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voisinage V de u (£) dans V, un voisinage W de l 'origine dans kn m

et un difféomorphisme 0 de V' x W sur un voisinage de Ç dans U tels que

u pr1 - 0

où prx désigne la projection canonique de V' x W sur V.
On remarque que la dérivée de u demeure surjective au voisinage de

Corollaire 2. Soient U et V deux ensembles ouverts de k" et km

respectivement et soit u une application indéfiniment dérivable de U dans V.

On suppose que le rang de u est égal à n en un point £. Il existe alors un

voisinage U' de £ dans U, un voisinage W de l'origine dans km_n et

un difféomorphisme 0 d'un voisinage de u{£) dans V sur U' x W tels que

0 • u 1 v, x 0

où 0 désigne l'application constante de W sur l'origine de km~".
On remarque que la dérivée de u demeure injective au voisinage de £.

Théorème 3 (Fonctions implicites). Soient U et V deux ensembles

ouverts de k" et km respectivement et soit u une application indéfiniment
dérivable de U x V dans km. On suppose que u envoie le point (£, rj)

sur l'origine et que la dérivée au point rj de l'application partielle u (£, est

bijective. H existe alors un voisinage U' x V' de (£, 77) dans U x V et

une application indéfiniment dérivable v de U' dans V tels que l'ensemble
des zéros de u dans U' x y' coïncide avec le graphe de v.

La dérivée au point (£, fi) de l'application w de U x y dans k" x km

définie par
w (x, y) (x, u (x, y))

est bijective. Quitte à restreindre U x F, on peut supposer que w est un
difféomorphisme sur un voisinage W de (Ç, 0) dans kn x km. On désigne par
0 l'isomorphisme réciproque et l'on pose

u' { x 6 U I (x, 0) E W }

Il suffit alors de prendre pour v (x) la projection de 0 (x, 0) dans V.

(3) Le théorème de Sard

Soient U et V des ensembles ouverts de Rn et Rm respectivement et soit u

une application indéfiniment dérivable de U dans V.
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On dit qu'un point x de U est un point régulier (resp. un point critique)
de u si le rang de l'application Du (x) est égal à m (resp. strictement inférieur
à m). On dit qu'un point y de V est une valeur régulière (resp. une valeur

critique) de u si tous les points de u_1 (y) sont réguliers (resp. s'il existe un

point critique dans u~1 (y)).

Théorème 4 (Sard). L 'ensemble des valeurs critiques de u est de mesure de

Lebesgue nulle.

La démonstration va se faire par récurrence sur n, le résultat étant trivial

pour n nul. On désigne par A0 l'ensemble des points critiques de u et l'on

pose

Aj { x e U | D"u (x) 0 pour tout a e N" tel que | a | < j }

pour tout entier j strictement positif. On a les inclusions

U ZD Aq ZD At ZD ZD Aj ZD Aj+1 ZD

et l'image par u de l'ensemble Aj\Aj+1 est mesurable.

Montrons tout d'abord que u(A0\A1) est de mesure nulle. Soit £ un
point de A 0\A1. Par un changement linéaire de coordonnées, on peut sup-

ôu1
poser que (Ç) est non nul, en désignant par ul9 um les fonctions coor-

dx1
données de u.

L'application g de U dans R" définie par

g(pc i, ...,xn)(mjCxj,

est de rang n au point £. Elle induit donc un isomorphisme d'un voisinage
U' de ^ dans U sur un voisinage W de g (£) dans R" (théorème 1). On désigne

par h l'isomorphisme réciproque. Quitte à remplacer u par u • h et U par
W (on peut recouvrir A0\A1 par une famille dénombrable d'ensembles U'),
on peut supposer que l'on a

%2 ' n ~~ rc^

en désignant par n1 (resp. n2) la projection canonique de R" (resp. Rm)
sur son premier facteur. Dans ces conditions, un point {yu de V
est une valeur critique de u si et seulement si le point ym) est une
valeur critique de l'application partielle u (yu L'assertion résulte alors du
théorème de Fubini ([5], théorème (7.8)) et de l'hypothèse de récurrence.

Supposons j strictement positif et montrons que u{AJ\Aj+1) est de
mesure nulle. Soit £ un point de Aj\AJ+Parun changement linéaire de
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coordonnées, on peut supposer qu'il existe un multi-indice a de longueur j
tel que

ôv
— (£) # 0 avec v D7u
ôx1

L'application g de U dans R" définie par

g (xu(v(xl5

est de rang n au point |. Elle induit donc un isomorphisme d'un voisinage
U' de £ dans £/ sur un voisinage JE de (0, O dans R". Désignons par
h l'isomorphisme réciproque. L'image par g de l'ensemble Aj n U' est

contenue dans l'ensemble

W (OxR) n IL.

On en déduit aisément que les points de u (AjC\U') sont des valeurs critiques
de l'application u • h | w.. L'assertion résulte alors de l'hypothèse de récurrence.

Montrons finalement que l'ensemble u (Aj) est de mesure nulle pour j
n

strictement supérieur à 1, ce qui achèvera la démonstration du théo-
m

rème. Désignons par C un cube fermé de côté r dans U. Il existe une constante

c telle que
| u(x) -W(£)|<c|x-£|i+1

pour tout point £ de C n A j et tout point x de C (théorème des accroissements

finis). Désignons par k un entier naturel et divisons C en kn cubes

r
de côté-. Soit C0 l'un d'eux et soit Ç un point de C0 n Ay Pour tout point

k

x de C0, on a

|x - «I < f •

k
rY+1

On en déduit que u(C0) est contenu dans le cube de côté 2c 1-1 et de

centre u (£) dans Rw. Ceci montre que u (Cc\Aj) est contenu dans une réunion
de cubes dont le volume total est au plus égal à

(2crj+1)m kn"mU+1)

ce qui démontre l'assertion.
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