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CHANGES OF SIGN OF n (x)

by Harold G. Diamond 1

— li x

1. Introduction

The prime number theorem asserts that n (x), the number of primes not
exceeding x, is asymptotic to

as x -> oo. It has been shown [12, p. 72] that n (x) < Ii x for 3/2 < x < 108,

and it was once conjectured that this inequality prevailed for all x > 3/2.

However, this conjecture was disproved by Littlewood [11] who established

Theorem 1. n (x) — Ii x changes sign infinitely often as x -> oo.

Littlewood's proof was simplified by Ingham [5]. In the present article
we make a further simplification by eliminating use of the so called explicit
formula for f (cf. [4], pp. 76-80). The deepest fact which we require from
analytic number theory is an estimate of the size of N (T), the number of
zeros p of the Riemann zeta function satisfying 0 < Im p < T.

The key step in the argument is Theorem 2, which is given in the next
section. This result, which is based on another article of Ingham [6], enables

us to relate a certain average of the function n to zeros of the Riemann zeta
function.

We begin by giving an extension of the Wiener-Ikehara tauberian
theorem. Our result admits poles and certain "lesser" singularities on the
abscissa of convergence of the transformed function. We adhere to the
curious convention of expressing the complex variable s as a + it.
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2. A TAUBERIAN THEOREM
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Theorem 2. Let F be a real valued function on [1, oo) which is continuous

from the right and satisfies a one sided bound

F (x) < \ogß x or F (x) > — log^ x

for some ß < 1 and all sufficiently large x. Let

00

def

G(s) I x~s~lF(x)dx
def r*

-1"1"1

converge for a>0. Let T>0and suppose that there exists a function

"ef
^ an

H(s) £
s - iyn

hn\<T

(for some choice of complex an's and real yn's) such that the family of
restricted functions

def
t G (o + it) — H (o + it) Ja if) — T < t < T)

is Cauchy in L 1
norm as o 0 +, i. e,

T

UAt) -JAt)\dt o.lim
a, <r'->0 +

Then, as y -> oo

00

F(m) K t (y-log u)— £ fl-fl" +
" iTnl < T \

u= 1

We have set

K t (x) — I 1 — elxt dt — co <x < oo)

This is the so called Fejér kernel. Also, oT (1) denotes a function of y
and T which, for fixed T, tends to zero as y -* co.

Proof of Theorem 2. The general strategy is to multiply the equation
defining G by (1 - | t | jT) elty dt, integrate, and evaluate the resulting
formula as o -» 0+ and then let y -> oo.

For g > 0 we have
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u s 1 F (u) du
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1 11-— 1
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J V T

T
dt + 1- e- X — dt-.

iyn[<r s - iyn
— T -T

We treat the last integral first. For 7 real, | y | < T, a > 0, y > 0, we

estimate
T

1 —
' 1' eity (s —1 dt

1
m
T

dt F
s — iy T

1 r m - m eity dt
s — i y

1 + 11, say.

We treat I using complex integration :

T 3-'(<r + iT — iy)
£ity ey(iy-<r)

dt -
s — iy i

-T z yl<r — iT — iy)

1

ez dz

z

2 71 e~<Ty+iyy + O
[y(T - ]y |)J

The last formula results from replacing the integral over the line segment

by one over the other three sides of a rectangle with vertices

y (cr ± i T —iy), y( — m±iT—iy),

applying the residue theorem, and letting m + 00. The constant implied
by the O is absolute. Thus

lim I 2 Ti 1

(7-+0 +

m
T

eiyy + O

Irl -1*1
We estimate II after noting that is bounded by 1 in absolute

a+ 0
value and converges to (| y|— |t|)j(it—iy)fort ^ y. Thus

lim !thlh,»M,
a_0+ J S - iy

- T

-JH
' r ' ' 1'

dt
(t-y)
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by the dominated convergence theorem. The last expression tends to zero
as y -» oo by the Riemann-Lebesgue lemma, which asserts that the Fourier
transform of an L 1 function vanishes "at infinity" (cf. [7], p. 123).

