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Appendice IV

Classification des courbes différentielles

Soit X une courbe différentielle (paracompacte) connexe. On munit le

fibré cotangent Q1 d'une structure hermitienne (chap. 0, § 2, lemme 3).
On dit qu'une carte 4> de X est normalisée si son domaine U est connexe et
si le vecteur d<fi (x) est de longueur 1 pour tout point x de U. On laisse au
lecteur le soin de démontrer qu'il existe de telles cartes.

Soient (j) et xj/ deux cartes normalisées de X de domaines respectifs U et
V. Le changement de cartes y de (j) dans xj/ est une application de <f> (UnV)
dans ij/(UnV) dont la dérivée est localement constante, égale à plus ou
moins 1. Les ensembles <fi (U) et ij/ (V) sont des segments ouverts de R que
l'on désigne par / et J.

Lemme 1. Supposons l'ensemble UnV non vide. Alors UnV contient

au plus deux composantes connexes. S'il contient une composante connexe,
l'ensemble U u V est le domaine d'une carte normalisée de X. S'il contient
deux composantes connexes, la variété X est isomorphe à U.

L'ensemble A défini par

A {(s,t)el x Jlffffs) ils'Ht)}
est une sous-variété fermée de I x J isomorphe à U n V, formée de

segments de droites parallèles à l'une des diagonales de R x R. Les extrémités
de ces segments appartiennent au bord de I x J, Il est clair que chaque côté

de / x J contient au plus une de ces extrémités (ce qui démontre la première

assertion) et que ces segments sont simultanément parallèles à la diagonale

ou à l'antidiagonale de R x R.

Si A est connexe, l'application y se prolonge en une application linéaire /
de R dans R. Les applications /• (j) et \j/ coïncident sur UnV. Par
recollement, elles fournissent la carte cherchée.

Si A contient deux composantes connexes, que l'on suppose parallèles
à la diagonale de R x R, il existe des nombres réels

a1 < oq < a2 < a2 et bx < ßx < ß2 < b2

tels que
/ ]ax, a2[ et
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et tels que les extrémités de A soient les points (a1, ß2), (ßi, b2), (a2, &i),
(a25 ßi). Quitte à translater /, on peut supposer que l'on a

est un difféomorphisme.

Théorème 1. Toute courbe différentielle connexe (dénombrable à l'infini)
est isomorphe à R ou à U.

Désignons par JA l'ensemble des cartes normalisées de X, ordonné par la
relation de prolongement. Cet ensemble est inductif et non vide. Le lemme
de Zorn montre qu'il contient un élément maximal (f. Raisonnons par
l'absurde en supposant que X n'est isomorphe ni à R ni à U. En particulier,
le domaine U de $ est distinct de X (sinon X serait isomorphe à un segment
ouvert de R). Soit x un point de dU et soit \j/ une carte normalisée de X
dont le domaine V contient x. Il résulte du lemme 1 que U u V est le
domaine d'une carte normalisée de X ce qui contredit le caractère maximal
de ç.

bx — oc2 ßi — a2

On vérifie aisément que l'application h de X dans U définie par

si x e U
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