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N,

Les opérations d’Adams ont été introduites dans le contexte des
schémas par R. Swan. (Proc. Symp. Pure Math. A.M.S., vol. XXI, Univ.
of Wisconsin (1971), 155-159.)

Enfin, les opérations d’Adams proprement dites ont été introduites
en topologie par J.F. Adams. (Ann. of Math. 75 (1962), 603-632.)

§ 1. L’ANNEAU DES REPRESENTATIONS VIRTUELLES.

Soient G un groupe (multiplicatif) et F un corps commutatif. On notera
FG Talgebre de groupe de G sur F, i.e. I’espace vectoriel ayant pour base
les éléments de G muni de la multiplication induite par la multiplication
dans G.

Une représentation de G sur F est une classe d’isomorphie de FG-
modules (a gauche) de dimension finie sur F. Si V est un FG-module (de
dimension finie), on dira par abus de langage que V est une représentation.

Soient V' un FG-module et ey, ..., ¢, une F-base de V. L’action d’un
¢lément s € G sur V exprimée dans cette base, i.e.

n
S.ej = Zi:l Sijei

fournit un homomorphisme p : G - GL, (F) qui associe a s la matrice
mversible p (s) = (S;;). L’homomorphisme p est appelé la forme matri-
cielle de la représentation V associée a la base choisie.

Soient G un groupe (fini) et F un corps commutatif. A ces données
on associe I’anneau R (FG) des F-représentations virtuelles de G dont nous
rappelons briévement la construction.

Soit L la groupe abélien libre ayant pour Z-base I’ensemble des repré-
sentations de G sur F. Soit L, le sous-groupe de L engendré par les €éléments
de la forme V — V' — V" chaque fois qu’il existe une suite exacte 0 — V"’
- V —> V" - 0 de FG-modules.

DfEFINITION. R (FG) = L/L,. Un élément de R (FG) s’appelle une
F-représentation virtuelle de G.

La classe de V dans R (FG) sera notée [V], ou méme quelquefois
simplement V.

Remarques. On voit facilement que tout élément de R (FG) peut

s’écrire sous la forme [U] — [V], ou U et V sont des représentations de
G sur F. Rappelons que si la caractéristique de F ne divise pas I'ordre de
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. G, lexistence d’une suite exacte 0 - V' —» ¥V —» V" — 0 entraine que
V>V @ V" Ceci nest plus vrai si caract (F) divise 'ordre de G et il
est important pour la suite de ne pas faire d’hypothése inutilement res-
trictive sur le corps F.

La structure d’anneau sur R (FG) est fournie par le produit .tensoriel
sur F des représentations. Si V, et V, sont deux FG-modules, G opere
sur Vy @pV, par s.(vy ® v,) = sv; ® sv,, s€ G, et on vérifie sans diffi-
culté que cette formule fournit bien une structure de FG-module sur
V, ®f V,. On obtient ainsi un produit sur L et il est immédiat de vérifier
que L, est un idéal. Le produit tensoriel induit donc un produit sur
R (FG).

Comme V,; ®pV, =2V, ®V,, lannecau R (FG) est commutatif. Le
corps F, muni de Ia structure de FG-module « triviale » telle que sa = «a
pour tout a e F, représente 1’élément neutre pour la multiplication dans
R (FG). On écrira [V,].[V,] ou V,.V, pour le produit dans R (FG).

La structure additive de R (FG) est facile a expliciter:

DErFINITION. Un FG-module S est dit simple ou irréductible s’il est
non-nul et s’il ne posséde pas d’autres sous-modules que 0 et S lui-méme.

THEOREME. Soient G un groupe fini et F un corps commutatif.
L’ensemble S (FG) des classes d’isomorphie de FG-modules simples est
un ensemble fini. Le groupe R (FG) est abélien libre avec pour base
[’ensemble S (FG).

