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Les opérations d'Adams ont été introduites dans le contexte des

schémas par R. Swan. {Proc. Symp. Pure Math. A.M.S., vol. XXI, Univ.
of Wisconsin (1971), 155-159.)

Enfin, les opérations d'Adams proprement dites ont été introduites
en topologie par J.F. Adams. (Ann. of Math. 75 (1962), 603-632.)

§ 1. L'anneau des représentations virtuelles.

Soient G un groupe (multiplicatif) et F un corps commutatif. On notera
FG l'algèbre de groupe de G sur F, i.e. l'espace vectoriel ayant pour base

les éléments de G muni de la multiplication induite par la multiplication
dans G.

Une représentation de G sur F est une classe d'isomorphie de FG-
modules (à gauche) de dimension finie sur F. Si V est un EU-module (de
dimension finie), on dira par abus de langage que V est une représentation.

Soient V un FU-module et eu en une i^base de V. L'action d'un
élément s e G sur V exprimée dans cette base, i.e.

5 * ej S Î= 1 ^ij Of

fournit un homomorphisme p : G -> GLn (F) qui associe à s la matrice
inversible p (s) (Sl7). L'homomorphisme p est appelé la forme matricielle

de la représentation V associée à la base choisie.

Soient G un groupe (fini) et F un corps commutatif. A ces données

on associe l'anneau R (FG) des ^-représentations virtuelles de G dont nous

rappelons brièvement la construction.
Soit L la groupe abélien libre ayant pour Z-base l'ensemble des

représentations de G sur F. Soit L0 le sous-groupe de L engendré par les éléments

de la forme V — V' — V" chaque fois qu'il existe une suite exacte 0 -> V
-» V -» V" Ö de FG-modules.

Définition. R(FG) L/L0. Un élément de R(FG) s'appelle une

F-représentation virtuelle de G.

La classe de V dans R (FG) sera notée [V], ou même quelquefois
simplement V.

Remarques. On voit facilement que tout élément de R (FG) peut
s'écrire sous la forme [U] — [V]9 où U et V sont des représentations de

G sur F. Rappelons que si la caractéristique de F ne divise pas l'ordre de
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G, l'existence d'une suite exacte 0 -> V -» V -> F" -> 0 entraîne que

V V ® VCeci n'est plus vrai si caract (F) divise l'ordre de G et il
est important pour la suite de ne pas faire d'hypothèse inutilement
restrictive sur le corps F.

La structure d'anneau sur R (.FG) est fournie par le produit .tensoriel

sur F des représentations. Si V1 et V2 sont deux FG-modules, G opère

sur V± (x) p V2 par s (v1 (x) v2) sv1 ® sv2, s e G, et on vérifie sans
difficulté que cette formule fournit bien une structure de FG-module sur

VI ®FV2. On obtient ainsi un produit sur L et il est immédiat de vérifier

que L0 est un idéal. Le produit tensoriel induit donc un produit sur
R (FG).

Comme V1 ®FV2 ~ V2 ®FVU l'anneau R(FG) est commutatif. Le

corps F, muni de la structure de FG-module « triviale » telle que sa a

pour tout a e F, représente l'élément neutre pour la multiplication dans

R (FG). On écrira [Fx] [V2] ou V1 V2 pour le produit dans R (FG).
La structure additive de R (FG) est facile à expliciter:

Définition. Un FG-module S est dit simple ou irréductible s'il est

non-nul et s'il ne possède pas d'autres sous-modules que 0 et S lui-même.

Théorème. Soient G un groupe fini et F un corps commutatif.
L'ensemble S (FG) des classes d'isomorphie de FG-modules simples est
un ensemble fini. Le groupe R (FG) est abélien libre avec pour base
l'ensemble S (FG).

