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DIVISIBILITÉ DE CERTAINES FONCTIONS ARITHMÉTIQUES

par Jean-Pierre Serre

On connaît de nombreux exemples de fonctions arithmétiques an

jouissant de la propriété suivante: pour tout entier m > 1, l'ensemble des n

tels que an 0 (mod m) est de densité 1 ; autrement dit, on a

Il en est notamment ainsi lorsque les an sont les coefficients d'une forme
modulaire de poids entier sur un sous-groupe de congruence de SL2(Z):
cela se démontre en appliquant la méthode de Landau [8] aux fonctions L
d'Artin fournies par la théorie de Deligne [4]. Cette démonstration est

esquissée dans la Note [23]. Je reprends ici la question, en donnant davantage

de détails : les §§ 1 à 3 rappellent les résultats généraux de Landau,
Watson, Raikov, Delange, les §§4 à 5 appliquent ces résultats aux
coefficients de formes modulaires, ainsi qu'à ceux de la fonction y; le § 6

contient divers compléments, rédigés sous forme d'exercices, avec esquisses
de démonstrations.

A des changements mineurs près, le texte qui suit est extrait du Séminaire

Delange-Pisot-Poitou 1974/75. Je remercie les organisateurs de ce
Séminaire de m'avoir autorisé à le reproduire.

an 0 (mod m) pour « presque tout » entier n
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§ 1. ENSEMBLES DE NOMBRES PREMIERS

Soit Pun ensemble de nombres premiers. Considérons les propriétés
suivantes :

(1.1) X 1/p + oo ;
PeP

(1.2) P est de densité a > 0, i.e. le nombre des p eP qui sont < x est

égal à ax/log x + o (x/log x) quand x -> oo.

(1.3) P est régulier de densité a > 0, au sens de Delange [3], i.e.

E P"! a log l/(s-l) + dp (s),
PeP

où 6p (s) se prolonge en une fonction holomorphe pour M (s) > 1.

(1.4) P est frobénien de densité a > 0, i. e. il existe une extension finie
galoisienne K\Q, et une partie H du groupe G Gai (K/Q) telles que

(a) H est stable par conjugaison,

(b) | H | /1 G | *= a (on note | X | le nombre d'éléments d'un ensemble

fini X),
(c) pour tout p assez grand, on a p e P o ap (.K/Q) e H, où ap (K/Q)

désigne la substitution de Frobenius [1] de p dans G (définie à conjugaison
près lorsque p ne divise pas le discriminant de K).

Proposition 1.5. On a (1.4) =*> (1.3) => (1.2) => (1.1).

L'implication (1.2) => (1.1) est facile. L'implication (1.3) => (1.2) est

prouvée dans [3], p. 57, comme conséquence d'un théorème taubérien.
D'autre part, sous les hypothèses de (1.4), on a

(1.6) £ P's ~lx(H) log L(s,x)1) + ^(5)
peP

I ^ I
X

où:

X parcourt l'ensemble des caractères irréductibles de G,

L (s, x) est la fonction L d'Artin [1] relative à l'extension K/Q et au
caractère x?

1) Ici, comme au §2, la détermination choisie de « log » est celle que l'on obtient
par prolongement analytique sur les horizontales à partir de la détermination « évidente »

pour m (s) > 1 (i. e. celle fournie par le développement en série — on peut aussi la
caractériser par le fait qu'elle tend vers 0 quand st (s) tend vers + co).
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g est une série de Dirichlet qui converge absolument pour 0t (s) > 1/2

(donc est holomorphe pour M (s) > 1),

X(H) Z f(ù).
heH

Il résulte alors des propriétés élémentaires des fonctions L (s, x) que

logL (s, x) öx log 1/(^—1) + 9X (s)9 où öx 0 (resp. ôx= 1) si x ^ 1

(resp. si x= 1), et 6X (s) est holomorphe pour M (s) > 1. La propriété (1.3)

en résulte.

Exemples.

(1) Si a et m sont des entiers > 1 tels que (a, m) 1, l'ensemble des

nombres premiersp tels quep a (mod m) est frobénien de densité 1/cp (m).

(2) L'ensemble des nombres premiers qui se décomposent complètement

(resp. ont un facteur premier de degré 1) dans une extension finie
de Q est frobénien de densité > 0.

(3) Soit t la fonction de Ramanujan (cf. [6], [19], [27]). Si m est un
entier > 1, l'ensemble des p tels que x(p) 0 (mod m) est frobénien de

densité a (m) > 0; cela résulte de Deligne [4] (voir aussi [19], [27], ainsi

que le §4 ci-après). Lorsque m est premier, on peut calculer a (m) grâce à [27].
On trouve:

/ f 1, 1/2, 1/4,1/2,1/2, 1/690 si m 2, 3, 5,7,23,691
a (m) <

l ml(m — 1) sinon.

Remarque. Lorsque P est frobénien, on peut préciser un peu le comportement

de la fonction fP (s) Z P~s à gauche de la droite critique
peP

M (s) 1 :

Proposition 1.7. La fonction fP se prolonge en une fonction holomorphe
dans une région de la forme

(18) f > 1 ~ b/logAT, avec 0, 2 + | ./(s) |

J*(s)7^ 0 ou s réel > 1

et y admet une majoration

(1-9) \fP(s)\0(loglog T) pour T-* oo

Cela se démontre de la manière suivante: vu (1.6), il suffit de prouver
l'énoncé analogue pour log Z, (j, *) ; grâce au théorème d'induction de
Brauer, on peut en outre supposer que i est un caractère de degré 1 de
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Gal (.K\E), où E est un sous-corps de K. On peut alors appliquer à log L {s,x)
les méthodes classiques de Hadamard et de La Vallée Poussin, cf. par
exemple [10], p. 336-337. [En fait, [10] se borne à prouver l'existence d'une
région (1.8) où L L (s, x) est holomorphe ^ 0, et où | LjL | O (log^E).
Pour passer de là à la majoration

I log L(s, x) I 0(loglog T),

on distingue deux cas, suivant que &(s) est ou non > 1 + 1/1ogAT. Dans
le premier cas, on a:

| log L(s, x) 1 < [E: Q] log C (« (s)) < [E: Q] A loglog T + O (1)

O(loglog T)

Le deuxième cas se ramène au premier: on applique le théorème des

accroissements finis au segment horizontal Is joignant ^ au point s0 tel que

*(s0) S (s), 0(so) 1 + l/logAT,
et l'on obtient

I log L(s> x) I < I log L(S0,x)I+ I I sup<rsJs | L'/L(<7, I

O(loglog T) +O(1)0(loglog T). ]

§2. THÉORÈMES DE DENSITÉ

2.1. Définitions. SoitE une partie de l'ensemble N* des entiers > 0;
on note E' le complémentaire N* — E de E. Si x g N*, on note E (x) le

nombre des n < x qui appartiennent à E; on a E (x) + E'(x) x. Lorsque
E est l'ensemble des n satisfaisant à une relation E, on écrit aussi

N{n<x:R(n)}
à la place de E (x).

On dit que E est de densité c si lim E (x)/x c, autrement dit si
*-»•00

E (x) ex + o (x) pour x -> oo

Soit P un ensemble de nombres premiers. Nous dirons que P est associé

à E si, pour tout p e P et tout entier m > 1 non divisible par p, on a pm g E.

Théorème 2.2. Si P est associé à E, et si P jouit de la propriété (1.1),
à savoir 1 \p — + oo, alors E est de densité 1.

peP
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Soit I une partie finie de P, et soit Er l'ensemble des entiers de la forme

pm, avec p e I et m > 1 non divisible par p. Le complémentaire Ex de Et
est l'ensemble des entiers n > 1 tels que

7tfip, 2p 3p, (p-l)p (mod p2) pour tout pel.
Sa densité est c'j H (1 ~~ Mais, vu (1.1), le produit

peI
infini n (1 ~ (P~^)/p2) diverge, i.e. tend vers 0. Les cf tendent donc

psP

vers 0, et comme E' est contenu dans tous les Eb on a

lim sup E' (x)/x < lim c\ 0,

d'où le fait que E' est de densité 0.

