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APPENDICE I

(1) Sur l’existence de certaines fonctions dérivables

LemME 1. I/ existe une fonction croissante f de %~ (R, R), nulle sur
]— 0, 0], égale a 1 sur [1, + of .
Désignons par g la fonction définie sur R par

g(x) =exp(=x"% six>0
gx) =0 si x<O0.

Il est clair que g est indéfiniment dérivable. 1l suffit alors de poser

f) =(Teg@®g@-nd) | (JIZg(®gA—1)di).

Ceci a bien un sens puisque g (#) g (1—¢) est nul si # < 0 ou si ¢ > 1, stric-
tement positif si 0 < ¢ < 1.

LEMME 2. Pour tout point k de Z" et tout nombre réel ¢ strictement
positif, il existe une fonction o, , de €~ (R", R), a valeurs positives, dont le
support est contenu dans le cube de coté 2e centré au point ek et telle que

Z ‘xk,e(x) = 1

keZn
pour tout point x de R".

Désignons par f une fonction vérifiant les conditions du lemme 1. On
définit une fonction g de ¥~ (R, R) a valeurs positives en posant

gx) =fx+1) —f(x).

Le support de g est contenu dans l'intervalle [—1, +1] et 'on a

Y gx—j) =gx—jo) +g(x—j,—1)

JjeZ

pour tout point x de R, en désignant par j, la partie entiére de x (i.e. le plus
grand entier relatif inférieur ou égal a4 x). On en déduit que 'on a

Yogx—)) =fx—jo+1) = 1.

JjeZ
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Il suffit alors de poser

X X
OCk,t:(xl: "'axn) =4d ("_1 —k1> e d (’2 _kn> .
& e

LEMME 3. Pour tout ensemble compact K de R" et tout voisinage U de
K, il existe une fonction o de €* (R",R) d valeurs positives, dont le support
est contenu dans U et égale a 1 sur K.

Munissons R" de la norme

[(x1,...,X,)| = max lle-
1=j=n

Pour tout nombre réel ¢ strictement positif, I’ensemble
K, = {xeR"|ilexiste yeKtel que | x — y| <&}

est compact. Pour ¢ suffisamment petit, il est contenu dans U. Désignons
par A ’ensemble des points k de Z” pour lesquels le cube de centre ek et de
cOté 2¢ rencontre K et posons

&= ) O, -

ke A

Cette fonction est indéfiniment dérivable a valeurs positives. D’autre part,
on a

supp () = v supp (o, < K,

, ked
et, pour tout point x de K,

a(x) = Z o (X) = Z o (X) =1

keAd kezZn

ce qui achéve la démonstration du lemme.

LEMME 4. Soit r un nombre réel strictement positif et soit C le cube de
coté 2r et de centre l'origine dans R". Pour tout point a de C, il existe
 un difféomorphisme u de R" sur lui-méme tel que

u(0) =a et ulgac = lpnic-

On se raméne aisément au cas ou » est €gal a 1. On désigne par o une
~ fonction indéfiniment dérivable sur R dont le support est contenu dans
[0, ] telle que

[foa(@dt =a et |a|<I1

~ (une telle fonction existe en vertu du lemme 3, car | a | est strictement infé-
~rieur & r). Il suffit alors de poser

ux) =x — %, (e —a(—-0)dt.
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