It follows that
T

lim
<7->-0 + »,

- T

i-hAg«» £ ~^—dt
T J \ln\<Ts- iyn

2% y i-
l7nl<r

I Jn
a„ eiyny + (y).

where cp (y) -> 0 as y -> oo.

The function Ja in (1) converges in L 1 norm to a function J in
L 1

[ - T, T] by use of the Cauchy hypothesis and the fact that L 1 is complete.
Thus

T T

lim
cr-> 0 +

J,(0( J(0|
- T

and the last integral tends to zero as y -» + oo by another application of
the Riemann-Lebesgue lemma. (The completeness of L 1 could be avoided

by use of the argument in [1, pp. 190-194].)

The left side of (1) equals

~a~lF(ti) eit(y~l09 u) du
11

dt

- a — 1 F{u) eit(y-logu)dt du

2 G 1 F (u) Kt (y —log u) du

The interchange of integrations is justified by the fact that the integral for
G converges uniformly on the line segment {s a F it: -T </<T}
for any fixed positive numbers a and T. Integration shows that

T
def j

(2) KT(X)
2 71

t\\ T fsin Tx/2\2
1 _ e*x dt

^

2 71 \ Tx/2
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and hence for any ß < 1

0

u'1\ogßu KT(u) du < co

We write

F(u) (F(u)-Klogßu) + log»u,

and note that F (u) -Klogßu is of one sign for suitable K and some

ß < 1. By the monotone convergence theorem

c

I u a 1 F (u) KT(y—logu) du —

u
1

(.F (u) — K\ogß u) Kt (y —log u) du

00

+ 1 "" K \ogß u Kt (y —log u) du

as <7 —> 0 H-. The last integral has just been shown finite. The integral
involving F (u) — K logß u must also be finite, since each of the other terms
in (1) has a finite limit as a -» 0+.

Assembling the estimates of the terms in (1), we obtain the desired
formula. #

In particular, if F (u) 1 for 1 <w < oo, then G (s)

1 /s and the theorem yields

x s 1 dx

c

I KT(y— logu)u 1 du ==l+o (1)

or

K T (y) dv 1



3. Proof of Theorem 1

It is convenient to introduce approximations to % and li. We define

TT(x) £ - 7i (x) + ^(x1) + $n(x*) + ...(x>l)
pöL^lX &

The first sum extends over all prime powers not exceeding x. The second

sum, which is formally infinite, is in fact terminating, since n (x1/w) Ofor
n > log x / log 2. Thus we have

loax f xT \
0 < Il(x)— n (x) < i 7i (x*) H (x*) O I I •

3log 2

Also, for x > 1 we set

deff1 - u'1
t (x) du li x +t (e) — Ii — log log x

J log u
1

It follows from the preceding relations that

7i (x) — li x n (x) — t (x)
(3) — +0(1)

yjx/log X y/x/log X

We shall establish Theorem 1 by proving that x i-> x-^ {77 (x) - % (x)} log x
is unbounded from above and below.

The function 17 occurs in the Mellin transform of the branch of log Ç (s)
which is real on the interval (1, oo). Indeed, the Euler product

c(s) na-rr1 (^>1)
p

yields

log c(s) - y log (i -p~s)y(Vs+ +
p P \ 1 5

Writing the last sum as a Stieltjes integral, we obtain

log C (s) x 5 d II (x) (cr > 1)
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The function t has been introduced to exploit its simple Mellin transform:

log
1

x s d t (x) (a > 1),

where the branch of log — 1) is chosen which is real on (1, oo). One

can verify this identity by showing that (/) each member of the equation

tends to zero as o —> + oo and (ii) the derivatives of the two sides are equal.