Preuve. Soient S un FG-module simple et v g S, v ^ 0. L'application
FG -» S donnée par a -» av définit un homomorphisme de FG-modules
(FG étant regardé comme FG-module à gauche par la multiplication dans
l'anneau FG.) Cet homomorphisme est surjectif puisque S est simple.
On voit donc que S apparaît comme facteur de composition d'une suite
de Jordan-Hölder pour le module FG. Ainsi, il y a au plus l classes d'iso-
morphisme de FG-modules simples, où / est la longueur d'une suite de
Jordan-Hölder pour le module FG. (Pour le théorème de Jordan-Hölder,
voir [Curtis-Reiner] cité dans l'introduction, § 13.)

Soit maintenant R le groupe abélien libre sur l'ensemble fini S (FG)
des représentations irréductibles.

En associant à tout élément de S (FG) sa classe dans F (FG), on
obtient un homomorphisme

f : R -> R (F G)
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Inversement, on définit g : R (FG) -» R comme suit. Si V est un FG-
module (de dimension finie) et V Vt => V2 => Vk ^ Vk+1 0

une suite de Jordan-Hölder pour F, on pose

Sa (V)£i=\S„
où est la classe d'isomorphie du facteur simple VilVi+1, i 1,..., k.

D'après le théorème de Jordan-Hölder, g0 (F) est un élément de R

qui ne dépend que de la classe d'isomorphie de V. On a donc un homo-
morphisme g0 : L -> R. On constate que g0 s'annule sur les générateurs
de L0, donc sur L0 tout entier, et induit par conséquent un homomor-
phisme g : R (FG) -» R.

La vérification de gf id. est immédiate. Celle de fg id. facile.

Exemple. Pour tout x e Horn (G, F•), on définit sur F une structure
de FG-module en posant s v x (s) L veL Ce module sera noté Fx
ou F (x). Il est évidemment simple. On a F (xù ® F (Xi) F (xi-Xi)- Le

cas où G est abélien d'exposant n, disons, et où F contient les racines du

polynôme Xn — 1 est fondamental pour la théorie. Dans ce cas les classes

d'isomorphie des FG-modules simples F (x), x E Horn (G, F forment une
liste complète sans répétition des ^-représentations irréductibles de G.

Donc, R (FG) pour G abélien et avec l'hypothèse faite sur F s'identifie à

l'anneau de groupe Z X, où X Horn (G, F').
Revenons au cas général. Si / : G -> Gf est un homomorphisme de

groupes, / s'étend (de manière unique) à un homomorphisme d'algèbre

/ : FG FG' et tout FG'-module V devient un FG-module par A v

f(A) v, A e FG, v e V. Cette construction fournit un homomorphisme
d'anneau /* : R (FG') - R (FG) dit de restriction. (On a également un
homomorphisme induit f* : R (FG) -> R (FGr) pour la structure additive
de ces anneaux, et donné par V FG' 0FGV. On ne s'en servira pas.)

Si F -> F est une extension de corps, tout FG-module V fournit un
FG-module E ®FV que l'on notera aussi EV. On obtient ainsi un
homomorphisme d'anneaux i : R(FG) R(EG) dit d'extension des scalaires.

L'anneau R (FG) est encore muni d'une involution dont nous aurons
besoin pour définir les opérations d'Adams d'indices négatifs.

Soit V un FG-module. On considère le dual F* HomF (F, F) qui
est muni d'une structure de FG-module définie par la formule

(a.f)(v)£seGas/(s~y),
a Eseo^-s e FG, veV.
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La classe d'isomorphisme de F* ne dépend que de celle de F. La

représentation F* s'appelle la duale de F. On a F** F, canoniquement.

On laisse au lecteur le soin de vérifier que l'opération * induit un auto-

morphisme involutif
* : R(F G) R(F G)

qui commute aux homomorphismes/* : R (FG') -> R (FG) et/* : R (FG)

-> R {FG') pour/ : G -» G' et i : R (FG) -* R (EG).
Deux théorèmes classiques jouent un rôle essentiel dans la suite.

Théorème I. Soit F -> E une extension quelconque de corps commu-

tatifs. L'homomorphisme i : R (FG) -> R(EG) d'extension des scalaires

est injectif.

