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Appendice I

(1 Sur l'existence de certaines fonctions dérivables

Lemme 1. Il existe une fonction croissante f de ^°° (R, R), nulle sur

]- oo, 0], égale à 1 sur [1, + oo[

Désignons par g la fonction définie sur R par

f g(x) exp(— x~2) si x > 0

i 9 (X) 0 si x < 0

Il est clair que g est indéfiniment dérivable. Il suffit alors de poser

/w (j:„0(O0(i -t)dt)/fir«*? (i-o
Ceci a bien un sens puisque g (t) g (1 — 0 est nul si t < 0 ou si t > 1,

strictement positif si 0 < t < 1.

Lemme 2. Pour tout point k de TJ1 et tout nombre réel s strictement

positif il existe une fonction ocM de ^°° (R", R), à valeurs positives, dont le

support est contenu dans le cube de côté 2s centré au point sk et telle que

£ «m(*) 1

keZ»

pour tout point x de R".

Désignons par / une fonction vérifiant les conditions du lemme 1. On
définit une fonction g de ^°° (R,R) à valeurs positives en posant

g(x)=/(% +1) -/(x).
Le support de g est contenu dans l'intervalle [—1, +1] et l'on a

£ g(x -i) g(x-j0)+ g (x -1)
JeZ

pour tout point x de R, en désignant par j0 la partie entière de x (i.e. le plus
grand entier relatif inférieur ou égal à x). On en déduit que l'on a

£ g(x -j) f(x —7o + i) i.
jeZ
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Il suffit alors de poser

a/c,£ (^1 9 ' * * 5 Xft) ~ 9 fcl ^ • • • Q ^ k^j '

Lemme 3. Pour tout ensemble compact K de R" et tout voisinage U de
K, il existe une fonction a de ^°° (RM, R) à valeurs positives, dont le support
est contenu dans U et égale à 1 sur K.

Munissons R" de la norme

IOi> •••>*„) I max \xj\
l^j^n

Pour tout nombre réel s strictement positif, l'ensemble

Ke { x e R" | il existe y e K tel que | x — y | < e }

est compact. Pour s suffisamment petit, il est contenu dans U. Désignons
par A l'ensemble des points k de Z" pour lesquels le cube de centre sk et de
côté 2s rencontre K et posons

« E aM-
keA

Cette fonction est indéfiniment dérivable à valeurs positives. D'autre part,
on a

supp (a) c= u supp (aM) c: K8
keA

et, pour tout point x de K,

a(x) E E <*k,e(x) 1

keA keZn

ce qui achève la démonstration du lemme.

Lemme 4. Soit r un nombre réel strictement positif et soit C le cube de

côté 2r et de centre l 'origine dans R". Pour tout point a de C, il existe

un dijféomorphisme u de R" sur lui-même tel que

w(0) a et u |r«\c Irmc*

On se ramène aisément au cas où n est égal à 1. On désigne par a une
fonction indéfiniment dérivable sur R dont le support est contenu dans

[0, r] telle que
a (t)dt — a et | a | < 1

(une telle fonction existe en vertu du lemme 3, car | a | est strictement
inférieur à r). Il suffit alors de poser

u (x) x — (a (t) — oc — f)) dt.
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