We form the difference of the two Mellin transforms and integrate by

parts, obtaining

1 f s

- hog COO - log -
s s — 1

— s— 1 {17 (x) — t (x) } dx

We then differentiate this formula with respect to s to get

1 1 s
log CO) - log

1 fC'O) 1 1

_j_ — 1 — — -j- —
5 - 1 I 5 }C (s) S 5 — 1

1

log x {17 (x) — t (x)} dx 0" > i)

We have now succeeded in making a Mellin transform of x~^log x
{17 (x) - t (x)}. For convenience we shall denote the left hand side of
this formula by -G1 0"i)- Then we have for a > \

(4) Gx 0) x s i log x{17 (x) — t (x)} dx

We shall apply Theorem 2 to this Mellin transform.
There are two possible cases to consider in proving Theorem 1, according

to whether the Riemann hypothesis (R.H.) holds or not. (A form of the

R.H. asserts that there exist no zeros of the Riemann zeta function with
real part exceeding f. It is not known at present whether the R.H. is true.)

For each case we require the following theorem of Landau (cf. [4],

pp. 88-89): Iff(x) is a real valued right continuous function which is of one
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sign for all sufficiently large x and if

vergence a, then the analytic function

x s f(x) dx has abscissa of con-

' f (x) dx

has a singidarity at the real point s a.

If the conclusion of Theorem 1 were false, then for some real K

x~*{n(x) — x(x)}log x -f K

would be ultimately of one sign. We obtain from (4)

(5) G1 (s) + -S x s 1 (x * {77(x) — t(x)}log x + K}dx

According to Landau's theorem there must be a singularity of G1 (x) + K/s
at the real point on the abscissa of convergence, say a. Now (V) + K/s
has no singularities on the half line (0, oo) because zeta is analytic and

non zero on (J, 1) [cf. remarks following the definition of N (T) below]
and (1, oo) [convergent Euler product!] and has a simple pole at s 1.

It follows that a < 0.

Thus the integral in (5) converges and defines Gx(s) + K/s as an analytic
function on the half plane {s: o > 0}. If we recall the definition of Gu we

see that zeta can have no zeros with real part exceeding |, i.e. the R.H. holds.
This establishes the truth of Theorem 1 in case the R.H. does not hold.

Now we assume that the R.H. holds but Theorem 1 is false and deduce a

contradiction.
The preceding argument with Landau's Theorem implies that (4) is

valid for a > 0. The function Gx has two types of singularities on the line

o 0, both arising from zeros of zeta. The following lemma will enable us

to see that the logarithmic singularities are "negligible."

Lemma 3. Let a branch of log be fixed. Then

l
{%

lim I log (a -j-it) — log (o + it) \ dt 0
<x, a' -»0 +

-1
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Proof. Let 0 < 8 < 1/^2 be given. The integral tends to zero uniformly

for I tĴ e as <7, o'—> 0 + For |t|< e and 0 < <r < <r < 1/^/2, say,

we have

<7 it
log- r<T + It

dt <c 4 7i s -t- log
er + it

a -f-it
dt

< 4 71 8 + log
1

er + it
dt

< 4 7i s + 2 log (11 t)dt,

and the last integral tends to zero as 8 -> 0 +. #
We can now show that the logarithmic terms in G1 (a + it) satisfy the

Cauchy condition in L 1
[ —T, F] for any fixed T > 0, as a -> 0 +. Indeed,

let [tl9 t2] <= [~T,T] and suppose that there exists at most one y e [tu t2\

for which C (i+fy) — 0. For 0 < a < 1/3 and tt < t < t2 we have

log Ç(s+i) n log (s-iy) + cp(s)

where n is the order of the zero at -J- + / y and cp is analytic on the closure

of the region. It follows from the preceding lemma and an estimate based

on the triangle inequality that

lim
a, a' 0 +

l/O + i'O - f0'+ if) I cfr o

where

f(s) (s+ir2 log {C(s+i)(s-i)/(s+i)}
Adding together a finite number of such estimates we see that the Cauchy
condition applies for the logarithmic terms in G1 on the whole interval

