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Appendice III

(1) Résultants et discriminants

Désignons par A un anneau intègre (commutatif avec élément unité) et

par K son corps des fractions.

Lemme 1. Soit M un A-module libre de type fini et soit u un endo-

morphisme de M. Si u est surjectifi c 'est un isomorphisme.

L'application u ® 1 est un endomorphisme surjectif de M ®AK, donc

un isomorphisme puisque M®ÂK est un espace vectoriel de dimension
finie. On conclut en remarquant que l'application canonique de M dans

M ®aK est injective.

Pour tout entier naturel m, on désigne par Am l'ensemble des polynômes
de A [T] de degré strictement inférieur à m. C'est un ^4-module libre de

rang m.
Soient p et q deux polynômes de A [T] de degré m et n respectivement.

On désigne par cp(p,q) l'application ^-linéaire de An x Am dans Am+n
définie par

4>(p, q)(u,v) up + vq

Les polynômes

(1,0),..., (T"-1, 0), (0,1), ...,(0, Tm_1) (resp. 1,..., Tra+"-1)

forment une base de An x Am(resp.Am+n). On appelle résultant de p et q
et l'on désigne par Rés p,q) le déterminant de l'application (f> (p, q) exprimé
dans ces bases. Si l'on pose

P Pm + pm-i T + +p0Tm et + qn_tT + +
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le résultant de p et q est donné par la formule

Rés (p, q)

Pm 0 0 0 0

Pm •

an

0 an

Po Pm

0 Po - <lo

0 0

ao
0 0 Po 0 0 ao

m + 1

n — i

m

Il résulte de cette définition que Rés (p, q) est un polynôme homogène
de degré n en p0, homogène de degré m en q0, qn. Son terme de

plus haut degré en pm et q0 est

Pour tout homomorphisme p de A dans un anneau intègre B, on a

Rés (p (p), p q))p (Rés (p, <?)).

On dit que p et q sont étrangers (ou aussi premiers entre eux) s'ils
engendrent l'anneau A [T].

Lemme 2. On suppose que l'un au moins des coefficients p0 ou q0 est

inversible. Les conditions suivantes sont équivalentes :

(1) Les polynômes p et q sont étrangers.

(2) L 'application (j) (p, q) est un isomorphisme.

(3) Le résultant de p et q est inversible dans A.

Il suffit de montrer que les conditions (1) et (2) sont équivalentes.

Supposons par exemple q0 inversible et (1) vérifiée. En particulier, pour
tout polynôme r de Am+n, on a

r up + vq

avec u et v dans A [T]. La division euclidienne des polynômes montre que
l'on a

u u'q + u avec deg(w") < n

On a alors

r u 'p + (u' +v)q avec deg^' +^) < m
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Ceci montre que l'application (j) (p, q) est surjective. Le lemme 1 montre

que c'est un isomorphisme.
Réciproquement, supposons (2) vérifiée. On peut écrire

1 up + vq

pour certains polynômes u et v de An et Am respectivement. Ceci montre

que p et q sont étrangers.

Lemme 3. Supposons A factoriel. Si les polynômes p et q sont moniques,
irréductibles et distincts, ils sont étrangers.

Raisonnons par l'absurde. Il existe alors des polynômes wetv non nuls
de degré strictement inférieur à « et m respectivement tels que

up + vq — 0

(lemme 2). Le polynôme q étant irréductible, il n'appartient pas à l'idéal (p).
Le polynôme v non plus pour des raisons de degré. Puisque A [7] est
factoriel et le polynôme p irréductible, l'idéal (p) est premier, ce qui est absurde.

Soit L une clôture algébrique de K. On peut écrire

p Po n (t - ai)etn (t -
pour certains éléments a1;am, ßußn de L. La fonction

FI (ßk-*j)
1

est symétrique par rapport à (resp. C'est donc une
fonction polynomiale de p0,...,pm et q0,qn. Remarquons que l'on a

s (-irv0 n «(«7) «: n p(ßk)-
l^j^m l^k^n

En particulier, le polynôme S est homogène de degré n en p0, et
homogène de degré m en q0,qn. Son terme de plus haut degré enpm et q0
est pnmqm0.

Les coefficients des polynômes pet qsont liés aux racines par les
formules

Pi - iy <Tj «J et qj - iy Gj (ßu ...,ßn)

où a jdésigne la ;'e fonction symétrique élémentaire à m ou n indéterminées.
Ceci montre que Rés (p, q) est une fonction polynomiale en p0, at,am,
q0, ßi,ß„. Cette fonction polynomiale est divisible par ßk~ot En effet,
si «j est égal à ßk, les polynômes p et q ne sont pas étrangers (lemme 2).
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Il résulte de toutes ces remarques que l'on a la formule

Rés (p, q) pnQq(ßk-l^k^n

En particulier, le résultant de p et q s'annule si et seulement si l'une des

conditions suivantes est vérifiée:

(1) L'un des coefficients p0 ou q0 est nul.

