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Il est clair que U' est un voisinage ouvert de A dans U et la formule

X\U' (X\Ü) u U CjU U Vj

montre que X\U' n'a pas de composante connexe compacte.
L'assertion relative aux voisinages compacts se déduit aisément de ce

qui précède et du lemme 1.

Lemme 6. Supposons X dénombrable à l'infini. Il existe alors une suite

exhaustive de parties compactes de X dont les complémentaires n 'ont pas de

composantes connexes relativement compactes.
C'est une conséquence immédiate du lemme 5.

(2) Le théorème de Poincaré-Volterra

Théorème 1. Soient X et Y deux variétés topologiques et soit u une

application continue de X dans Y. On suppose que X est connexe et que les

fibres de u sont discrètes. Si Y est de type dénombrable, il en est de même

de X.
On désigne par WXei une t>ase dénombrable de la topologie de Y et

par ôll l'ensemble des composantes connexes relativement compactes des

ensembles de la forme u~x (Wt). Il suffit de montrer que % est un
recouvrement dénombrable de X.

Pour tout point x de X, il existe un voisinage compact K de x tel que

K n u-1 (u (x)) { x }

En particulier, le point u (x) n'appartient pas à u (dK) et il existe un indice i

tel que Wx contienne u (x) et ne rencontre pas u (dK). La composante
connexe U de x dans u_1 (Wt) est contenue dans K. On en déduit que
est un recouvrement de X.

11 reste à voir que % est dénombrable.

Remarquons tout d'abord que toute variété topologique Y de type
dénombrable vérifie la propriété suivante:

(*) Toute famille d'ensembles ouverts non vides deux à deux disjoints de Y
est dénombrable.
Soit U0 un élément de %. On définit par récurrence une famille (°llfi

de parties de °U en posant

- U0

%j+ { U 6 % | il existe V e °Uj tel que U n V # 0 }
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Démontrons par récurrence que %^ est dénombrable. Si °llj est dénom-
brable, la réunion de ses éléments est une variété topologique Uj de type
dénombrable et, pour tout indice i, la famille tF x

des composantes connexes
de u"1 (Wx) qui rencontrent Uj est dénombrable (propriété (*)), ce qui
démontre l'assertion puisque ôUj+ x est contenu dans la réunion des Fx.

Démontrons finalement par l'absurde que °U est la réunion des °U
-y

Désignons par U la réunion des éléments de tous les °llj et par V la réunion
des éléments de °U n'appartenant à aucun des °Uj. Les ensembles U et V
sont des ouverts non vides recouvrant X. Ils sont disjoints par construction
ce qui contredit la connexité de X et démontre du même coup le théorème.

(3) Le groupe fondamental d 'une variété topologique compacte connexe

Proposition 1. Le groupe fondamental d'une variété topologique compacte
connexe X est de génération finie.

Recouvrons X par des domaines de cartes V0,..., Vn isomorphes à des

boules, centrées en des points x0, xn. Pour tout entier j compris entre 0

et /?, on désigne par Uj une boule de centre Xj relativement compacte dans

Vj et l'on suppose que U0, Un recouvrent encore X.
Pour tout couple d'entiers (j, k), on recouvre U j n Ük par des domaines

de cartes U{k, LJn,kk isomorphes à des boules, centrées en des points
x{,k, xJnlk de U j n Uh. Remarquons que njh est nul si Uj n Uk est vide.

Pour tout entier / compris entre 1 et nj k, on désigne par a/'/c un chemin

joignant Xj à x{,k dans Vj et par ß{'k un chemin joignant x{,k à xk dans Vk.

On pose
vJ',k _ -JJc oj,lcïl — al Pl •

Nous allons montrer que tout lacet c de X au point x0 est homotope à un
produit de chemins y\,k, ce qui démontrera l'assertion.

Le lacet c se décompose en un produit de chemins cu cp dont chacun

est contenu dans l'un des ouverts U0, Un.

Désignons par cm et cm+l deux tels chemins. Le premier joint un point
am_1 à un point am dans Uj9 le second le point am à un point am+ x dans Uk.

Il existe un ensemble ouvert U[,k contenant am. On choisit alors un chemin

a joignant am_ 1 à Xj dans U}-, un chemin ß joignant xk h am+i dans Uk et

un chemin y joignant xf,k à am dans £//'k. Le chemin oc af,k y est homotope
au chemin cm dans Vj et le chemin y~1ßßkß est homotope au chemin cm+1

dans Vk. Par conséquent, le chemin a yj,kß est homotope au chemin cmcm+1

dans X. On en déduit aisément l'assertion.
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