Preuve. Soient S un FG-module simple et ve S, v # 0. L’application
FG — § donnée par a — av définit un homomorphisme de FG-modules
(FG étant regardé comme FG-module & gauche par la multiplication dans
Panneau FG.) Cet homomorphisme est surjectif puisque S est simple.
On voit donc que S apparait comme facteur de composition d’une suite
de Jordan-Holder pour le module FG. Ainsi, il y a au plus / classes d’iso-
morphisme de FG-modules simples, ot / est la longueur d’une suite de
Jordan-Hoélder pour le module FG. (Pour le théoréme de Jordan-Holder,
voir [Curtis-Reiner] cité dans I'introduction, § 13.)

Soit maintenant R le groupe abélien libre sur I’ensemble fini S (FG)
des représentations irréductibles.

En associant a tout élément de S (FG) sa classe dans R (FG), on
obtient un homomorphisme

f:R—>R(FG).
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Inversement, on définit g : R (FG) —» R comme suit. Si V est un FG-
module (de dimension finie) et V=V, oV, 2.2V, 2V, =0
une suite de Jordan-Hélder pour V, on pose

go(V) = Zifl S;,

ou S; est la classe d’isomorphie du facteur simple V;/V;.,, i = 1,..., k.
D’apres le théoreme de Jordan-Holder, g, (V) est un élément de R
qui ne dépend que de la classe d’isomorphie de V. On a donc un homo-
morphisme g, : L - R. On constate que g, s’annule sur les générateurs
de L,, donc sur L, tout entier, et induit par conséquent un homomor-
phisme g : R (FG) - R.
La vérification de gf = id. est immédiate. Celle de fg = id. facile.

Exemple. Pour tout y € Hom (G, F*), on définit sur F une structure
de FG-module en posant s.v = y(s)v, ve F. Ce module sera noté F,
ou F (). Il est évidemment simple. On a F(y;) @ F(x,) = F(xy1.x2). Le
cas ou G est abélien d’exposant #, disons, et ou F contient les racines du
polyndme X" — 1 est fondamental pour la théorie. Dans ce cas les classes
d’isomorphie des FG-modules simples F (¥), x € Hom (G, F*) forment une
liste compléte sans répétition des F-représentations irréductibles de G.
Donc, R (FG) pour G abélien et avec I’hypothese faite sur F s’identifie a
I’anneau de groupe Z X, ou X = Hom (G, F°).

Revenons au cas général. Si f: G — G’ est un homomorphisme de
groupes, f s’étend (de maniére unique) & un homomorphisme d’algebre
f:FG— FG' et tout FG'-module V devient un FG-module par Av
= f(A) v, Le FG, ve V. Cette construction fournit un homomorphisme
d’anneau f* : R(FG') > R (FG) dit de restriction. (On a également un
homomorphisme induit f* : R(FG) - R (FG’) pour la structure additive
de ces anneaux, et donné par V' — FG" ®@y; V. On ne s’en servira pas.)

Si F — E est une extension de corps, tout FG-module V fournit un
EG-module E ®» ¥V que I’on notera aussi EV. On obtient ainsi un homo-
morphisme d’anneaux i: R (FG) - R(EG) dit d’extension des scalaires.

L’anneau R (FG) est encore muni d’une involution dont nous aurons
besoin pour définir les opérations d’Adams d’indices négatifs.

Soit ¥ un FG-module. On considére le dual V* = Homy (V, F) qui
est muni d’une structure de FG-module définie par la formule

(le)('l)) = ZSGG asf(s_lv) ’
a =)glds.S € FG,veV.



e 2 R AT

5

La classe d’isomorphisme de ¥* ne dépend que de celle de V. La repré-
sentation V* s’appelle la duale de V. On a V** = V, canoniquement.
On laisse au lecteur le soin de vérifier que I"opération * induit un auto-

morphisme involutif
*:R(FG) - R(FG)

qui commute aux homomorphismes f* : R (FG') - R (FG) et [« R(FG)
— R(FG) pour f:G— G'eti: R(FG)— R(EG).
Deux théorémes classiques jouent un role essentiel dans la suite.

TaEOREME 1. Soit F — E une extension quelconque de corps commiu-
tatifs. L’homomorphisme i: R(FG)— R(EG) d’extension des scalaires
est injectif.