(2) Les polynômes p et q ont une racine commune dans L.
dp

Soit p un polynôme de A [T] et soit p' le polynôme dérivé —. On

appelle discriminant de p et l'on désigne par Dis {p) le résultant de p et p'.
Avec les notations précédentes, on a

p'PoE (T - aß (T-
et par conséquent,

p' (a*) Pono* -
l^j^mjïk

La formule précédente montre que l'on a

Dis (p) p2-1[] (a,.-<x
1 ^j, k^m

jïk

En particulier, le discriminant de p s'annule si et seulement si l'une des

conditions suivantes est vérifiée:

(1) Le coefficient dominant de p est nul.

(2) Le polynôme p a une racine double dans L.

Lemme 4. Supposons A factoriel. Si le polynôme p est monique
irréductible, le discriminant Dis (p) est non nul.

Raisonnons par l'absurde en supposant que Dis (p) est nul, donc non
inversible dans K. Le lemme 2 montre qu'il existe deux polynômes u et v

de degré strictement inférieur à m — 1 et m respectivement dans K [T] tels que

up + vp' 0

Quitte à multiplier cette égalité par un élément convenable de A, on peut

supposer que u et v appartiennent à A [T]. On procède alors comme dans le

lemme 3.
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(2) Théorème de normalisation

Tous les anneaux (et tous les corps) considérés sont commutatifs, avec

élément unité.

Théorème 1 (Elément primitif). Soit K un corps de caractéristique zéro

et soit L une extension finie de K. Il existe alors un élément a de L tel

que L soit engendré par a sur K.

De manière plus précise, pour toute partie infinie S de K et tout système

de générateurs a1; otn de L sur K, il existe des éléments Alf An de S

tels que l'élément
a + + Anocn

engendre L sur K.

Par récurrence sur n, on se ramène immédiatement au cas où L est

engendré par deux éléments et ßt. Désignons par p et q les polynômes
minimaux de oc± et respectivement dans K[T], Dans une extension

convenable de K, on peut écrire

p n (t - «;) et ci n (t - •

1 1

Les racines a1?..., ocm (resp. ßi9..., ßn) étant deux à deux distinctes, il existe

un élément A de S tel que

ocj + Aßk 7^ ccx + Aß± pour l<j<m 2 < k < n

Posons

a cq + Aß1

et montrons que L est engendré par a. Il suffit évidemment de montrer que
ß1 appartient à K (a). Par construction, le plus grand commun diviseur des

polynômes q(T) et p (cl —AT) de K(oc)[T] est le polynôme T — ß±. Ceci

montre que le polynôme minimal de ßt dans K (a) [T] est T — ßu d'où
l'assertion.

Lemme 5. Soit B un anneau et soit A un sous-anneau de B. Pour tout
élément x de B, les conditions suivantes sont équivalentes :

(1) Il existe un entier naturel n et des éléments au...,an de A tels que

xn + ßqx"-1 + + an 0

(2) Il existe un sous-A-module M non nul de type fini dans B tel que M
contienne xM.

L'Enseignement mathém., t. XXI, fasc. 2-3-4. 21
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Supposons (1) vérifiée et désignons par M le sous-module de B engendré

par 1, x, xn-1. Il est clair que xM est contenu dans M.
Réciproquement, supposons (2) vérifiée et désignons par mu...,mn

des générateurs de M. Il existe une famille (ajk)i^j}k^n d'éléments de A
telle que

pour 1 < j < nxnij £ aJkmk
l^k^n

Ceci peut s'écrire

r x —a il 1 ln

x-ci„

m A

m,

0

et puisque les éléments m1? mn ne sont pas tous nuls, le déterminant de la
matrice de gauche fournit la relation cherchée.

On dit que x est entier sur A s'il vérifie les conditions du lemme 5. On
dit que B est entier sur A si tous ses éléments sont entiers sur A.

On appelle fermeture intégrale de A dans B l'ensemble des éléments de

B entiers sur A.

Lemme 6. Soient C un anneau, B un sous-anneau de C et A un sous-

anneau de B.

(1) Supposons que B soit une A-algèbre de type fini. Pour que B soit
entier sur A, il faut et il suffit que ce soit un A-module de type fini.

(2) Si C est entier sur B et B entier sur A, alors C est entier

sur A.

(2) La fermeture intégrale A' de A dans B est un sous-anneau de B.

Tout élément de B entier sur A' appartient à A'.