[-T, T].
It remains to consider the pole terms in G1 (s). For given T > 0 set

hi (s) y i
Iyi <t (i + Î?) (s -iy) '

where y ranges over the imaginary parts of zeros of zeta on the line a f.
A term is repeated n times in the sum in case \ + i y is a zero of zeta of
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multiplicity n. It is convenient to assume that T is distinct from each of the
y's. The function G1 — H1 is analytic on the region

{5 a + it : 0 < g < 1/3, — T < t < T)
and has a finite number of logarithmic singularities in the closure of this
region. Thus Gx (cr + it) - H1 (cr + it) is Cauchy in L 1 norm on [~T, T]
as a -> 0 +.

Let Fl (x) x~* {II (x) — t (x)} log x for 1 < x < 00. Then (4) can

be rewritten as Gt (s) F± (x) dx. We are assuming that Theorem 1

is false and hence F1 is bounded by a constant from above or below. Under
this assumption we have shown that the preceding integral converges for
a > 0.

Now the triple Fu Gu H± satisfies the conditions required of F, G,

and H in Theorem 2. Thus we have the formula

/»

j;
X=1

x
1 {II (x) — t (x)} log x K T{y —log x) dx

|y|<T 2 + l7 \ T J
as y -> co.

For T > 0 let N (T) denote the number of zeros of the Riemann zeta

function in the rectangle {^ cr + it:0<cr< 1, 0<£<T}. Each zero
is counted with its appropriate multiplicity. We observe that N (0) 0.

This follows from the identity

CO)(l-2w) 1 - 2"ff + 3~a - 4~a + (<7>0)

and the alternating series inequality

C(ö-)(1 — 21_<r) > 1 - I"9 > 0.

Moreover, the function N is continuous from the right and hence

N (T) 0 for some positive values of T also. (It is known that the first

jump in N (T) occurs near T 14.13.)
1

For large T we have the asymptotic estimate N (T) ~ — T log T
2 71

(cf. [4], pp. 68-70). Actually, it would be enough for our purposes to have

the weaker bounds

(6) N(T + 1) — N (T) O (log T)
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and

(7) lim N (T)l T oo
T-> oo

We digress for a moment to indicate how one can establish (6) and (7).

The first estimate can be made by applying Jensen's inequality [4, p. 49]

to zeta. We use the bound £ (s) O (\t |*) for | t | > 1 and a > — 1. This
bound follows from the functional equation for zeta [4, p. 41] and Stirling's
formula for the gamma function [4, p. 57]. Another bound of this general

type can be deduced from the representation

C 0) 7 + i + s(s +1)
5—1

00

jc 1

([(] —t+i) dtdx (a > -1)

which results from two integrations by parts of the Mellin transform for
zeta.

For (7) we consider the formula

r£'
-(a) 2 (i0* + 1) + X

1
n \(T-p

1 A
+ -J +0(1) (o>2)

[4, p. 58]. Here p ß + iy extends over all zeros of zeta satisfying
0 < ß < I. As cr —> + oo we have £' (<r) / £ (cr) 0 and by Stirling's
formula (rf/r)(^a+1) ~ loger. If N (T) / T were bounded, then, as a

short calculation shows, the sum over p would be bounded as cr + oo.
This is clearly impossible and hence (7) holds.