Soit p un nombre premier. Un sous-groupe cyclique de G sera dit
p-régulier si son ordre est premier à p. Tout sous-groupe cyclique est

O-régulier.

Théorème II. Soient G un groupe fini et F un corps. Soit la famille
des sous-groupes cycliques p-réguliers de G, où p — caract (F). L'homo-

morphisme

vcs:R(FG)->Ylce>tR(FC),

produit des restrictions R (FG) -> R (FC), est injectif.

Ces théorèmes constituent un analogue du «splitting principle» en

topologie et seront utilisés de façon similaire pour démontrer certaines

propriétés des opérations d'Adams.
Pour démontrer les théorèmes I et II, les faits fondamentaux sont les

suivants.

Lemme 1. Soient G un groupe fini et F c= E une extension de corps
quelconque. On a E®pmdFG rad EG, où rad dénote le radical.

Soit F un FG-module. On appelle caractère de F la fonction F-linéaire
X : FG -> F définie par

x (s) Trace p (s)

où p (s) est la transformation F-linéaire F -> F associée à s, i.e. p (s) (v)

s. v.

Lemme 2. Soient G un groupe fini et X (FG) le sous-espace de HomF
(FG, F) engendré par les caractères des F-représentations de G. Les carac-
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tères Xi? • ••> Xr des représentations irréductibles forment une F-base de

X (FG).
Esquisses de démonstrations.
Soit k un corps premier, i.e. Q ou Fp pour p premier. D'après le

théorème de Wedderburn, [Curtis-Reiner], § 26, l'algèbre semi-simple
fcG/rad kG se décompose en produit

kG)rad kG Di(nl) x x Ds(ns)

d'algèbre de matrices Dt (nt) sur des corps gauches Db
Les corps gauches Dt sont munis d'une forme trace non-dégénérée,

i.e. (x, y) -» Trace ö./fc (x.y) est bilinéaire de noyau nul.
En effet, pour k Q c'est évident et dans le cas où k Fp, les Z>f

sont des corps finis, donc en fait commutatifs et galoisiens, donc séparables

sur Fp.

On vérifie alors facilement que pour tout corps F k, les F-algèbres

F ®k Dt ont également une trace sur F non-dégénérée et sont donc semi-

simples.
Il en résulte que F ®k (kG/md kG) FG/ (F ®kmdkG) est semi-

simple. Donc, rad FG a F ®k rad kG. Comme l'inclusion inverse est

évidente, on a F ®k rad kG rad FG. Le lemme 1 s'ensuit immédiatement.

De plus, le fait que la forme trace sur F soit non-dégénérée dans

F ®k Dt entraîne aussi que dans la décomposition de Wedderburn

F G/rad F G ^ K^nJ x x Kr(nr) 9

chaque corps (gauche) Kbi 1, r, possède une forme trace sur F
non-dégénérée. En particulier, il existe des éléments oq e Kt tels que
traceF (oq) ^ 0, i 1, r.

Pour démontrer le lemme 2, on observe d'abord que les caractères

Xu-»?Xr des FG-modules simples engendrent X(FG). Il reste alors à

démontrer que ces caractères sont linéairement indépendants sur F. Soit

St le Kt (Tq)-module formé des matrices nt x nt dont toutes les colonnes

sont nulles sauf la première. On sait que Sl9 ..„ Sr regardés comme FG-
modules forment une liste complète de FG-modules simples non-isomorphes.

Soient maintenant at e FG des éléments se projettant sur

oq e xi e Kt (nt) et sur 0 dans les autres facteurs Kj (nj) pour j =£ i. (^n
dénote la matrice nt x 77. de K{ (nt) dont tous les coefficients sont nuls sauf

celui d'indice (1, 1) qui est égal à 1.)



Un calcul de traces montre aisément que

Xi (cij) ôtj. trace£ (af).

L'indépendance linéaire de Xu ••*> Xr en résulte.

Démonstration du théorème I: R(FG) R (EG) est injectif.

Il suffit de voir que si S et T sont deux EG-modules simples

non-isomorphes, alors ES et ET sont semi-simples et sans facteur commun, i.e.

