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APPENDICE 11

Les variétés topologiques considérées dans cet appendice ne sont pas neces-
sairement paracompactes.

(1) Sur le bouchage des trous

Soit X une variété topologique connexe. Pour toute partie 4 de X, on

désigne par A la réunion de A et des composantes connexes de X\4 relati-
vement compactes dans X.

LemME 1. Soit B une partie de X et soit A une partie de B.

(1) Pour toute composante connexe V de X\A, [’ensemble V\B est
réunion de composantes connexes de X\B.

~ ~

(2) L’ensemble A est contenu dans B.

(3) L’ensemble A est égal a (2)~ .

La démonstration est laissée en exercice au lecteur.
LEMME 2. Pour toute partie fermée A de X, [’ensemble A est fermé.

Pour toute partie compacte A de X, [’ensemble A est compact.

La premicre assertion résulte de ce que X est localement connexe.
Démontrons la seconde.

Soit U un voisinage ouvert relativement compact de 4 dans X et soit V'
une composante connexe de X'\A4. Puisque X est connexe, ’ensemble U n V'
est non vide et puisque V est connexe, ou bien V est contenu dans U, ou
bien ¥ rencontre dU. Comme les composantes connexes de X'\A4 rencontrant
0U sont en nombre fini, ceci démontre I’assertion.

LeMME 3. On désigne par Y un espace topologique localement compact
et par Y, une composante connexe compacte de Y. Alors Y, posséde un
systeme fondamental de voisinages ouverts et fermés.

On peut supposer Y compact. On désigne par F I’ensemble des voisina-
ges ouverts et fermés de Y, et I’on pose

A= nU.

UeF
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Il est clair que A est un sous-ensemble compact de Y contenant Y, et que F
est un systeme fondamental de voisinages de A. Il suffit alors de montrer
que A est égal a Y, ou ce qui revient au méme que A est connexe. Rai-
sonnons par I’absurde en supposant que 4 est la réunion de deux ensembles
fermés disjoints non vides 4, et 4,. On peut trouver des voisinages disjoints
U, et U, de 4, et A, respectivement, ouverts et fermés dans Y. Comme Y|,
est connexe, il est contenu dans I'un de ces voisinages, ce qui est absurde.

LEMME 4. Pour toute partie ouverte A de X, [’ensemble A est ouvert.
Toute composante connexe V' de X'\A4 relativement compacte dans X est
compacte. Le lemme 3 montre que V' posséde un voisinage compact U

ouvert et fermé dans X\A4. En particulier, U est contenu dans 4 et ’on
vérifie aisément que 4 U U est un voisinage ouvert de ¥ dans X ce qui
démontre I’assertion.

LEMME 5. Soit A un ensemble compact de X égal a ’ensemble A. 1l
existe alors un systéme fondamental de voisinages ouverts (resp. compacts)
de A dont les complémentaires n’ont pas de composante connexe relati-
vement compacte.

Montrons tout d’abord que 4 posséde un systéme fondamental de voi-
sinages ouverts dont les complémentaires n’ont qu’un nombre fini de compo-
santes connexes. Soient U un voisinage ouvert relativement compact de A4
dans X et soit K un voisinage compact de 4 dans U. On désigne par K’
la réunion de K et des composantes connexes de X\K contenues dans U.
On démontre comme dans le lemme 2 que X\K’ n’a qu’un nombre fini de

composantes connexes. L’ensemble IO( " est alors un voisinage ouvert de A4
dans U dont le complémentaire n’a qu’un nombre fini de composantes
connexes.

Soit U un voisinage ouvert relativement compact de 4 dont le complé-
mentaire n’a qu’un nombre fini de composantes connexes et soient V4, ..., ¥,
les composantes connexes compactes de X\U. Chacun des ensembles V;
est contenu dans une composante connexe W; de X\A et I’hypothese

montre que W; rencontre 0U (car U est un voisinage ouvert relativement

compact de 4). On désigne par c¢; un chemin de W; joignant V; & 0U et
I’on pose
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Il est clair que U’ est un voisinage ouvert de 4 dans U et la formule

X\ =XxX\0hv U ¢u U ¥
l<=j=n 1=j=n
montre que X\U' n’a pas de composante connexe compacte.
I’assertion relative aux voisinages compacts se déduit aisément de ce

qui précéde et du lemme 1.