Le cas régulier. D'après (2.2), on a Er (x) o (v) pour x -> oo. Nous
allons voir que l'on peut préciser ce résultat, à condition de faire des hypothèses

supplémentaires sur P. Tout d'abord:

Théorème 2.3. Supposons que P soit associé à E, et soit régulier de

densité a > 0. On a alors :

(a) E' (x) O (x/logax) si a < 1 ;

(b) E' (x) O {x1'5), avec ô > 0 si a 1

Disons d'autre part que E est multiplicatif s'il possède la propriété :

(M) Si n1 et n2 sont des entiers > 1 premiers entre eux, on a

n1n2eE o {nleE ou n2eE).

Théorème 2.4. Supposons E multiplicatif et soit P l'ensemble des
nombres premiers appartenant à E. Alors :

(a) Si P est régulier de densité a, avec 0 < a < 1, on a

E' {x) ~ cx/logax avec c > 0

(b) Si P est régulier de densité 1, on a

E' (x) 0{xx~ô), avec ô > 0.
(Noter qu'il résulte de (M) que P est associé à E.)

Démonstration de (2.4) (d'après Raikov, Wintner, Delange). — Posons
bn 0 si n e E, et bn 1 si n e E\ de sorte que:

E'(x) E Kl
n^x
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la condition (M) signifie que bn est une fonction multiplicative de n. On a

b± 1 (mis à part le cas trivial oùE' 0). Considérons la série de Dirichlet

/0) £ bnn~* £
neE'

qui converge absolument pour Mis) > 1. On a

f(.s) Y\fp(s), où £ p"ms.
p pmeE'

La série fp (5) commence par le terme 1 + p~s si et seulement si p
n'appartient pas à P. On peut donc écrire / sous la forme

us) n
p$p p

où le produit des hp est absolument convergent pour M (s) > 1/2. On a donc

(2.5) log fis) Y P~s +
p$p

oil 6 i is) est holomorphe et bornée dans tout demi-plan M (s) > c, avec

c > 1/2. Plaçons-nous dans le cas (a), i. e. supposons P régulier de densité a,

avec 0 < a < 1; le complémentaire de P est régulier de densité 1 - a;
vu (1.3), et la formule ci-dessus, on a

log f(s) (1 — ce) log 1/(5-1) + 02 (s),

où 02 C5) est holomorphe pour ^ (5) > 1. Revenant à /, on obtient

(2-6) /(*) =^—L_.ù(s)>

où h is) exp 92 is) est holomorphe et ^ 0 pour M (5) > 1. D'après une
variante du théorème taubérien de Ikehara (cf. [2], [3], [14], [15], [29]),
ceci entraîne

(2.7) Yj bn ~ cx/logax avec c h (1)/T (1 — a)
n^x

d'où (2.4) dans le cas a < 1. Si d'autre part a 1, le même argument montre

que /(s) est holomorphe pour M is) > 1 ; comme c'est une série à coefficients

positifs, il en résulte, d'après un lemme classique de Landau, qu'elle

converge en un point s l - ô, avec ô > 0; on en déduit aussitôt la

majoration cherchée:

£ù„ 0(x1-5).
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Démonstration de (2.3). Soit E (P) l'ensemble des entiers de la forme pm,

avec p e P et m > 1 premier à p. On a E (P) c= E, d'où E' (x) < E(P)f (x).
D'autre part, E (P) est multiplicatif, et son intersection avec l'ensemble des

nombres premiers est P. En appliquant (2.4) à E(P), on obtient

E Cpy (x) O (x/1ogax) dans le cas (a),'

E(P)' (x) O (x1"5), avec ô > 0, dans le cas (b),

d'où (2.3) puisque E' (x) < E (.P)' (x).

Le cas frobénien. Revenons aux hypothèses de (2.4 a); on a

E' (x) cx/logax + o (x/1ogax), avec c > 0

Si P est frobénien, on peut remplacer le terme d'erreur o (x/logax) par
O (x/log1+ax), et même donner un développement asymptotique de E' (x):

1+ico 2+ioo

1-Ô

1 -ioo 2-ioo

Théorème 2.8. Supposons que E
soit multiplicatif et que l'ensemble P
des nombres premiers appartenant à E
soit frobénien de densité oc, avec 0 <
a < 1. Il existe alors des nombres

c0, clt..., ckf..., avec c0 > 0

tels que, pour tout entier k > 0, on ait

E'{X) =io^(Co+Cl/logx + -- +

ckllog**+ O (l./log*+ 1x)).

La démonstration utilise une
méthode due à Landau [8] ; je me bornerai
à la résumer, renvoyant à [8] ou [28]

pour plus de détails:

Soit /O) y bnn~s y
neE'

comme ci-dessus. On montre au moyen
de (2.5) et (1.7) que / se prolonge en

une fonction holomorphe dans une
région du type ci-contre (les branches
infinies C et D étant définies par
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Mis) 1 - b/logAT, avec T 2 + | f (s) | et que l'on a dans cette

région
|/(5) I O(log^T) pour T-> 00

Posons alors
b 0) X bn logO/n).

n^x
On vérifie que

2 + i 00b(x)—- \ /(s)
2lJZ J 2 — i 00

La formule de Cauchy montre que cette intégrale est égale à l'intégrale

analogue prise sur le bord gauche de la région considérée. Les
contributions des branches infinies C et D sont négligeables devant x/1ogNx,

quel que soit N; celle du cercle centré en 1 tend vers 0 avec le rayon du
cercle. Le terme principal est donc fourni par les deux intégrales sur
le segment horizontal joignant 1 — ô à 1 ; ces dernières s'évaluent sans

difficulté, à partir du développement de / (V) au voisinage de ^ 1. On
trouve que:

b (x) —— (d0 +J1/logx + +dkl\ogkx + 0 (l/logfc+1x))
log x

En appliquant ce résultat à x + ôx, avec ô ~ 1/1ogK+1x, et en retranchant,

on obtient facilement l'estimation cherchée pour E' (x) bn

(cf. [17], p. 277, ou [28], p. 723-724).
De façon plus précise, si le développement de f(s)/s au voisinage de

v 1 est:

/(5)/5 7 -ni-a (^0 + ^1 (5 ~ 1) + • • • + ek (s — + • • •) *(s- 1)

on trouve pour E' (x) le développement asymptotique

£'(x) -^(c0+cJlogx + ...+cJIog*x+O(l/log*+1x)),
logax

avec

(2.9) ck ejra-k-x).
Remarques.

(1) En utilisant (1.6) on peut ramener le calcul des et et des c{ à celui,
d'une part de séries absolument convergentes (donc évaluables

numériquement), et d'autre part de valeurs des dérivées des L {s, x) au point
s 1 ; pour un exemple de tel calcul, voir [24].
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(2) La méthode de Landau suivie ci-dessus a l'avantage, non seulement
de donner un développement asymptotique, mais encore de fournir un
terme d'erreur que l'on peut effectivement majorer, pourvu bien sûr que
l'on dispose de majorations effectives de f(s), ce qui est le plus souvent
faisable (mais rarement fait...). On ne peut rien déduire de tel des théorèmes

taubériens à la Ikehara, du moins sous leur forme actuelle.

(3) A la place de l'intégrale de/(s) xs/s2, on pourrait songer à utiliser celle
de f(s) xs/s, qui conduit directement à £ bn. Malheureusement, il ne

n^x
semble pas facile de majorer cette dernière intégrale sur les branches infinies
C et D.

Voici maintenant une variante du théorème (2.8), dans le cas où
l'ensemble P est frobénien de densité 1, i. e. de complémentaire fini:

Théorème 2.10. Supposons que E soit multiplicatif,\ et contienne tous les

nombres premiers, à l'exception d'un nombre fini. Alors :

(a) On a E' (x) O (x1 2).

(b) Si l'ensemble des nombres premiers p tels que p2 e E' est régulier de

densité ô > 0, on a

E' (x) ~ cx1/2/log1~ôx avec c > 0

L'assertion (a) est facile, et peut d'ailleurs se ramener à (b). Plaçons-
nous donc dans le cas (b), et posons ici encore

fis)E E
neE'

Les hypothèses faites sur E entraînent que

log f(s) E P~2s + #i (s) ô log 1/(2s - 1) + (s),
p2eE'

où les 0i is) sont holomorphes pour M (s) > 1/2. Il en résulte que

/(s/2) =r^h^'(s-1)
où h (s) est holomorphe et ^ 0 pour 01 (j) > 1. En appliquant à/(.y/2) les
théorèmes taubériens cités plus haut (cf. [2], [14], [29]), on en déduit

E bn ~ Cjx/log1-^ avec ù(l)/r((5) ;

qn<x

en remplaçant x par x1'2,onobtient le résultat cherché:

E'ix) ~cxl,2llog1,avec c 21~sc1
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Remarque. Dans le cas (b), si l'ensemble des p tels que p2 eE' est frobé-
nien, on peut utiliser la méthode de Landau pour obtenir un développement
asymptotique de E' (x).

