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APPENDICE 111

(1) Résultants et discriminants

Désignons par 4 un anneau intégre (commutatif avec élément unité) et
par K son corps des fractions.

LEMME 1. Soit M un A-module libre de type fini et soit u un endo-
morphisme de M. Si u est surjectif, c’est un isomorphisme.

L’application u ® 1 est un endomorphisme surjectif de M @ 4K, donc
un isomorpnisme puisque M ® 4K est un espace vectoriel de dimension
finie. On conclut en remarquant que I'application canonique de M dans
M ® 4K est injective.

Pour tout entier naturel m, on désigne par 4,, '’ensemble des polynomes
de A [T] de degré strictement inférieur a m. C’est un A-module libre de
rang m.

Soient p et g deux polyndémes de A4 [T] de degré m et n respectivement.
On désigne par ¢ (p, g) Papplication A-linéaire de A4, x A4, dans A4
définie par

m+n

¢ (p,q)(u,v) = up +vq.
Les polynomes

(1,0),....,(T"",0),(0, 1), .., (0, T™ ) (resp. 1,..., T™ " 1)

forment une base de 4, X A4,, (resp. 4,,.,). On appelle résultant de p et g

et "on désigne par Rés (p, ¢) le déterminant de I’application ¢ (p, g) exprimé
dans ces bases. Si I’on pose

p = DPm + pm-—l T+ +pOTm et q = Qn + qn—-1T+ eee T+ qOTn

N




— 318 —

le résultant de p et ¢ est donné par la formule

P O . . 0 g¢q, . 0 O
Pm .
Y P em + 1
. . . . 0 R
Rés(p,q) = Po - + « DPm - - . . J
0 po o ‘
0 0 : .
. 4o =
0 0 po O 0 4go
n m

Il résulte de cette définition que Rés (p, g) est un polyndme homogeéne
de degré n en p,, ..., p,,, homogeéne de degré m en q,, ..., g, Son terme de
plus haut degré en p,, et g, est pnqo.

Pour tout homomorphisme p de 4 dans un anneau intégre B, on a

Rés (p (), p (@) = p(Rés(p, q)).

On dit que p et g sont étrangers (ou aussi premiers entre eux) s’ils en-
gendrent ’anneau A4 [T].

LEMME 2. On suppose que ['un au moins des coefficients p, ou q, est
inversible. Les conditions suivantes sont équivalentes :

(1) Les polynémes p et q sont étrangers.
(2) L’application ¢ (p, q) est un isomorphisme.
(3) Le résultant de p et q est inversible dans A.
Il suffit de montrer que les conditions (1) et (2) sont équivalentes.
Supposons par exemple g, inversible et (1) vérifiée. En particulier, pour
tout polyndéme r de 4,,,,, on a
r = up + vq

avec u et v dans 4 [T]. La division euclidienne des polyndmes montre que
I'on a |

u=u'q+u avec  deg(u’) <n.
On a alors

r=up+ W +v)q avec deg(u’+v) < m.
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Ceci montre que I'application ¢ (p, ¢) est surjective. Le lemme 1 montre
que c’est un isomorphisme.
Réciproquement, supposons (2) vérifiée. On peut écrire

1 =up +vq
pour certains polynémes u et v de A4, et A4,, respectivement. Ceci montre

que p et g sont €trangers.

LeMME 3. Supposons A factoriel. Siles polynomes p et q sont moniques,
irréductibles et distincts, ils sont étrangers.

Raisonnons par I’absurde. 11 existe alors des polyndmes u et v non nuls
de degré strictement inférieur & n et m respectivement tels que

up +vqg = 0

(lemme 2). Le polyndme ¢ étant irréductible, il n’appartient pas a I’idéal (p).
Le polyndme v non plus pour des raisons de degré. Puisque A4 [T] est fac-
toriel et le polyndme p irréductible, I’idéal (p) est premier, ce qui est absurde.

Soit L une cl6ture algébrique de K. On peut écrire

P = Do H (T—aj) et q = 4o H (T — By

l=j=m 1=k=n
pour certains éléments o, ..., &, B1, ..., B, de L. La fonction
n m
S=p0q0 ]_—I (ﬁk—aj)
1=k<n
1=j<=m

est symétrique par rapport a oy, ..., &, (resp. B4, ..., B,). Cest donc une
fonction polynomiale de p,, ..., p,, €t gy, ..., ¢,. Remarquons que l’on a

S=(—1)mnpr5 H CI(%‘):Q'; H p(By).

1=j<m 1=k<n

En particulier, le polynéme S est homogéne de degré n en p, ..., p,, et
homogene de degré m en q,, ..., g,. Son terme de plus haut degré en Pm €t qo
est Pmqo-
Les coefficients des polynomes p et g sont liés aux racines par les for-
mules
P = (—1)j0j(°‘1»---»°‘m) et q; = (—I)joj(lgla"':ﬁn)

ou o; désigne la j¢ fonction symétrique élémentaire & m ou » indéterminées.
Ceci montre que Rés (p, ¢) est une fonction polynomiale en p,, Olqs vers Oy
905 P15 s By Cette fonction polynomiale est divisible par f,—o ;- En effet,
st o; est égal & fBy, les polyndmes p et ¢ ne sont pas étrangers (lemme 2).
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Il résulte de toutes ces remarques que 1’on a la formule

Rés(p,q) = pyay 11 (Be—op

1=k=n
l<=j=m

En particulier, le résultant de p et ¢ s’annule si et seulement si I’'une des
conditions suivantes est vérifiée:

(1) L’un des coefficients p, ou g, est nul.

(2) Les polynémes p et ¢ ont une racine commune dans L.
0
Soit p un polynéme de A [T] et soit p’ le polyndme dérivé % . On

appelle discriminant de p et ’on désigne par Dis (p) le résultant de p et p'.
Avec les notations précédentes, on a

N\

P'=pe % (T—a).. (T—a)..(T -1,

1=j=p
et par conséquent,
p' () = po H (o4 — o)

1=j=m
jFk

La formule précédente montre que ['on a

Dis(p) = p," " [] (;—%)

1=j, k=m
J#k

En particulier, le discriminant de p s’annule si et seulement si I'une des
conditions suivantes est vérifiée:

(1) Le coefficient dominant de p est nul.
(2) Le polyndéme p a une racine double dans L.

LeMME 4. Supposons A factoriel. Si le polynome p est monique irré-
ductible, le discriminant Dis (p) est non nul.

Raisonnons par I’absurde en supposant que Dis (p) est nul, donc non
inversible dans K. Le lemme 2 montre qu’il existe deux polynémes u et v
de degré strictement inférieur & m— 1 et m respectivement dans X [T] tels que

up +vp’ = 0.

Quitte a multiplier cette égalité par un élément convenable de 4, on peut
supposer que u et v appartiennent & 4 [T']. On procede alors comme dans le
lemme 3.
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