ES somme directe de £G-modules simples Si9 ET somme directe de EG-

modules simples Tp et St s|ë Tj pour tout couple (i,j).
ES et ET sont semi-simples car ils sont annulés par E ® rad FG. Donc,

par rad EG, en vertu du lemme 1.

Pour vérifier qu'ils n'ont pas de facteur simple commun, il suffit de

calculer Hom£G (ES, ET) 0. Cela résulte de UomEG (ES, ET)
E®FUomFG (S, T) 0.

Démonstration du théorème II: res : R (FG) Ylcev E (FC) est

injectif.
Soit x ' E (EG) -» X (FG) l'application qui associe à une représentation

V son caractère Xv- On a un diagramme commutatif

jR (FG) -> X(FG)

i res | res

Ylce<gR(EC) -> Yl Ce<$ X(FC),
oi\ < est l'ensemble des sous-groupes cycliques /^-réguliers de G,p caract F.

Si res 0, cela veut dire que Xa s'annule sur tous les éléments p-
réguliers de G. Il en résulte que x* est identiquement nulle. En effet, tout
élément x de G s'écrit x y z, où y et z commutent, y est /^-régulier et

z d'ordre une puissance de p. (Si mq est l'ordre de x, avec m premier à p
et q une puissance de p, prendre y xq et z xm.) Si V est une représentation

de G, les valeurs propres de z sont toutes égales à 1. (C'est la seule

racine p-ième de 1 dans F.) Donc les valeurs propres de x yz sont les

mêmes que celles de y. Il en résulte que Xv (x) Xv 00? et Xa (x) Xa 00
pour tout a e R (FG).

Donc, res xa 0 entraîne Xa 0. Comme d'autre part R (FG) est
abélien libre avec pour Z-base les représentations irréductibles Sl9 Sr et

que Xi X (Si), Xr X (Sr) est une E-base de l'espace des caractères
X (FG) en vertu du lemme 2, on conclut que si res Xa ~ 0, alors a est
contenu dans pR (FG).



— 8 —

Le noyau de res : R (.FG) -> J~[ Cs<# R (FC) est donc contenu dans

pR(FG). Comme maintenant Y[ cev R (FC) est sans torsion, on a

Ker (res) nnpn R (F G) 0.

Au § 5 nous aurons besoin de K (FG) dont la définition sera alors

rappelée, et du fait que si F est de caractéristique non-nulle, alors la flèche

d'extension des scalaires K(FG)->K(EG) est une injection directe. La
démonstration est donnée dans [Serre], page 136, où K(FG) est noté

PF (G). Nous ne la reproduisons pas.

§ 2. Puissances extérieures

Les puissances extérieures des FG-modules fournissent un élément de

structure additionnel dans l'anneau R (FG), appelé 2-structure qui nous

permettra au paragraphe suivant de définir pour tout entier n un endo-

morphisme d'anneau

Wn:R(FG) -> R(FG)

jouissant de propriétés analogues à celles des opérations d'Adams en

topologie.
Soit V un FG-module, toujours de dimension finie. On notera Am V la

m-ième puissance extérieure de V. C'est le quotient de la puissance tensorielle
Vm V (x) V ® ® V (m facteurs) par le sous-espace vectoriel engendré

par les éléments de la forme v± ® (g) vm avec vf Vj pour au moins nu
couple d'indices distincts (z, /).

L'action de G sur Xm V est induite de l'action de G sur Vm. On convient

que A0 V F avec action triviale, et A1V V.

Il s'avère que les puissances extérieures Am, m ^ 0, induisent des

opérations

ïm:R(FG)->R(FG)
sur l'anneau des représentations virtuelles, et on a la formule habituelle

4,0+/?)
Le point essentiel est le

Lemme. Soit 0-^Vo^V1-^V->0 une suite exacte de FG-modules.

Alors,

[4 4] Z,=o 0,4]. [4^-4
dans R(FG) pour m 0,1,
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