Exemple. Prenons pour 1E l'ensemble des entiers de la forme pm, avec p
premier, et (p, m) 1 ; l'ensemble E' est formé des entiers n > 1 tels que

p | n => p2 | n pour tout p premier; les hypothèses de (2.10 b) sont vérifiées

avec ô 1. On a

1 — p~s + p~2s
/{s) Yia+p-2s+p-3s+p-*s+n

p i

P i -P~2S V(i-p~2s)
C(2s)C(3s)/C(6s).

D'après (2.10 b), on a E' (x) ~ ex112, avec c Ç (3/2)/( (3). On
connaît en fait des résultats bien plus précis, par exemple celui-ci (Bateman-
Grosswald, Illinois J. Math., 2, 1958):

E'(x) cx1/2 + dx1/3 + O (x1/6 exp — A\ogBx)) avec A,B > 0.

§3. PREMIERS EXEMPLES

3.1. Sommes de deux carrés. C'est l'exemple traité initialement par
Landau [8] (voir aussi [6], [24], [26]):

On prend pour E' l'ensemble des entiers n > 1 qui sont de la forme
a2 + b2, avec a,b e Z (ou a,b e Q, cela revient au même); on a ainsi:

Ef(x)=N{n<x : n |T| }

Soit P l'ensemble des nombres premiers p tels que p - 1 (mod 4).

On sait qu'un entier n appartient à E' si et seulement si, pour tout p eP,
l'exposant vp (n) de p dans n est pair. Il en résulte que le complémentaire E
de E' est multiplicatif (au sens du § 2), et que P est l'ensemble des nombres

premiers appartenant à E. Comme P est frobénien de densité 1/2, le théorème

(2.8) montre l'existence de constantes c0, cl9 telles que

E'(x) ~—(c0 +c1/logx +... +cfe/log*x +0(l/log*+1x))
Vlogx

pour tout k > 0. On trouvera dans Shanks [24] (rectifiant Ramanujan [6]
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et Stanley [26]) une étude numérique de Er (x) pour x < 226, ainsi qu'une
détermination des deux premiers coefficients c0 et cx:

co (2 II (1 —^~2))"1/2 0,76422365...
peP

cx 0,44473893

3.2. Fonctions multiplicatives. Soit n an une fonction multiplicative
à valeurs dans un anneau commutatif A, et soit Pa l'ensemble des nombres

premiers p tels que ap 0. Il est clair que Pa est associé à l'ensemble Ea des

entiers n tels que an 0. En appliquant (2.2) on en déduit:

Théorème 3.3. Supposons que Pa soit régulier de densité a > 0. On

a alors
O (x/logax) si a < 1

O (xy) avec y < 1 si a 1
N { n < x : an ^ 0 } j

(Ainsi, « presque tous » les an sont nuls.)

Si A est intègre, Ea est multiplicatif. D'après (2.4) et (2.8), on en tire:

Théorème 3.4. Si A est intègre, et a < 1, on a

N{n<^x:an^0} ~ ex/logax, avec c > 0.

Si de plus Pa est frobénien, on a un développement asymptotique

x
N {n < x : an ^0} - — (c0 + cxllog x +

log x

Donnons maintenant quelques exemples de fonctions multiplicatives
auxquelles on peut appliquer les théorèmes 3.3 et 3.4:

3.5. Coefficients de fonctions L. — On prend pour A le corps C, et

pour an les coefficients d'une fonction L d'Artin

X) Z an"~s,

où x est un caractère de degré d > 1 d'un groupe de Galois G Gal {KjQ),
cf. §1. Faisons l'hypothèse:

(3.5.1.) Le sous-ensemble H de G formé des éléments g e G tels que
X (s) 0 est non vide.
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L'ensemble Pa des nombres premiers p tels que ap 0 est alors frobénien
de densité a | H\/\ G |: cela résulte de (1.3) puisque ap x(?P(K/Q))
pour tout p ne divisant pas le discriminant de K.

Toutes les conditions de (3.4) sont alors satisfaites (noter que a < 1,

car | H\ # | G |, l'élément neutre n'appartenant pas à H). On en déduit

un développement asymptotique de N {n < x: an ^ 0}.

Exemple. Soit k un corps de nombres de degré > 1 ; choisissons pour K
une extension galoisienne de Q contenant k, et soit Gk Gai (K/k) le

sous-groupe de G Gal (K/Q) correspondant à k. Prenons pour x le

caractère de la représentation de permutation de G dans GjGk\ on a

X (g) nombre d'éléments de G/Gk laissés fixes par g
et

L(s, X)Cuis) I
où a parcourt les idéaux entiers ^ 0 du corps k. L'ensemble H de (3.5.1)
est égal à

G — {union des conjugués de Gk}

On a H ^ 0 d'après un résultat élémentaire sur les groupes finis (cf. par
exemple Bourbaki, A 1.130, exerc. 6). Appliquant (3.5), on en déduit:

x
n est norme d'un idéal de k } ~ —— (c0 +ci/l°gx +

logax

résultat dû à Odoni (cf. [11], [12]). Lorsque k Q (z), on retrouve l'exemple
de Landau (3.1).

3.6. Réduction mod m de fonctions multiplicatives. Soit n\-> an une
fonction multiplicative à valeurs dans l'anneau 0F des entiers d'un corps
de nombres algébriques F. Soit m un idéal non nul de 0Fi et notons ân

l'image de an dans l'anneau fini 0Fjm; soit Pa>m l'ensemble des nombres

premiers p tels que ap 0 (mod m). Si l'on fait l'hypothèse:

(3.6.1) Pfl5În est régulier de densité a (m) > 0

on peut appliquer (3.3) à la fonction n àn9 et l'on en déduit:

Théorème 3.7. N {n <x: an ^ 0 (mod m)} O (x/loga(m) x),

ainsi que des résultats plus précis lorsqu'on suppose en outre que Pa m est

frobénien et que m est premier.
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Exemples.

(a) (cf. Scourfield [17], [18]) On suppose que p\-+ap est une fonction

polynomiale de p, i.e. qu'il existe un polynôme cpm (T), à coefficients dans

Ofjm, tel que ap (pm (p) pour tout p. L'ensemble Pa)M est alors frobénien;

pour qu'il soit de densité > 0, il faut et il suffit que cpm « représente 0 »,

i.e. qu'il existe un entier t, premier à m, tel que cpm (t) 0. (.Exemple : on

prend an <7r,s (n) £ dr d'\ avec r pair et 5 impair, d'où
àd'=n

cpm (T) Tr + Ts, et <pm (0 0 pour t= - 1.)

(b) On suppose que la série ^ann~s est associée à un «système F-
rationnel de représentations l-adiques » (cf. [20], chap. I, § 2, ainsi que [4],

[19], [27]). Cela entraîne l'existence d'une extension galoisienne finie Km
de Q, et d'une représentation linéaire

pm: Gal (KJQ) -> GLjV(Of/m)

telles que Tr (pm (ap (Km/Q))) ap (mod m) pour tout nombre premier p,
à l'exception d'un nombre fini. Si l'on suppose en outre qu'il existe

<7elm(pm) tel que Tr (a) 0, alors (3.6.1) est vérifié; on peut souvent

prendre pour a l'image par pm de la conjugaison complexe (« Frobenius
réel ») : c'est le cas pour les systèmes de représentations /-adiques définis

par une forme modulaire (cf. § 4), ou par la cohomologie H\X), i impair,
d'une variété projective non singulière X définie sur Q.

§4. EXEMPLES MODULAIRES

Pour les définitions et notations concernant les formes modulaires sur
SL2(Z) et ses sous-groupes d'indice fini, on renvoie à [5], [19], [25], [27].
Rappelons seulement que l'on pose q e2niz, avec f (z) > 0.