LEMME 6. Supposons X dénombrable a I’infini. Il existe alors une siite
exhaustive de parties compactes de X dont les complémentaires n’ont pas de
composantes connexes relativement compactes.

C’est une conséquence immédiate du lemme 5.

(2) Le théoréme de Poincaré-Volterra

THEOREME 1. Soient X et Y deux variéiés topologiques et soit u une
application continue de X dans Y. On suppose que X est connexe et que les
fibres de u sont discrétes. Si Y est de type dénombrable, il en est de méme
de X.

On désigne par (W)),.; une base dénombrable de la topologie de Y et
par % l’ensemble des composantes connexes relativement compactes des
ensembles de la forme »~* (W),). 1l suffit de montrer que % est un recou-
vrement dénombrable de X.

Pour tout point x de X, il existe un voisinage compact K de x tel que

Knu t(u(x) = {x}.

En particulier, le point u (x) n’appartient pas a u (0K) et il existe un indice 1
tel que W, contienne u (x) et ne rencontre pas u (0K). La composante
connexe U de x dans u~' (W,) est contenue dans K. On en déduit que %
est un recouvrement de X.

1l reste a voir que % est dénombrable.

Remarquons tout d’abord que toute variété topologique Y de type
dénombrable vérifie la propriété suivante:

(*) Toute famille d’ensembles ouverts non vides deux a deux disjoints de Y
est dénombrable.
Soit U, un élément de %. On définit par récurrence une famille (% i)
de parties de % en posant

U, = U,
Uipy = {Ue|ilexiste Ve ;telque UnV # o }.

jeN
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Démontrons par récurrence que % ; est dénombrable. Si %; est dénom-
brable, la réunion de ses €léments est une variété topologique U; de type
dénombrable et, pour tout indice 1, la famille %, des composantes connexes
de u™' (W) qui rencontrent U ; est dénombrable (propriété (*)), ce qui
démontre I’assertion puisque %;,, est contenu dans la réunion des & ..

Démontrons finalement par I’absurde que % est la réunion des %;.
Désignons par U la réunion des éléments de tous les % ; et par V' la réunion
des €léments de % n’appartenant & aucun des % ;. Les ensembles U et V
sont des ouverts non vides recouvrant X. Ils sont disjoints par construction
ce qui contredit la connexité de X et démontre du méme coup le théoréme.

(3) Le groupe fondamental d’une variété topologique compacte connexe

PROPOSITION 1. Le groupe fondamental d 'une variété topologique compacte
connexe X est de génération finie.

Recouvrons X par des domaines de cartes V, ..., V, isomorphes a des
boules, centrées en des points x,, ..., x,. Pour tout entier j compris entre 0
et n, on désigne par U; une boule de centre x; relativement compacte dans
V; et Pon suppose que Uy, ..., U, recouvrent encore X.

Pour tout couple d’entiers (, k), on recouvre U; n U, par des domaines
de cartes UZ*, ..., U,{’j’fk isomorphes a des boules, centrées en des points

; ik — 7 .o = .
s xrix de U; n Uy Remarquons que #; , est nul si U; n U, est vide.

. . , . ik .
Pour tout entier / compris entre 1 et n; ,, on désigne par o un chemin
Jk 1
v @ X : : . & % ik
joignant x; a x* dans V; et par B; * un chemin joignant x* a x, dans V,.
On pose

ik _ ik Rik
yreo= ot B

Nous allons montrer que tout lacet ¢ de X au point x, est homotope a un
produit de chemins y1* ce qui démontrera I’assertion.

Le lacet ¢ se décompose en un produit de chemins ¢y, ..., ¢, dont chacun
est contenu dans 'un des ouverts U, ..., U,.

Désignons par c,, et ¢,,. ; deux tels chemins. Le premier joint un point
a,-1 4 un point a, dans U}, le second le point a,, a un point a,,, ; dans U,.
Il existe un ensemble ouvert U7 contenant a,,. On choisit alors un chemin
o joignant a,_4 a x; dans U}, un chemin f joignant x; a a,4{ dans U, et
un chemin y joignant x{* & a,, dans Uj*. Le chemin o o"* y est homotope
au chemin ¢, dans V; et le chemin vy~ 1B/*B est homotope au chemin c,, . ,
dans V,. Par conséquent, le chemin o y{"*f est homotope au chemin c¢,,c,, 4 1
dans X. On en déduit aisément I’assertion.
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