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Démontrons par récurrence que % ; est dénombrable. Si %; est dénom-
brable, la réunion de ses €léments est une variété topologique U; de type
dénombrable et, pour tout indice 1, la famille %, des composantes connexes
de u™' (W) qui rencontrent U ; est dénombrable (propriété (*)), ce qui
démontre I’assertion puisque %;,, est contenu dans la réunion des & ..

Démontrons finalement par I’absurde que % est la réunion des %;.
Désignons par U la réunion des éléments de tous les % ; et par V' la réunion
des €léments de % n’appartenant & aucun des % ;. Les ensembles U et V
sont des ouverts non vides recouvrant X. Ils sont disjoints par construction
ce qui contredit la connexité de X et démontre du méme coup le théoréme.

(3) Le groupe fondamental d’une variété topologique compacte connexe

PROPOSITION 1. Le groupe fondamental d 'une variété topologique compacte
connexe X est de génération finie.

Recouvrons X par des domaines de cartes V, ..., V, isomorphes a des
boules, centrées en des points x,, ..., x,. Pour tout entier j compris entre 0
et n, on désigne par U; une boule de centre x; relativement compacte dans
V; et Pon suppose que Uy, ..., U, recouvrent encore X.

Pour tout couple d’entiers (, k), on recouvre U; n U, par des domaines
de cartes UZ*, ..., U,{’j’fk isomorphes a des boules, centrées en des points

; ik — 7 .o = .
s xrix de U; n Uy Remarquons que #; , est nul si U; n U, est vide.

. . , . ik .
Pour tout entier / compris entre 1 et n; ,, on désigne par o un chemin
Jk 1
v @ X : : . & % ik
joignant x; a x* dans V; et par B; * un chemin joignant x* a x, dans V,.
On pose

ik _ ik Rik
yreo= ot B

Nous allons montrer que tout lacet ¢ de X au point x, est homotope a un
produit de chemins y1* ce qui démontrera I’assertion.

Le lacet ¢ se décompose en un produit de chemins ¢y, ..., ¢, dont chacun
est contenu dans 'un des ouverts U, ..., U,.

Désignons par c,, et ¢,,. ; deux tels chemins. Le premier joint un point
a,-1 4 un point a, dans U}, le second le point a,, a un point a,,, ; dans U,.
Il existe un ensemble ouvert U7 contenant a,,. On choisit alors un chemin
o joignant a,_4 a x; dans U}, un chemin f joignant x; a a,4{ dans U, et
un chemin y joignant x{* & a,, dans Uj*. Le chemin o o"* y est homotope
au chemin ¢, dans V; et le chemin vy~ 1B/*B est homotope au chemin c,, . ,
dans V,. Par conséquent, le chemin o y{"*f est homotope au chemin c¢,,c,, 4 1
dans X. On en déduit aisément I’assertion.
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