4.1. Formes de poids 1 (cf. [5], §9). — Soit/= £ an qn une forme modulaire

de poids 1 sur un sous-groupe de congruence de SL2(Z).

Théorème 4.2.

(i) Il existe a > 0 tel que

N {n < x : an A0} O (x/logax).

(ii) Soit N un entier >1, et soit s un caractère de (Z/NZ)^.
Supposons que f soit une forme modulaire de type (1, s) sur T0 (IV), et soit
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fonction propre des opérateurs de Hecke Tp (pour pf N) et Up(pour
p | TV), cf. [5], § 1 .Si f ^ 0, on a un développement asymptotique

x
N {n <x: an ^ 0} —— (c0 +cJlog x +...),

1 ogax

avec 0 < a < 1 et c0 > 0.

Plaçons-nous d'abord dans le cas (ii). Quitte à multiplier / par une

constante, on peut supposer que a1 1, et la fonction n\-+ an est alors

multiplicative. De plus, d'après [5], il existe une extension galoisienne finie

Kf de Q, et une représentation

pf: Gai (Kf/Q) GL2(C)

dont la fonction L d'Artin coïncide (à un nombre fini de facteurs près)

avec la série de Dirichlet £ ann~s. Si l'on note G l'image de pf, et H la
partie de G formée des éléments de trace nulle, on a H ^ 0 car H contient
l'image de la conjugaison complexe ([5], n° 4.5) et H / G car H ne contient

pas 1. L'ensemble Pa des p tels que ap 0 est frobénien, et défini par H.
Sa densité a | H | / | G | est =£ 0, 1 : toutes les conditions de (3.4) sont
bien vérifiées. D'où (ii).

L'assertion (i) résulte de (ii) et du fait bien connu x) que toute forme
modulaire est somme de fonctions z\-*ft (dtz), où les dt sont des entiers

> 1 et les fi des formes modulaires de type (ii).

Exemples.

(4.3) La forme

02 (l+2q+2qA + 2q9 + ...)2£
a,beZ

est du type (ii), avec N 4, et s(n) (-4fn) (—l)(n-1)/2; la
représentation correspondante est la représentation réductible 1 © e; on a

a 1/2. On retrouve une nouvelle fois l'exemple de Landau (3.1).

(4.4) La forme
00

/ A1'12 {12z)q n a-q12m)2 E (-l)bq°2+»2
m 1 a 1 (mod 3)

b 0 (mod 3)
a + b 1 (mod 2)

est du type (ii), avec N 144, et s (n) - (-4/n); la représentation
correspondante est la représentation irréductible de degré 2 du groupe

1) Mais pour lequel je ne connais pas de référence satisfaisante, en dehors du cas
des formes paraboliques qui se traite facilement grâce à la théorie des formes primitives
(« newforms ») d'Atkin-Lehner-Miyake-Casselman-Li.
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Gal (Q (z,-^12), Q), groupe qui est isomorphe au groupe diédral D4
d'ordre 8 (E. Hecke, Math. Werke, p. 426 et 448); on a a 3/4.

4.5. Remarques. Il devrait être possible de préciser (i) en montrant que,
si / ^ 0, il existe a > 0 tel que

N {n <^x : an 7^0} x x/logax

et cela sans supposer que / soit fonction propre des opérateurs de Hecke.
Peut-être y a-t-il même un développement asymptotique du genre

JV { n < x : # 0} cax/logax + cßx/logßx + (0 < oc < ß <...)?
Des questions analogues se posent pour N {n <x: an a], où a est

un nombre complexe non nul donné.

4.6. Réduction mod m des formes de poids entier (cf. [23]). — Soit

f Tjan^ln une forme modulaire de poids entier k > 1 sur un sous-groupe
de congruence de SL2(Z). Supposons que les coefficients an de /
appartiennent pour n > 1 à l'anneau 0F des entiers d'une extension finie F
de Q, et soit m un idéal non nul de 0F. L'analogue « mod nt » de (4.2) est
alors vrai, à de légères modifications près :

Théorème 4.7.

(i) Il existe a (m) > 0 tel que

N {n < x : anyk 0 (mod m)} O (x/loga(m)x).

(ii) Supposons que f soit de type (jk, a) sur ro(N), soit fonction propre
des Tp (pour pfN) et des Up (pour p | N), cf. [5], § 1, et que a1 1.

Supposons que m soit un idéal premier. Alors :

(iii) Si la caractéristique du corps 0F/m est différente de 2, ou s'il
existe pf2N tel que ap yk 0 (mod m), on a un développement asymptotique

N{n<x:an^é0(modm)} — (c0 +cJlogx

avec 0 < a (m) <1 etc0>0.

(ii2) Si la caractéristique de 0F/mest 2, et si 0 (mod m) pour
tout pJflN,ilexiste c>0 telque

JV{n<x: a„fé0 (mod m)} ~ ex1'2.

Comme pour (4.2), le cas (i) se ramène au cas (ii). Supposons donc que/
satisfasse aux conditions (ii), ce qui entraîne en particulier que la fonction

L'Enseignement mathém., t. XXII, fasc. 3-4. i c
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n |-> an est multiplicative. Soit / la caractéristique du corps 0F/m. D'après
Deligne (cf. [4], ainsi que [5], § 6), il existe une extension galoisienne finie
K Kf)Xn de Q, non ramifiée en dehors de IN, et une représentation semi-

simple

pm: Gal (K/Q) -> GL2(0F/m)

telles que, pour tout pJflN, on ait

Tr Pm WQ)) ap (mod m)
et

det Pm(aPWQ)) Pk~l £ (P) (mod m).

[Cela revient à dire que, pour tout p)(lN, le p-ième facteur de la série

de Dirichlet £ an n~s est congru (mod m) au p-ième facteur de la « série L»
de la représentation pm, cette dernière étant considérée comme une série

de Dirichlet formelle à coefficients dans 0F/m.]
Notons encore G l'image de pm et H la partie de G formée des éléments

de trace 0; on a H ^ 0, car H contient l'image de la conjugaison complexe.

Distinguons alors deux cas :

(iij) On a H # G. [C'est le cas si / ^ 2, car 1 4 H; c'est aussi le cas

si / 2, et si pm n'est pas la représentation unité, ce qui revient aussi à dire

qu'il existe p)(2N tel que ap ^ 0 (mod m). Ce sont bien là les conditions
de (iii).] Comme l'ensemble Paim des p tels que flp=0(modm) est fro-
bénien, et défini par H, on peut appliquer (3.4) avec a (m) | H j /1 G |,

et l'on obtient le développement asymtotique cherché.

(ii2) On a H G, ce qui signifie que l 2, et que pm est la représentation

unité. On a alors

ap 0 (mod m) et ap2 1 (mod m) pour tout p X2N

et l'on peut appliquer (2.10 b) avec 5 0, d'où le résultat cherché:

iV{n<x: an^0 (mod m) } ~ ex112

Exemples. Prenons F Q, de sorte que 0F Z et m mZ, avec

m > 1.

(4.8) Soit # (X) (Z1?..., X2k) une forme quadratique positive

non dégénérée à 2k variables, et à coefficients entiers. Soit an le nombre de

représentations de n par i.e. le nombre de points x e Z2k tels que
# (x) n. On sait que la série

0* Z a„q»Z 4*(X)
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est modulaire de poids k. On peut donc lui appliquer (4.7 i); en particulier,

quel que soit m>1, les an sont « presque toujours » divisibles par m.

(4.9) La série

A q II (W)24 Z t(»)«"
r=1 n=1

satisfait aux hypothèses de (4.7 ii) avec N 1, s 1, k 12. Si m est

premier # 2, elle est de type (iij), avec un exposant oc (m) facile à déterminer

(cf. § 1, exemple 3) ; on en déduit

x
N{n<x : t (ra) jé 0 (mod m)} —(c0 H-Cj/logx +...)

[Ce résultat était connu (cf. Watson [28]) pour m 3, 5, 7, 691, car
la représentation pm correspondante est alors réductible, ce qui se traduit
par une congruence (mod m) reliant t (n) à l'une des fonctions élémentaires

ar s {n), cf. [19], [27]; dans ce cas, ainsi que dans celui où m 23, on
pourrait même calculer explicitement les valeurs des constantes c0, cu...,
calcul qui paraît par contre fort difficile pour les autres valeurs de m, faute
de renseignements sur les corps Km qui interviennent, ainsi que sur leurs
fonctions L d'Artin.]

