Soit a— x(a) un caractére de Hecke d’un corps imaginaire
quadratique K. Soit f le conducteur de y. On suppose que y est d’exposant
entier d > 1, autrement dit que
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7 ((2)) = z? pour tout z € K* tel que z = 1 (mod*7).
Posons
> 2(@q"® =} aq",
de sorte que :

Yan” =L = [T (1-z@N®™)™".
PAT
On sait que la série ) a, ¢" est une forme modulaire parabolique de
poids & = 1 + d et que c’est une fonction propre des opérateurs de Hecke.
Si o est le caractére d’ordre 2 qui correspond a K,ona a, = Osi w (n) = — 1.
Soit P I'ensemble des nombres premiers p ne divisant pas N (), et tels
que o (p) = 1.SipeP,ona

a, =z + 7,
ol p et p sont les idéaux premiers de Oy divisant p. Montrer que

(k—3)/2—c¢

la,| >>p pour tout ¢ > 0.

[On peut se restreindre au cas ou p est contenu dans la classe mod N ()
d’un idéal fixe a. Sil’on écrit alors p = a (2), avec z = 1 (mod * N (f)), on
a a, = y(a)z* + z(a)z = 4;(x,»), ol x,y sont les coordonnées de z
par rapport a une Z-base de a” ', et ol 4; est un polyndme homogéne de
degré 4. Les coefficients de A, sont des nombres algébriques, et 4; n’a

aucun facteur multiple. D’aprés le théoréme de Roth, on a

Ay (x,¥)>> (sup (|x], [»]))*"27° pour x, y premiers entre eux,

d’ou aussitot le résultat cherché.]

Soit 6 un nombre > O tel que, pour tout secteur angulaire de C de lar-
geur ~ 1/N, il existe p << N?tel que I’élément z correspondant appartienne
au secteur angulaire donné. (D’aprés KovalCik, Dokl., t. 219, 1974, on peut
prendre pour ¢ tout nombre > 4.) Montrer qu’il existe alors une constante
¢ > 0 telle que

lapl < Cp(k—l)/Z—l/é

pour une infinité de p tels que w (p) = 1.

Passage des fonctions modulaires aux formes modulaires.

(6.14) Soit f= > ,~_,a,q"une fonction modulaire sur SL,(Z) de
poids k € Z, a coefficients rationnels. On suppose f holomorphe dans le
demi-plan £ (z) > 0 mais pas nécessairement a la pointe oo.

o

e




— 257 —

(a) Soit / un nombre premier tel que @, = 0 pour tout #» < 0 divisible
par /. Montrer que les séries

fr=Yaq" et f"=) aq"

In
sont des formes modulaires /-adiques de poids k, au sens de [21]. ..

(b) Soient / un nombre premier # 2, et ¢ = + 1 tels que g, = 0 pour

N\

n :
tout n < 0 tel que ( 7) = &. Montrer que la série

fo = a,q"
() -

est une forme modulaire /-adique de poids k. (Méme méthode que pour
5.2.)

Divisibilité des coefficients c (n) de j.

(6.15) Soit D l'opérateur de dérivation ) a,q"+— Y na,q", noté 0
dans [21], [27]. Soient / un nombre premier # 2, et r un entier > 1.

(a) Montrer que, si 4 est une forme modulaire (mod /"), de poids %,
il existe une forme modulaire 4’ (mod /"), de poids k + 2 + "~ 1 (/—1),

telle que
D(h/4) = h'/]4 (mod I").

(Utiliser le lemme 3 de [27], p. 19, ainsi que le fait que
P=E)i;-13-1) (modl").)

(b) Déduire de 1a que, pour tout a > 0, il existe une forme modulaire
fo (mod I"), de poids 12 + a (2+1"" ' (I-1)), telle que

D%(j) =fu/4 (mod I).

1
(c) On prend a = 5 I""1(I—1) . Montrer que

D(j) =j, (mod I"), ou j, = ), G)C(H)CJ"-
n=-—1

En déduire, grice a (b), I'existence d’une forme modulaire # de poids

1
24+ I =0 + S P2 (1-1) = 12 4k,

L’Enseignement mathém., t. XXII, fasc. 3-4. 17
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telle que

j— <:l£> je = h/4 (mod [").

Le terme constant de % est nul. En déduire que & = fA4, ou f est une
forme modulaire (mod I") de poids k, ce qui fournit une autre démonstra-
tion de (5.2 b).

(6.16) On conserve les notations de (6.15), et I'on prend r = 1, i.e. on
calcule (mod /).

(a) Montrer que j'= 744 (mod/) si /= 3,5,7,11, et que j' (mod /)
est de filtration / — 1 (au sens de [27], p. 24) si / > 13. En particulier, on a,
pour tout n > 1:

c(3n) =0 (mod 3)

c(5n) =0 (mod 5)

c(7n) =0 (mod 7)

c(11n) =0 (mod 11)

c(13n) =c(13)t(n) = —1(n) (mod 13)

c(17n) = c(17) t,s(n) = 4t;s(n) (mod 17)

c(19n) = c(19) t;5(n) = 7t;5(n) (mod 19)

c(23n) = c(23)t,,(n) = 4t,,(n) (mod 23),
ou, pour k = 16, 18,22, on note #, (n) le coefficient de ¢" dans I'unique
forme parabolique normalisée de poids k.

(b) On a
D(j) = Q°R/4 = Q°R4A"™ /A",
d’ou
D**1(j) = D*(Q*R4A'1)/4" (mod ). |
Montrer que, si [ > 13, 0% R A"~ 1 est de filtration 12/ + 2. En déduire
que DY(Q?RA*" 1) est de filtration 12/ + 2 + a (I+1) pour a </ — 2.
(¢) On applique (b) avec a = (/—3)/2, de telle sorte que
D*(Q?RA™YHY/A4' = D" (j) =j,, cf. (6.15¢).

————

En déduire que la forme modulaire (mod /) j — <T> j. estde filtration

1 : A
— (I—1)?, et que j_ est de filtration /> — I En particulier, ces formes sont

£ 0 (mod ]).
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—1
(d) Si I = 3 (resp. 5, 7, 11), la forme j — <—l—> j, est nulle (resp. de

filtration 0, 12, 40).

(e) Déduire de (b) et (c) les congruences suivantes (dues a Kolberg [7]):

. n

c(n) =0 (mod?5) si <—5—> = — 1
, n

c(n) = 2no;(n) (mod 7) si <7> =1

c(n) = 9n?a5(n) — 3n*o;3(n) (mod 11)

w

fuly
P
H S~
| =
\’/

li

)—-l

‘N
c(n) =8t (n) —3nas(n) — 2n*o;(n) (mod 13) si <E> = —1

/

(6.17) Soient / un nombre premier >7, et r un entier > 0. Montrer

que, pour tout entier a, il existe une infinité d’entiers n tels que ¢ (n)

~1
— g (mod I") et (-'lf> = - <_—> . (Utiliser les exercices (6.16) et (6.5).)

[1]

(2]

[4]

(5]
[6]
[7]
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9]
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