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APPENDICE IV

Classification des courbes différentielles

Soit X une courbe différentielle (paracompacte) connexe. On munit le
fibré cotangent Q' d’une structure hermitienne (chap. 0, §2, lemme 3).
On dit qu’une carte ¢ de X est normalisée si son domaine U est connexe et
s1 le vecteur d¢ (x) est de longueur 1 pour tout point x de U. On laisse au
lecteur le soin de démontrer qu’il existe de telles cartes.

Soient ¢ et  deux cartes normalisées de X de domaines respectifs U et
V. Le changement de cartes y de ¢ dans i est une application de ¢ (UnV)
dans ¥ (UnYV) dont la dérivée est localement constante, égale a plus ou
moins 1. Les ensembles ¢ (U) et v (V') sont des segments ouverts de R que
I’on désigne par / et J.

LeMME 1. Supposons [’ensemble U NV non vide. Alors U NV contient
au plus deux composantes connexes. S’il contient une composante connexe,
[’ensemble U U V est le domaine d’une carte normalisée de X. S’il contient
deux composantes connexes, la vari¢eté X est isomorphe a U.

L’ensemble A défini par

A={(sDelxT|$~ () =¥~ (D)

est une sous-variété fermée de I X J isomorphe & U n V, formée de seg-
ments de droites parallé¢les a 'une des diagonales de R X R. Les extrémités
de ces segments appartiennent au bord de 7 X J. Il est clair que chaque c6té
de I x J contient au plus une de ces extrémités (ce qui démontre la premicre
assertion) et que ces segments sont simultanément paralléles a la diagonale
ou a I’antidiagonale de R x R.

Si A est connexe, ’application y se prolonge en une application linéaire f
de R dans R. Les applications - ¢ et { coincident sur U n V. Par recol-
lement, elles fournissent la carte cherchée.

Si A contient deux composantes connexes, que 1’on suppose paralléles
a la diagonale de R x R, il existe des nombres réels

a1<061<062<a2 et b1<ﬁ1<ﬁ2<b2

tels que
I =Jag,a[ et J =]bs,b,
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et tels que les extrémités de A4 soient les points (ay, f,), (21, b2), (%2, b1),
(a5, B1). Quitte a translater J, on peut supposer que I’on a

bl == az et /31 = aZ

On vérifie aisément que ’application 4 de X dans U définie par h

h(x) = exp <2in ¢ ) > si xeU
24

h(x) = exp <2in V) ) sixeV
24

est un difféomorphisme.

THEOREME 1. Toute courbe différentielle connexe (dénombrable a [I’infini)
est isomorphe @ R oua U.

Désignons par 4 I’ensemble des cartes normalisées de X, ordonné par la
relation de prolongement. Cet ensemble est inductif et non vide. Le lemme
de Zorn montre qu’il contient un élément maximal ¢. Raisonnons par
I’absurde en supposant que X n’est isomorphe ni & R ni 3 U. En particulier,
le domaine U de ¢ est distinct de X (sinon X serait isomorphe a un segment
ouvert de R). Soit x un point de dU et soit ¥ une carte normalisée de X
dont le domaine ¥ contient x. Il résulte du lemme 1 que U u V est le
domaine d’une carte normalisée de X ce qui contredit le caractére maximal
de ¢.
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