Le cas m 2 est exceptionnel : la représentation p2 est la représentation
unité, on se trouve dans le cas (ii2). On a d'ailleurs

t (ri)

I (mod 2) si n est un carré impair

0 (mod 2) sinon,
de sorte que

N { n<x : t (n) # 0 (mod 2)} [1 (1 + VZ)] =1^ + 0(1),

en accord avec (4.7 ii2).

Questions.

(4.10) Il devrait être possible de préciser (4.7 i) en donnant une
estimation de

iV{rc<x: an^â 0 (mod m) }

ou même un développement asymptotique modulo O (x/logNx), N
arbitraire, de

N {n x : an /1 (mod m) } pour X donné.
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Lorsque n |-> an est multiplicative, Delange m'a signalé que l'on peut
résoudre affirmativement la première question, en utilisant la méthode
de [3], §§4, 5 (cf. exerc. 6.8, ainsi que Scourfield [17], [18]). L'estimation
obtenue est

iV { n < x : an^k 0 (mod m)} ~ ex (loglog x)hjlogax

avec c > 0, a > 0, h entier > 0 (mis à part un cas exceptionnel, analogue à

(4.7 ii2), où l'on a une majoration en x1'2).
Le cas général devrait être analogue, à cela près qu'il y intervient, non

seulement les x (loglog x)h!\og* x, mais aussi leurs produits par les termes
oscillants

cos(y loglog x) et sin(y loglog x), yeR.
On trouvera dans les exercices du § 6 quelques résultats dans cette

direction.

(4.11) Soit f— Yjan^n une forme parabolique de type (4.7 ii), de

poids k > 2, et à coefficients dans Z. Ecartons le cas « à multiplication
complexe » où il existe un caractère m d'ordre 2 tel que m (p) — 1 entraîne

ap 0; cela revient à demander que les représentations /-adiques attachées

à / aient pour images des sous-groupes ouverts de GL2. On devrait alors

pouvoir montrer que l'ensemble des n tels que an =£ 0 a une densité > 0,

contrairement à ce qui se passe pour k 1. Il est d'ailleurs plus intéressant
de se poser la question de la nullité, et de la croissance, des ap9 pour p
premier. D'après Deligne on a

| ap | <2p(fc"1)/2.

On sait d'autre part que l'ensemble des p tels que ap 0 est de densité

0 (cf. [19], 4.4). Des arguments probabilistes simples (qui m'ont été signalés

par Atkin) rendent vraisemblable 1) la minoration

(4.11*?) | ap|» p(k-3)i2-t(sifc > 4>

pour tout £ > 0, minoration qui entraînerait que ap tend vers l'infini en

valeur absolue, et ne peut donc s'annuler qu'un nombre fini de fois. Pour

k 2, 3, des arguments analogues suggèrent:

(4.112 N{p<x : ap0} xx1/2/logx (si k — 2)

(4.II3?) N{p<,x:ap 0} xloglogx (si 3).

b Si l'on écrit ap sous la forme 2p (fe-1)/2 cos 9p, avec 0 <9p < n, (4.1 L?) équivaut
à dire que |9p — 7r/2| » 1/p1 + £, autrement dit que 9p ne s'approche «pas trop» de n/2.



On trouvera dans Lang-Trotter [9] une étude numérique du cas k — 2,

ainsi qu'une conjecture plus précise que (4.112 à savoir:

(4.112??) N{p<x: ap 0} ~ cx1/2/logx (si fe 2),

avec une valeur explicite de c.

(4.12) On peut se demander si (4.2 i) et (4.7 i) restent valables lorsque

/ J]anqn est une forme modulaire sur un sous-groupe d'indice fini de

SL2(Z) qui n 'est pas un sous-groupe de congruence (il est alors raisonnable
de supposer, non plus que les an sont entiers, mais que ce sont des « S-

entiers »). On manque d'exemples.

(4.13) Il est probable que l'on ne peut pas étendre (4.7 i) aux formes
de poids demi-entier, du moins en dehors des deux cas suivants

(a) 0Fjm est de caractéristique 2: en effet, on se ramène alors au cas

d'un poids entier en multipliant/par la série

9 1 + 2q + 2q4 + 2q9 +

qui est congrue à 1 (mod 2) ;

(b) la forme / Yjan est de poids 1/2: on peut alors montrer qu'il
existe des entiers tu tr tels que an 0 si n n'est pas produit de l'un des

ti par un carré; cela entraîne

V { n < x : ^ 0} O (x1/2)

Il serait par exemple intéressant de voir ce qui se passe pour la forme
modulaire O3 ]Tr3 (n) qn : comment se répartissent les r3 (n) modulo 3, 5,

etc

§ 5. DIVISIBILITÉ DES COEFFICIENTS DE j
5.1. Rappelons que l'invariant modulaire j est défini par j= Q3/A,

00 00

où Q Ea 1 + 240£*3 (n)q",Aq\[ (1-g")24. On a
«=1 n=1

00

j— <jf_1 + 744 + 1968844 + X c(n)q".

Les résultats du § 4 ne s'appliquent pas directement à car j a un pôle
simple à l'infini, et n'est donc pas une « forme » modulaire. J'ignore d'ailleurs
si les c (ri) sont presque toujours divisibles par tout entier donné; c'est peu
probable. On peut toutefois obtenir des renseignements sur certains des
c (ri) grâce au résultat suivant:
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Théorème 5.2. Soit 7 un nombre premier. Alors :

(a) Les séries

y £ c (In)q"etj" £
n= 0 (mod/)

sont des formes modulaires l-adiques de poids 0, au sens de [21], § 1.

(b) Si 7^2, il en est de même de la série

j- £
fr") -

(c) Si 1 2, il en est de même des trois sériesh=£ c(»)3" 0 1,3,5).
n=i (mod 8)

[Dans (b), la sommation porte sur les n premiers à / qui sont résidus

quadratiques (mod /) si 7 -1 (mod 4), et non résidus si 7 1 (mod 4).
Dans les deux cas, cela exclut n -1. Si 7 2, la même remarque
s'applique aux ji9 pour z =l,3, 5.]

Si / est une forme modulaire 7-adique, et r un entier > 0, il existe une
forme modulaire au sens usuel, à coefficients entiers, qui est congrue à

/modulo F. En appliquant (4.7 i) à cette forme, on obtient:

Corollaire 5.3. Pour tout l premier ^ 2, et tout r, il existe a > 0

tel que

N <x < n : c (n) 0 (mod V) et ^ )1 O (x/logax).jj v i

On trouvera d'autres applications de (5.2) dans les exercices du § 6.

Démonstration de (5.2).

(a) Le fait que j' j | U soit modulaire 7-adique de poids 0 est dû à

Deligne, cf. par exemple [21], p. 228. Comme j" f | V, il en est de même

de j" ([21], th. 4, p. 209).

(b) Soit «H s(n) le caractère de Legendre, et notons je la série

déduite de j par « torsion » au moyen de s, i.e.

00

Â= £ £ (n) (n)
n=- 1

On a
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2J-~' ~(rr)
et il suffit donc de montrer que g j — E est m°dulaire /-adique

de poids 0. Cela peut se faire de la manière suivante (pour une autre méthode,

voir exerc. 6.15): tout d'abord, un argument standard, basé sur le fait

que £2 — 1, montre que je est une fonction modulaire de poids 0 sur le

groupe r0 (/2), holomorphe en dehors des pointes. Il est donc de même

de g ; de plus, le développement en série de g montre que g n'a pas de pôle
à la pointe oo. Le fait que g soit modulaire /-adique résulte alors du

théorème général suivant:

Théorème 5.4. Soit g une fonction modulaire de poids k
sur ro (/m), à coefficients an e Q. On suppose que g est holomorphe dans le

demi-plan ß (z) > 0, ainsi qu 'à la pointe go (i.e. an 0 si n < 0). Alors g
est une forme modulaire l-adique de poids k sur SL2(Z).

Commençons par le cas particulier où g est une forme modulaire de

poids k > 4, et où les coefficients an sont l-entiers. On raisonne alors par
récurrence sur m. Le cas m 1 est traité dans [21], n° 3.2. Si m > 2,
définissons des formes modulaires fi9 g t de poids kl1 (z > 0) au moyen des

formules de récurrence :

/o 0 g0 d fi —(gi-i)' I u ,g,y gi_1 (i > 1).

