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Il est clair que U’ est un voisinage ouvert de 4 dans U et la formule

X\ =XxX\0hv U ¢u U ¥
l<=j=n 1=j=n
montre que X\U' n’a pas de composante connexe compacte.
I’assertion relative aux voisinages compacts se déduit aisément de ce

qui précéde et du lemme 1.

LEMME 6. Supposons X dénombrable a I’infini. Il existe alors une siite
exhaustive de parties compactes de X dont les complémentaires n’ont pas de
composantes connexes relativement compactes.

C’est une conséquence immédiate du lemme 5.

(2) Le théoréme de Poincaré-Volterra

THEOREME 1. Soient X et Y deux variéiés topologiques et soit u une
application continue de X dans Y. On suppose que X est connexe et que les
fibres de u sont discrétes. Si Y est de type dénombrable, il en est de méme
de X.

On désigne par (W)),.; une base dénombrable de la topologie de Y et
par % l’ensemble des composantes connexes relativement compactes des
ensembles de la forme »~* (W),). 1l suffit de montrer que % est un recou-
vrement dénombrable de X.

Pour tout point x de X, il existe un voisinage compact K de x tel que

Knu t(u(x) = {x}.

En particulier, le point u (x) n’appartient pas a u (0K) et il existe un indice 1
tel que W, contienne u (x) et ne rencontre pas u (0K). La composante
connexe U de x dans u~' (W,) est contenue dans K. On en déduit que %
est un recouvrement de X.

1l reste a voir que % est dénombrable.

Remarquons tout d’abord que toute variété topologique Y de type
dénombrable vérifie la propriété suivante:

(*) Toute famille d’ensembles ouverts non vides deux a deux disjoints de Y
est dénombrable.
Soit U, un élément de %. On définit par récurrence une famille (% i)
de parties de % en posant

U, = U,
Uipy = {Ue|ilexiste Ve ;telque UnV # o }.

jeN
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Démontrons par récurrence que % ; est dénombrable. Si %; est dénom-
brable, la réunion de ses €léments est une variété topologique U; de type
dénombrable et, pour tout indice 1, la famille %, des composantes connexes
de u™' (W) qui rencontrent U ; est dénombrable (propriété (*)), ce qui
démontre I’assertion puisque %;,, est contenu dans la réunion des & ..

Démontrons finalement par I’absurde que % est la réunion des %;.
Désignons par U la réunion des éléments de tous les % ; et par V' la réunion
des €léments de % n’appartenant & aucun des % ;. Les ensembles U et V
sont des ouverts non vides recouvrant X. Ils sont disjoints par construction
ce qui contredit la connexité de X et démontre du méme coup le théoréme.

(3) Le groupe fondamental d’une variété topologique compacte connexe

PROPOSITION 1. Le groupe fondamental d 'une variété topologique compacte
connexe X est de génération finie.

Recouvrons X par des domaines de cartes V, ..., V, isomorphes a des
boules, centrées en des points x,, ..., x,. Pour tout entier j compris entre 0
et n, on désigne par U; une boule de centre x; relativement compacte dans
V; et Pon suppose que Uy, ..., U, recouvrent encore X.

Pour tout couple d’entiers (, k), on recouvre U; n U, par des domaines
de cartes UZ*, ..., U,{’j’fk isomorphes a des boules, centrées en des points

; ik — 7 .o = .
s xrix de U; n Uy Remarquons que #; , est nul si U; n U, est vide.

. . , . ik .
Pour tout entier / compris entre 1 et n; ,, on désigne par o un chemin
Jk 1
v @ X : : . & % ik
joignant x; a x* dans V; et par B; * un chemin joignant x* a x, dans V,.
On pose

ik _ ik Rik
yreo= ot B

Nous allons montrer que tout lacet ¢ de X au point x, est homotope a un
produit de chemins y1* ce qui démontrera I’assertion.

Le lacet ¢ se décompose en un produit de chemins ¢y, ..., ¢, dont chacun
est contenu dans 'un des ouverts U, ..., U,.

Désignons par c,, et ¢,,. ; deux tels chemins. Le premier joint un point
a,-1 4 un point a, dans U}, le second le point a,, a un point a,,, ; dans U,.
Il existe un ensemble ouvert U7 contenant a,,. On choisit alors un chemin
o joignant a,_4 a x; dans U}, un chemin f joignant x; a a,4{ dans U, et
un chemin y joignant x{* & a,, dans Uj*. Le chemin o o"* y est homotope
au chemin ¢, dans V; et le chemin vy~ 1B/*B est homotope au chemin c,, . ,
dans V,. Par conséquent, le chemin o y{"*f est homotope au chemin c¢,,c,, 4 1
dans X. On en déduit aisément I’assertion.
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