Applying (6) we have

I 1

i+ iy

l
iy

1

0 l?i V
We can thus rewrite the formula for 77

<1+2 E

log (k+1)
y ^ y k=1 1 < y - ' A-

I y
<7:

B < oo

t as

(8)

x à {i7 (x) - t (x)} log X Kt (j; -log x) d (log x)

v- ~ /< y \ sin yyI IL +Be + oT
0<y< T \ 1 J 1

where 6 0 (y, T) is bounded by 1 in absolute value.
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Let I (y) denote the sum in (8). We have

2 y\ sin y IT
2T(l/r> S 1 ~l)~rT 0<y<T\ TJ

2 ^ 12 IN (T/2)
> _ y _ • _ iJ-L

;
7,0<y<T/2 2 71 71 T/2

which can be made arbitrarily large by choosing suitable large values of T.

(We have used the estimates sin x > 2x / n for 0 < x < n / 2 and (7).)
Also, since sine is odd I — l/T) will be a negative number of large modulus
for some positive values of T.

The evaluation of 1 + l/T) does not appear to be of any direct benefit,
since (8) applies only for large positive values of y. However, 1 (y) is a

trigonometric polynomial and as such has the following approximate
periodicity property: For any s > 0 and any y0 e R, there exists a sequence

yn co such that

\Z(y„) - Z(y0)\<s (11 1,2,3,...).

This assertion can be established by appealing to the theory of almost
periodic functions [7, pp. 158-159]. Alternatively, we can apply Dirichlet's
theorem on diophantine approximation [4, pp. 94-95]. Suppose we are given
e > 0 and 0 < y1 < y2 < yN, the imaginary parts of the first N N (T)
zeros of zeta arranged in ascending order. Then by Dirichlet's Theorem

we can find arbitrarily large numbers t for which the inequalities

\\ynt I 2k\\ <s/{4nIyj1} (1

hold. Here \\x\\ denotes the (non negative) distance from x to the nearest

integer. Simple estimates show that

I sin yn(y+t) - sin yny\ < 2tî || ||

for 1 < n < N, and hence for all real y we have

I Z(y+t) -Z(y)I < Z 4ny~1 \\y„t 12n\\ < s
n= 1

It follows from either of these methods that the values I (l/T) and

I (- l/T) are nearly repeated by 1 (y) on a sequence of values of y tending
to infinity.
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At the end of the proof of Theorem 2 we showed that Kj (u) du 1.

Also, (2) implies that KT (x) > 0 for all x. Now formula (8) can be

interpreted as expressing a certain average of i 2 {n (x) — t (x)} log x as

I (x) plus a bounded error term.

It follows that there exist sequences {xn} and {yn} tending to infinity
for which

x;1 {n(xn) -T (xn)} log xn > c

y~n*{n(yn) los yn < ~ c

for any given number c > 0. Thus

X~* {n (x) — T (x)} log X

is unbounded from above and below. If we recall (3), we have completed

our proof that % (x) - Ii x changes sign infinitely often.

4. Further results

Littlewood actually showed a bit more than we have. He proved that

x~2 {n (x) - li x} log x / log log log x

has a positive limit superior and negative limit inferior. The best account

of this estimate is probably that given in [5].

It appears that our arguments can be extended to achieve this estimate.

The contradiction arguments can be reorganized, exploiting more fully the

hypothesized one sided bound in Theorem 2. However, we would also

require an explicit estimate in place of the oT(1) in the conclusion of this
theorem. Such estimation would cancel out the economy we have achieved.

It is reasonable to ask for an x > 3/2 for which n (x) — li x > 0. The
first person to provide an estimate of such a number x was Skewes [13].
He showed that there exists an x < exp exp exp exp (7.705) for which
7i (x) —.fix > 0. This enormous bound was reduced to a more modest
1.65 • 101165 ^ exp exp (7.895) by R. S. Lehman [10]. Each of these authors
combined theoretical arguments with extensive numerical calculations using
the position of many zeros of the Riemann zeta function. The case in which
the Riemann hypothesis is assumed false requires much more work than
we had to do.
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It would be interesting to know explicitly the first (or indeed any!)
x > 3/2 for which n(x) — \ix > 0. Lehman observed in [10] that it seemed

likely that such a number would have to exceed 1020.
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