(Rappelons que Er désigne la série d'Eisenstein de poids r normalisée
de telle sorte que son terme constant soit 1 ; on a Er 1 (mod la+1) si r est
divisible par la (/— 1).)

On vérifie tout de suite que les coefficients des/f et gt sont /-entiers. De
plus, lesf sont des formes modulaires sur ro(lm~x), car il est bien connu que
si m >2, l'opérateur U fait passer de T0(/m) à ro(/m_1). Vu l'hypothèse
de récurrence, les f sont donc des formes modulaires l-adiques de poids kl\

Pour tout i > 0, posons
00

FI Ekla(l-1) 5

a i

le produit infini ayant un sens du fait que Ekl<l est congru à 1

(mod /a+1). La série At est une forme modulaire /-adique de poids
00

x kr (l -1) (0, - kl') dans Z/(/ — 1) Z x Z,.
a i
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On vérifie sans peine l'identité

A0g A1f1 + IA2J2 + -" + ll 1 Aifi +

Les séries A^f sont modulaires /-adiques de poids

(0, -fcf) +(kll9 kl1) (kl*, 0) (fc, 0).

Il en résulte que ^40 g est modulaire /-adique de poids (k, 0). Mais le fait
que A0 1 (mod /) entraîne que Aq1 lim^^ Aq'1 est modulaire /-adique
de poids (0, k). Comme g Aq1 (.A0g), on voit bien que g est modulaire
/-adique de poids (k, k) k, ce qui démontre (5.4) dans le cas particulier
considéré.

Passons au cas général. Si N est assez grand, la fonction g' ANg est

holomorphe en toutes les pointes, et son poids k' k + 12N est > 4.

C'est donc une forme modulaire, et ses coefficients a„ ont des dénominateurs
bornés (cf. [5], prop. 2.7 ou bien [25], Th. 3.52). Quitte à la multiplier par
une puissance de /, on peut donc s'arranger pour que ses coefficients soient
/-entiers. D'après ce que l'on vient de voir, c'est donc une forme modulaire
/-adique de poids k + 12N sur SL2(Z). De plus, ses coefficients a„ sont
nuls pour n < N. Le fait que g g'/AN soit modulaire /-adique résulte
alors du lemme élémentaire suivant (appliqué N fois) :

00

Lemme 5.5. Soit G ^ cn qn une forme modulaire l-adique de poids
n— 0

K. Si c0 0, la série H G/A est une forme modulaire l-adique de

poids K — 12.

Par hypothèse, G est limite de formes modulaires usuelles Gh de poids

Ki tendant vers K (au sens de [21], § 1). Les termes constants c0 i des Gt

tendent vers 0. Choisissons, pour chaque /, un monôme en les séries

d'Eisenstein Q EA et R E6 qui soit de poids Kt. On peut alors écrire

Gi sous la forme
— c0>iMt + A Hi9

où Ht est une forme modulaire de poids Kt — 12. On a

lim A Ht G A H d'où lim Ht H

ce qui montre bien que H est modulaire /-adique de poids K — 12.

(c) Si / » 2, notons s, <p, \j/ les trois caractères d'ordre 2 de (Z/8Z)*,
et soient y£, j(p, jxl/ les séries déduites de j par torsion au moyen de s, cp, \//.

On a

4 U=j-j"+ ê(0 je
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Le même argument que dans (b) montre que les jt sont des fonctions

modulaires sur r0(26), puis, en appliquant (5.4), que ce sont des formes

modulaires 2-adiques de poids 0 sur SL2(Z).

Remarques.

(a) On peut aussi déduire (5.4) et (5.5) de la définition « géométrique »

des formes modulaires /-adiques adoptée par Katz dans son exposé à

Anvers (Lect. Notes 350, p. 69-190).

(b) Le théorème (5.2) « explique » que l'on ait des congruences sur

c (n) (mod/) lorsque n est, soit divisible par /, soit tel que (jj - ^9
cf. Kolberg [7], ainsi que les exercices du § 6.

(c) Lorsque / 2, on a j\ j3 j5 j' «= j" 0 (mod 2), de sorte

que
00

JS X c(8» -l )q8n'1(mod 2),
« 0

et le théorème (5.2) ne fournit aucun renseignement sur ces coefficients

(mod 2). Il serait intéressant de voir s'ils sont répartis « au hasard », comme
cela semble le cas pour la fonction de partition, cf. [13].

§ 6. EXERCICES

Formes modulaires de poids 1.

(6.1) Les hypothèses étant celles de (4.2 ii), montrer que a <3/4, et

qu'il y a égalité si et seulement si l'image de Gai (.Kf/Q) dans PGL2(C)
GL2(C)/C* est isomorphe au groupe diédral D2 d'ordre 4 (cf. exemple

(4.4)).

(6.2) On suppose que/est de type (1, s) sur (mais pas nécessairement

que c'est une fonction propre des opérateurs de Hecke). Montrer que,
si

(*) N { n < x : a, *0}o (x/log3/4x)

on a/ 0. (Observer que l'espace des/ satisfaisant à (*) est stable par les

opérateurs de Hecke; s'il n'est pas nul, il contient un vecteur propre;
conclure en appliquant (6.1).)
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Formes modulaires (mod m).

(6.3) Montrer que, sous les hypothèses de (4.7 ii±), on a a (m) < 3/4
(même méthode que pour (6.1)). En déduire un résultat analogue à (6.2).

(6.4) On fixe k, m, N, s et l'on note m la norme de m. Soit A l'ensemble
des séries formelles £ an #"> a coefficients dans 0F/m9 qui sont réduction
(mod m) de formes modulaires de type (k9 e) sur ro(N), à coefficients
dans 0F; c'est un 0Fjm-module libre de type fini. Les opérateurs de Hecke
Tn définissent des endomorphismes TnA de A. Montrer que l'application
P1"^ TPtÂ est frobénienne au sens suivant: pour tout u e End (A), l'ensemble
Pu des nombres premiers p, ne divisant pas Nm, tels que TPfÄ u est

frobénien (et peut être défini par une extension galoisienne finie de Q non
ramifiée en dehors de Nm). Soit P 2 l'ensemble des p== 1 (mod Mrt) qui
appartiennent à P2 (i.e. tels que f\ Tp 2f pour tout / e A), et soit P~0

l'ensemble des p — 1 (mod TVrrt) qui appartiennent à P0 (i.e. tels que

f\Tp 0 pour tout / e A). Montrer que P2 et Pq ont une densité > 0

(cf. [5], 9.6, où est traité le cas analogue des formes de poids 1). Si p eP2,
on a Tpr A r + 1, et si p ePÖ> on a T TiA (—l)r/2 si r est pair, et

Tpr)A 0 si r est impair. Si / Yjan^n est un élément de A, on a donc

(6.5) On conserve les notations de (6.4). Soit / £ an qn un élément
de A. Montrer, en utilisant les dernières formules de (6.4), que l'ensemble
des valeurs prises par les an («>1) est un sous-ensemble de 0F/m stable

par multiplication par Z. (En particulier, si 0F Z et si l'un des an est

inversible dans Z/mZ, alors les an prennent toutes les valeurs possibles.)
Si a appartient à ce sous-ensemble, et si 2^ m, on a

N { n < x : an a dans 0FIm} >> x(loglogx)h/logx

quel que soit h. (Choisir r > 1 tel que ar 2~ft_1 a, et remarquer que

an a lorsque n est de la forme p0 ...ph r, où p0, ...>ph sont des éléments

de P2 ne divisant pas r, et deux à deux distincts.)

Formes modulaires (mod 2).

(6.6) Soit S la F2-algèbre des formes modulaires (mod 2) sur SL2(Z),
autrement dit (cf. [21], [27]) l'algèbre des polynômes en la série

an? (r + 1)«n Si PePt
\ 0 si pePo, r impair

a"pr (_i)r/2fln si pePZ, r pair.

A q + q9 + q25 + q49 +
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à coefficients dans F2. Soit S0 (resp. Sx) le sous-espace de S engendré par

les A1 pour i > 1 (resp. par les AlJ\ pour j > 0); on a S F2 © S0. Soit

/ ^ un élément de S0.