La première assertion résulte immédiatement des définitions. Démontrons

la seconde. Soit x un élément de C et soit bu..., bn des éléments de B
tels que

xM+ biX1 î + + 0.

La sous-algèbre Bx de B engendrée par bu bn est un ^4-module de type
fini d'après (1). On en déduit que B± [x] est un ^4-module de type fini.
Comme la multiplication par x envoie Bx [x] dans lui-même, ceci démontre

l'assertion.
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Démontrons (3). Soient x et y des éléments de A' et soient M et N deux

A-modules de type fini dans B tels que M contienne xM et N contienne yN.

Il suffit de remarquer que la multiplication par x + y, x - y et xy envoie le

v4-module de type fini MN dans lui-même. La deuxième assertion résulte

de (2): tout élément de B entier sur Ä est entier sur A.

Lemme 7. Soit A un anneau factoriel et soit L une extension finie de son

corps des fractions K.

(1) La fermeture intégrale de A dans K est égale à A.

(2) Le polynôme minimal de tout élément x de L entier sur A appartient

à A[T].
x

Désignons par - un élément de K et par au an des éléments de A tels
y

que

© +fll© +- + fl« 0-

On peut écrire cette relation sous la forme

x" + a1yxn~1+ + " 0.

On en déduit aisément que tout élément irréductible de A divisant y divise
aussi x, ce qui démontre la première assertion.

Désignons par p le polynôme minimal de x dans K [T] et par r un
polynôme monique de A [T] tel que r (x) soit nul. Il existe un polynôme q de

K [T] tel que
r pq.

Dans une extension convenable K de K, on peut écrire

p n « n (r-/o.
Par définition, les éléments au am, ßl9..., ßn appartiennent à la fermeture

intégrale A' de A dans K. Ceci montre que les coefficients de p (et de q)
sont entiers sur A (lemme 6). L'assertion résulte alors de (1).

Théorème 2 (Noether). Soit k un corps infini et soit B une K-algèbre
intègre. On suppose que B est engendrée par des éléments yl9 ym et que
le degré de transcendance sur k du corps des fractions L de B est égal à n.
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Il existe alors une famille (ßjk)i^j^n,i^k^m d'éléments de k telle que B
soit entier sur k [xu xn], où Von a posé

xi E aJkyk pour 1 < <
l^k^m

La démonstration va se faire par récurrence sur m — n, l'assertion étant
triviale si n est égal à m.

Supposons donc m — n strictement positif. Il existe un polynôme p
non nul de k [Tl,..., Tm] tel que

p(y i, • • • ym) o.

Ce polynôme s'écrit d'une manière et d'une seule

p p0 + + pr

où pj est homogène de degré j et pr non nul. Désignons par al9..., am^l
des éléments de k tels que pr (au am-l9 1) soit non nul et posons

L y 1 a\ym? •••? Im— 1 y»!—1 ^ m - lfm' hn J'm •

Par substitution, on voit que l'on a

trmPr(au -,am-1,1) + gOi, ...,0 0

où g est un polynôme de degré strictement inférieur à r en /m. Ceci montre

que tm est entier sur l'anneau k [tx, tm_ J. Le lemme 6 et l'hypothèse de

récurrence fournissent alors le résultat.

Conservons les notations du théorème 2. On désigne par A l'anneau

k [xu xn] et par K son corps des fractions. Il existe des éléments

xn+19..., xm de B qui engendrent le ^-module B et le théorème de l'élément

primitif implique qu'il existe une combinaison linéaire a de xn+t, xm

telle que
L K (a).

Désignons par p le polynôme minimal de a. C'est un polynôme monique
irréductible appartenant à A [T] (lemme 7). Son discriminant A est non nul
(lemme 4).

Lemme 8. La multiplication par A envoie B dans A [a].

Dans une extension convenable K de K, on peut écrire

p (T — ccj) avec a oq
1
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Tout élément x de L s'écrit d'une manière et d'une seule

* Z

avec £0, ^r-1 dans K. On pose alors

AJ) E tri
O^k^r — l

pour tout entier j compris entre 1 et r. Le déterminant de ce système d'équations

linéaires est donné par la formule

D

«i
a2

«ï"1
a2

1

n a-«])
1 Azj <kf^r

Le carré de ce déterminant n'est autre que le discriminant A. Ceci montre

que le système d'équations ci-dessus admet une solution et une seule

£* Ö I ak,jxU).

Notons que D et les éléments akJ appartiennent à la fermeture intégrale Ä
de A dans K. D'autre part, si x est entier sur A, il en est ainsi des éléments

x(2\ x(r) et par conséquent de

nk=D y QkJ X U)

Comme ce dernier élément appartient à K, il est dans A (lemme 7). Le
lemme en découle aussitôt.
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