Soit p un nombre premier. Un sous-groupe cyclique de G sera dit
p-régulier si son ordre est premier a p. Tout sous-groupe cyclique est
0-régulier.

THEOREME 11. Soient G un groupe fini et F un corps. Soit € la famille
des sous-groupes cycliques p-réguliers de G, ou p = caract (F). L homo-
morphisme

res: R(FG) - [Jece RFC),
produit des restrictions R (FG) — R(FC), est injectif.

Ces théorémes constituent un analogue du «splitting principle» en
topologie et seront utilisés de fagon similaire pour démontrer certaines
propriétés des opérations d’Adams.

Pour démontrer les théorémes I et II, les faits fondamentaux sont les
suivants.

LEMME 1. Soient G un groupe fini et F < E une extension de corps
quelconque. On a E @prad FG = rad EG, ou rad dénote le radical.
Soit ¥ un FG-module. On appelle caractére de V' la fonction F-linéaire
x : FG — F définie par
% (s) = Tracep(s),
ou p (s) est la transformation F-linéaire ¥ — V associée a s, i.e. p (s) (v)

= 5.V

LEMME 2. Soient G un groupe fini et X (FG) le sous-espace de Homp
(FG, F) engendré par les caractéres des F-représentations de G. Les carac-
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teres  Xq, ..., X, des représentations irréductibles forment une F-base de
X (FG).

Esquisses de démonstrations.

Soit k£ un corps premier, i.e. Q ou F, pour p premier. D’aprés le
théoreme de Wedderburn, [Curtis-Reiner], §26, I’algébre semi-simple
kG[rad kG se décompose en produit

kG/rad kG = D, (n;) % ... x D,(n,)

d’algébre de matrices D, (n;) sur des corps gauches D,.

Les corps gauches D; sont munis d’'une forme trace non-dégénérée,
i.e. (x,y) = Trace p (x.y) est bilinéaire de noyau nul.

En effet, pour k = Q c’est évident et dans le cas ou k = F,, les D;
sont des corps finis, donc en fait commutatifs et galoisiens, donc séparables
sur F,,.

On vérifie alors facilement que pour tout corps F o k, les F-algebres
F ®, D, ont également une trace sur F non-dégénérée et sont donc semi-
simples.

Il en résulte que F ®, (kG/rad kG) =~ FG/ (F @, rad kG) est semi-
simple. Donc, rad FG < F ®,rad kG. Comme [linclusion inverse est
évidente, on a F ®,rad kG = rad FG. Le lemme 1 s’ensuit immédia-
tement.

De plus, le fait que la forme trace sur F soit non-dégénérée dans
F ®, D; entraine aussi que dans la décomposition de Wedderburn

FGjfrad FG = K;(ny) x ... x K,(n,),

chaque corps (gauche) K;,i = 1, ...,r, possede une forme trace sur F
non-dégénérée. En particulier, il existe des éléments o; € K; tels que
tracep (¢;) #0,i =1, ...,r.

Pour démontrer le lemme 2, on observe d’abord que les caractéres
X1» ---» X, des FG-modules simples engendrent X (FG). Il reste alors a
démontrer que ces caractéres sont linéairement indépendants sur F. Soit
S; le K; (n;)-module formé des matrices »n; X n; dont toutes les colonnes
sont nulles sauf la premicre. On sait que Sy, ..., S, regardés comme FG-
modules forment une liste compléte de FG-modules simples non-isomor-
phes.

Soient maintenant ;€ FG des ¢léments se projettant sur
;e 11 € K;(n;) et sur O dans les autres facteurs K; (n;) pour j # i. (eyy
dénote la matrice n; X n; de K; (n;) dont tous les ccefficients sont nuls sauf
celui d’indice (1, 1) qui est égal a 1.)
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Un calcul de traces montre aisément que

Xi (Clj) = 51,] . traCGF (O(i) .

’indépendance linéaire de yy, ..., y, en résulte.

Démonstration du théoréme I: R (FG) — R (EG) est injectif.