(a) Montrer que, si f e Sx et / ^ 0, il existe c > 0 tel que

iV { n < x : 1} ~ cx1/2

(b) On peut prouver (cf. [22]) que les Tp sont localement nilpotents

sur S0. Admettant ce fait, il existe un entier /z > 0 tel que/soit annulé par
tous les produits TPo... TPh, pt premier A 2. Montrer que an 1 entraîne

que n est de la forme bc2, où b a au plus h facteurs premiers # 2 (raisonner

par récurrence sur h et n). En déduire:

iV{n<x: an 1} << x(loglogx)h~1llogx.

(c) On suppose / $Sl9 et l'on choisit l'entier h de (b) minimal; on a
h > 1. Il résulte alors de (6.4) qu'il existe des ensembles frobéniens

Pl9 ...,Ph de densités > 0, ainsi qu'un élément non nul g de S0, tels que

/| TP1... TPh gsi

Si le r-ième coefficient de g est égal à 1, on a 1 pour tout n de la
forme p1 ...ph r, avec pt ePi9 les pt étant distincts, et ne divisant pas r. En
conclure que

N {n <x : an 1} >> x (loglog x)ft~1/log x

d'où, en vertu de (b):

Ar{n<x:a/Î l} x x(loglogx)Ä~1/logx.

(d) Il résulte de (a) et (c) que / e S1 équivaut à

N {n x : an 1} o (x/log x)
ainsi qu'à

iV{n<x: an 1} 0 (x1/2).

(6.7) On pose A3 et l'on note E l'ensemble des n tels que
en m 0 (mod 2). Montrer que le complémentaire E' de E est formé des
entiers n de la forme ^4m + 1 a2, avec p premier, a impair non divisible par p,
m entier > 0, et p 3 (mod 8). (Utiliser la congruence

OO

AX <ï(2"+1)2 (mod 2).)
n 0
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La série de Dirichlet/(Y) £ neE, n~s associée à E' est égale à

(1 — 2~2s) C(2s) { £ p~si(l+p-2*)}.
p 3 (mod 8)

On peut l'écrire sous la forme

f(s) C log 1/(5-1) +h(s),
où h est holomorphe pour 0L (s) > 1, et c tl2/32. En déduire (grâce au
théorème b de [3], p. 26), que l'on a

N {n < x : 1 (mod 2)} ~ cx/log x

Montrer que

A3 | Tpee
A (mod 2) si p 3 (mod 8)

0 (mod 2) sinon

Montrer que les mêmes résultats valent pour A5, à condition de

remplacer p 3 (mod 8) par p 5 (mod 8).

Divisibilité des an par une puissance d'un idéal premier.

(6.8) Soit n\-> an une fonction multiplicative à valeurs dans l'anneau 0F
des entiers d'une extension finie F de Q, et soit v la valuation de F définie

par un idéal premier p ^ 0 de 0F. Pour tout r > 0, notons Nr (resp. Pr)
l'ensemble des entiers n > 1 (resp. des nombres premiers) tels que
v (<an) r, et posons

fris) X /T' et A (s) X T'/,(s),
neIVr r — 0

où T est une indéterminée.

(a) Montrer que
v(a m)

A(s)=ri(i+x^ p~ms),
p m— 1

où l'on convient de supprimer le coefficient de p~ms si v (<apm) oo, i.e. si

Clpm P»

En déduire que

A (s) exp { X + (s)) }
r 0

où <pPr (s) YjpePrP S' et *es ^r ^ sont holomorphes pour ^ (.s) > 1/2.
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(b) On suppose que les Pr sont réguliers de densité ar > 0 et que

0 < a0 < 1 ; on note m la borne inférieure des i > 1 tels que cq > 0. Montrer

que fr (s) est de la forme

f'(s) qzip {.4 CrJ (s) (log 1/(s ~ } '

où h (r) est la partie entière de r/m, et où les crJ (s) sont holomorphes pour
& (s) > 1. Cela entraîne :

fois) + +fr(s) ^ _ ^a0 I Z drJ(s)(log l/(5 —1))J| 5

où les drJ(s) sont holomorphes pour âë (s) > 1. Montrer que l'on a

drJ (1) > 0 pour j h (r). En déduire, grâce au théorème b de [3], p. 26,

que
N { n < x : an # 0 (mod pr+1) } - crx (ioglog x)ft(r)/log1_aox

avec cr drJ (1) / T (a0).

(c) On suppose que les an sont les coefficients d'une forme modulaire
de type (4.7 iit). Montrer que les conditions de (b) sont satisfaites (les Pr

sont même frobéniens) et que l'on a

a0 + cq + + oq + -1-a^t
où aœ est la densité des p tels que ap 0.

(d) Etendre les résultats ci-dessus au cas de produits de puissances
p^1 p/7 d'idéaux premiers (utiliser des séries formelles en T1,...,Tj).

(6.9) Soit / un nombre premier ^ 2. Soit P1 (/) l'ensemble des nombres

premiers p / / tels que t (p) soit divisible par /, mais pas par l2. Montrer
que Pt (/) est de densité > 0. [Soit Gt le sous-groupe de GL2(QZ) image de

la représentation /-adique attachée à À, cf. [19], [27]. La densité de Px (/)
est égale à la mesure de l'ouvert Hx de Gt formé des éléments s tels que
r, Tr(s)) 1 ; il revient au même de prouver que Ht # 0, que P1 (/) ^ 0,
ou que la densité de P± (/) est > 0. Or, on a Ht ^ 0 pour / ^ 3, 5, 7, 23,
691, vu la « grosseur » de G), cf. [27]. Pour l 3, 7, 23, on a 5 6^ (/)
puisque t (5) 2. 3. 5. 7. 23; pour / 5, on a 19 ePt (/) puisque
t(19) 22. 5. 72. 11. 23. 43; pour l 691, un calcul sur machine montre,
paraît-il, que 1381 ePx (/).]

Déduire de là, et de l'exercice précédent, que, pour tout r > 0, il
existe une constante cl r > 0 telle que
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N { n< x : t (n) =£ 0 (mod lr+1)} ~ chrx (loglog x)r/loga(/) x

où a (/) est donné par la formule de l'exemple 3 du § 1.

Equidistribution des valeurs des an (mod m).

(6.10) Soit n i-> an une fonction multiplicative à valeurs dans un anneau
commutatif fini A. On note r l'ordre du groupe multiplicatif A* des éléments

inversibles de A. Si X e A*, on note PÀ l'ensemble des nombres premiers p
tels que ap X. On fait les hypothèses suivantes:

(i) Les Pk sont réguliers de densités ax telles que

0 <£«*<!.
(ii) Le groupe A* est engendré par les éléments X tels que ocÀ > 0.

On note X le groupe des caractères de A* ; un élément cp de X est un
homomorphisme de A* dans C* ; on le prolonge à A en posant cp (X) 0

si X n'est pas inversible.

(a) Si X g A* et cp e X, on pose

fx(s)y n~s et fv(s) y
an= X n

Montrer que

/;. - E •

r <peX

(b) Décomposer en produit eulérien, et en déduire que

log fç (s) ß (cp) log l/(s -1) + h(p (s),

où ß (cp) ocx cp (2), et hy (s) est holomorphe pour M (s) > 1.

On a 0t (ß (cp)) < a, avec a ocx, et il n'y a égalité que si cp est le

caractère unité de yl*.

(c) Si ß est un nombre complexe, on convient de noter 1 / (^— 1)^ la
fonction exp {ß log 1 / (s -1)}. Montrer, en combinant (a) et (b), que l'on a

h (s) c (s)/(s-iy+ X cux (s)/(s -1)" î

i I

où c (.s-) et les ci>x (s) sont holomorphes pour 01 (s) > 1, les ßt sont tels que [

01 (ßi) < a, et c (1) > 0.

En déduire (cf. [3], p. 25, th. a) que

JV {n < x : an X} ~ cx/Iog1*"0^
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avec c c (1) / f (a) > 0. (Noter que c est indépendant de 2 : il y a

équidistribution des valeurs de (.cin) dans A*.)

(d) Appliquer la méthode de Landau aux fx et fÇ9 en supposant les Px

frobéniens. En déduire, pour tout A > 1, un développement asymptotique
de N {n < x: an 2} modulo O (xj\ogN x).