1l suffit de voir que si S et T sont deux FG-modules simples non-iso-
morphes, alors ES et ET sont semi-simples et sans facteur commun, i.e.
ES somme directe de EG-modules simples S;, ET somme directe de £G-
modules simples T, et S; 2z T; pour tout couple (7, j).

ES et ET sont semi-simples car ils sont annulés par £ ® rad FG. Donc,
par rad EG, en vertu du lemme 1.

Pour vérifier qu’ils n’ont pas de facteur simple commun, il suffit de
calculer Homygg (ES, ET) = 0. Cela résulte de Homgg (ES, ET)
= E®rHomg; (S,7T) = 0.

Démonstration du théoréme II: res: R (FG) = [[cee R(FC) est
injectif.

Soit ¥ : R (FG) — X (FG) l’application qui associe a une représentation
V son caractére y,. On a un diagramme commutatif

R(FG) — X(FG)
] res } res

HCG@R(FC) —* HCE%X(FC)a

ol % est I’ensemble des sous-groupes cycliques p-réguliers de G, p = caract F.

Si res y, = 0, cela veut dire que y, s’annule sur tous les éléments p-
réguliers de G. Il en résulte que y, est identiquement nulle. En effet, tout
¢lément x de G s’écrit x = y .z, ou y et z commutent, y est p-régulier et
z d’ordre une puissance de p. (Si mgq est U'ordre de x, avec m premier a p
et ¢ une puissance de p, prendre y = x%et z = x™.) Si I est une représenta-
tion de G, les valeurs propres de z sont toutes égales a 1. (C’est la seule
racine p-iéme de 1 dans F.) Donc les valeurs propres de x = yz sont les
mémes que celles de y. Il en résulte que xy, (x) = xp (), et ¥, (X) = ¥, ()
pour tout « € R (FG).

Donc, res y, = 0 entraine y, = 0. Comme d’autre part R (FG) est
abélien libre avec pour Z-base les représentations irréductibles S, ..., S, et
que x; = ¥ (S0, ..., x, = x (S,) est une F-base de I’espace des caractéres
X (FG) en vertu du lemme 2, on conclut que si res y, = 0, alors o est
contenu dans pR (FG).
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Le noyau de res : R (FG) — [] ce¢ R (FC) est donc contenu dans
PR(FG). Comme maintenant [] c.4 R (FC) est sans torsion, on a

Ker (res) = n,p"R(FG) = 0.

Au §5 nous aurons besoin de K (FG) dont la définition sera alors
rappelée, et du fait que si F est de caractéristique non-nulle, alors la fléche
d’extension des scalaires K (FG) - K(EG) est une injection directe. La
démonstration est donnée dans [Serre], page 136, ou K (FG) est noté
P, (G). Nous ne la reproduisons pas.

§ 2. PUISSANCES EXTERIEURES

Les puissances extérieures des FG-modules fournissent un élément de
structure additionnel dans I’anneau R (FG), appelé A-structure qui nous
permettra au paragraphe suivant de définir pour tout entier » un endo-
morphisme d’anneau

Y :R(FG)—> R(FG)

jouissant de propriétés analogues a celles des opérations d’Adams en
topologie.

Soit ¥ un FG-module, toujours de dimension finie. On notera 4,, V' la
m-iéme puissance extérieure de V. C’est le quotient de la puissance tensorielle
V=V V®..Q V (mfacteurs) par le sous-espace vectoriel engendre
par les éléments de la forme v; ® ... ® v, avec v; = v; pour au moins nu
couple d’indices distincts (7, /).

L’action de G sur 4, V est induite de 'action de G sur V™. On convient
que A, V' = F avec action triviale, et A, V = V.

Il s’avére que les puissances extérieures 4,, m = 0, induisent des opé-

rations
Jy:R(FG) > R(FG)

sur I’anneau des représentations virtuelles, et on a la formule habituelle
A (@+B) = 250 (40) . (A= B) -
Le point essentiel est le

LEMME. Soit 0 - Vo, =V, > V — 0 une suite exacte de FG-modules.
Alors,

[im Vl] = Zi=mO [j‘l VO] . [’Ln—i V]
dans R (FG) pour m = 0,1, ....
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