(e) Enoncer et démontrer des résultats analogues pour

où les a„(/) sont des fonctions multiplicatives à valeurs dans des anneaux
commutatifs finis At. (Se ramener au cas d'une suite unique à valeurs dans

A A1 x x Ar.)

(6.11) Soit m un entier impair > 3. On considère la fonction multiplicative

Montrer que la condition (i) de (6.10) est satisfaite, et qu'il en est de

même de (ii) pourvu que m ne soit pas divisible par 7. [On peut supposer
que m est une puissance d'un nombre premier /, cf. [19], 4.2. Il faut alors
vérifier que, si / ^ 2,7, les t (/?), p premier ^ h qui ne sont pas divisibles

par / engendrent le groupe multiplicatif (Z//2Z)*. Pour / ^ 3, 5, 23 et 691,
cela résulte de ce que t (p) peut prendre n'importe quelle valeur modulo /2,
cf. [27]. Pour / 3, 5, 23, 691, remarquer que le sous-groupe de (Z//2Z)ï!î
engendré par les t (/?), /? # /, se projette sur (Z//Z)* et contient 2 d'après
(6.4); utiliser alors le fait connu que 2i_1 ^ 1 (mod/2) pour / < 1093.]

En déduire l'équidistribution des valeurs de t {n) appartenant à

(Z/mZ)*, lorsque m n'est pas divisible par 7.

(6.12) Montrer qu'il existe deux constantes c+, c_, avec c+ > > 0
telles que

(Utiliser une méthode analogue à celle de (6.10).)

Exemple de minoration de | ap | pour p -> oo.

(6.13) Soit a!->x(cO un caractère de Hecke d'un corps imaginaire
quadratique K. Soit f le conducteur de x- On suppose que x est d'exposant
entier d > 1, autrement dit que

N { n < x : a„(1) À a (r) I 1un An J

n H- t (n) (mod m), à valeurs dans A ZjmZ

iV{n<x: t (n) 2 (mod 7)}
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y ((z)) zd pour tout z eK* tel que z 1 (modxf).

Posons

£ X(a)qN(a)£
a

de sorte que

£ a„n~* L(s, x)£[ (l -x (jp)N (p)~s)~1.
v

On sait que la série £ an qn est une forme modulaire parabolique de

poids k => 1 A- d et que c'est une fonction propre des opérateurs de Hecke.
Si co est le caractère d'ordre 2 qui correspond à K, on a an 0 si co (ri) — 1.

Soit P l'ensemble des nombres premiers p ne divisant pas N (f), et tels

que co (p) 1. Si p e P, on a

ap Z(P) + /(p),
où p et p sont les idéaux premiers de 0K divisant p. Montrer que

I aP I >> p(k~3)/2~e pour tout s > 0

[On peut se restreindre au cas où p est contenu dans la classe mod N (f)
d'un idéal fixe a. Si l'on écrit alors p a (z), avec z 1 (mod x N (f)), on
a aP X (a) z<i P / (a)zd Ad (x, y), où x, y sont les coordonnées de z

par rapport à une Z-base de ci-1, et où Ad est un polynôme homogène de

degré d. Les coefficients de Ad sont des nombres algébriques, et Ad n'a

aucun facteur multiple. D'après le théorème de Roth, on a

Ad (x, >') >> (sup (|x|, \y\))d~2~E pour x, y premiers entre eux,

d'où aussitôt le résultat cherché.]
Soit 8 un nombre > 0 tel que, pour tout secteur angulaire de C de

largeur ~ 1 /2V, il existe p « Nô tel que l'élément z correspondant appartienne
au secteur angulaire donné. (D'après Kovalcik, Dokî., t. 219, 1974, on peut
prendre pour S tout nombre > 4.) Montrer qu'il existe alors une constante

c > 0 telle que
| nJ < Cp^-i)/2-iß

pour une infinité de p tels que m (p) 1.

Passage des fonctions modulaires aux formes modulaires.

(6.14) Soit /= Y^n^-r an une fonction modulaire sur SL2(Z) de

poids k e Z, à coefficients rationnels. On suppose / holomorphe dans le

demi-plan ß (z) > 0 mais pas nécessairement à la pointe oo.
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(a) Soit / un nombre premier tel que an 0 pour tout n < 0 divisible

par /. Montrer que les séries

/' Za;»4" et Z «««"
l\n

sont des formes modulaires /-adiques de poids /c, au sens de [21]. >.

(b) Soient / un nombre premier # 2, et e ± 1 tels que an 0 pour

tout n < 0 tel que (-)=£. Montrer que la série

/- z
(f)-

est une forme modulaire /-adique de poids k. (Même méthode que pour
5.2.)

Divisibilité des coefficients c (n) de j.

(6.15) Soit D l'opérateur de dérivation £ an qn ^ £ n an Qn> 6

dans [21], [27]. Soient / un nombre premier 2, et r un entier > 1.

(a) Montrer que, si h est une forme modulaire (mod /r), de poids k,
il existe une forme modulaire h' (mod /r), de poids k + 2 + r-1 (/-1),
telle que

D (hjA) h'\A (mod lr).

(Utiliser le lemme 3 de [27], p. 19, ainsi que le fait que

P E2+lr_1(l_1) (mod V)

(b) Déduire de là que, pour tout a > 0, il existe une forme modulaire
fa (mod lr), de poids 12 + a(2+ lr~1 (/- 1)), telle que

D"(j) =fj<4(mod
(c) On prend a

1 T-1 (/ -1) Montrer que

D"(j) =jE (mod 0, où j£ Z (j^)c(n)«"-

En déduire, grâce à (b), l'existence d'une forme modulaire h de poids

12 4- Zr-1 (1 — 1) + 12 + k

L'Enseignement mathém., t. XXII, fasc. 3-4. 17
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telle que

j- (~Pj j£ (mod O

Le terme constant de h est nul. En déduire que h — fA, où / est une
forme modulaire (mod F) de poids k, ce qui fournit une autre démonstration

de (5.2 b).

(6.16) On conserve les notations de (6.15), et l'on prend r 1, i.e. on
calcule (mod /).

(a) Montrer que j' 744 (mod /) si / 3, 5, 7,11, et que j' (mod /)
est de filtration / - 1 (au sens de [27], p. 24) si /> 13. En particulier, on a,

pour tout n > 1 :

c (3n) 0 (mod 3)

c (Sri) 0 (mod 5)

c (7ri) 0 (mod 7)

c (11 n) 0 (mod 11)

c (13n) c (13) t (n) — t (n) (mod 13)

c (17n) - c (17) t16 (ri) 4116 (n) (mod 17)

c (19ri) c (19) t18 (ri) lt18 (ri) (mod 19)

c (23ri) c (23) t22 (ri) 4t22 (F) (mod 23),

où, pour k 16, 18, 22, on note tk (ri) le coefficient de qn dans l'unique
forme parabolique normalisée de poids k.

(b) On a

D(j) Q2R/A ß2£zfi-Vdz,
d'où

Da+1(j) Dfl(ô2^zlï~1)/zlz (mod /).

Montrer que, si / > 13, g2 R A1'1 est de filtration 12/ + 2. En déduire

que Da(Q2RAl~1) est de filtration 12/ + 2 + a(/+l) pour a < / — 2.

(c) On applique (b) avec « (/—3)/2, de telle sorte que

Da(ö2^dz-1)/dz Da+1(j) EEje9 cf. (6.15c).

En déduire que la forme modulaire (mod /) j — est de filtration

^ (/ — l)2, et que y_ est de filtration /2 — /. En particulier, ces formes sont

^ 0 (mod /).
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(d) Si / 3 (resp. 5, 7, 11), la forme - est nulle (resp. de

filtration 0, 12, 40).

(e) Déduire de (b) et (c) les congruences suivantes (dues à Kolberg [7]) :

c(n)s0 (mod 5) si - 1

c in) s 2 na3(n)(mod7) si (-) 1

c(n) s 9 n2cr5(n)-3n3a3(n) (mod 11) si ^ 1

c(n)in) —3n3 cr5(n) - 2n4 o3i(mod 13) si ^ - 1

(6.17) Soient / un nombre premier > 7, et r un entier > 0. Montrer

que, pour tout entier a, il existe une infinité d'entiers n tels que c (ri)

(n\ _ -Übw V i
be a (mod V) et - - (Utiliser les exercices (6.16) et (6.5).)
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