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APPENDICE I

(1) Sur l’existence de certaines fonctions dérivables

LemME 1. I/ existe une fonction croissante f de %~ (R, R), nulle sur
]— 0, 0], égale a 1 sur [1, + of .
Désignons par g la fonction définie sur R par

g(x) =exp(=x"% six>0
gx) =0 si x<O0.

Il est clair que g est indéfiniment dérivable. 1l suffit alors de poser

f) =(Teg@®g@-nd) | (JIZg(®gA—1)di).

Ceci a bien un sens puisque g (#) g (1—¢) est nul si # < 0 ou si ¢ > 1, stric-
tement positif si 0 < ¢ < 1.

LEMME 2. Pour tout point k de Z" et tout nombre réel ¢ strictement
positif, il existe une fonction o, , de €~ (R", R), a valeurs positives, dont le
support est contenu dans le cube de coté 2e centré au point ek et telle que

Z ‘xk,e(x) = 1

keZn
pour tout point x de R".

Désignons par f une fonction vérifiant les conditions du lemme 1. On
définit une fonction g de ¥~ (R, R) a valeurs positives en posant

gx) =fx+1) —f(x).

Le support de g est contenu dans l'intervalle [—1, +1] et 'on a

Y gx—j) =gx—jo) +g(x—j,—1)

JjeZ

pour tout point x de R, en désignant par j, la partie entiére de x (i.e. le plus
grand entier relatif inférieur ou égal a4 x). On en déduit que 'on a

Yogx—)) =fx—jo+1) = 1.

JjeZ
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Il suffit alors de poser

X X
OCk,t:(xl: "'axn) =4d ("_1 —k1> e d (’2 _kn> .
& e

LEMME 3. Pour tout ensemble compact K de R" et tout voisinage U de
K, il existe une fonction o de €* (R",R) d valeurs positives, dont le support
est contenu dans U et égale a 1 sur K.

Munissons R" de la norme

[(x1,...,X,)| = max lle-
1=j=n

Pour tout nombre réel ¢ strictement positif, I’ensemble
K, = {xeR"|ilexiste yeKtel que | x — y| <&}

est compact. Pour ¢ suffisamment petit, il est contenu dans U. Désignons
par A ’ensemble des points k de Z” pour lesquels le cube de centre ek et de
cOté 2¢ rencontre K et posons

&= ) O, -

ke A

Cette fonction est indéfiniment dérivable a valeurs positives. D’autre part,
on a

supp () = v supp (o, < K,

, ked
et, pour tout point x de K,

a(x) = Z o (X) = Z o (X) =1

keAd kezZn

ce qui achéve la démonstration du lemme.

LEMME 4. Soit r un nombre réel strictement positif et soit C le cube de
coté 2r et de centre l'origine dans R". Pour tout point a de C, il existe
 un difféomorphisme u de R" sur lui-méme tel que

u(0) =a et ulgac = lpnic-

On se raméne aisément au cas ou » est €gal a 1. On désigne par o une
~ fonction indéfiniment dérivable sur R dont le support est contenu dans
[0, ] telle que

[foa(@dt =a et |a|<I1

~ (une telle fonction existe en vertu du lemme 3, car | a | est strictement infé-
~rieur & r). Il suffit alors de poser

ux) =x — %, (e —a(—-0)dt.
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(2) Le théoréme des fonctions réciproques

Dans ce numéro, on désigne par k le corps des nombres réels ou le corps
des nombres complexes.

Si k est égal & C, indéfiniment dérivable signifie donc holomorphe
(chap. I, § 1, proposition 1, corollaire 1).

TutorEME 1 (Fonctions réciproques). Soient U et V deux ensembles
ouverts de k" et scit u une application indéfiniment dérivable de U dans V.
On suppose que la dérivée de u au point & est bijective. L application u
est alors un difféomorphisme d’un voisinage de & sur un voisinage de u ().

Par des changements lin€aires affines de coordonnées, on peut supposer
que & et u (&) coincident avec I’origine et que la dérivée Du (0) est I'identité.
L’application v de U dans k" définie par

v(x) =u(x) —x

est indéfiniment dérivable et a une dérivée nulle a I’origine. Par continuité,
il existe donc un cube C (0, r) relativement compact dans U tel que Du (x)
soit bijective et tel que

{Dv(x)l<-}n

pour tout point x de C(0,r) (la norme de Dv (x) est par définition le
maximum des modules des dérivées partielles de v au point x). Le théo-
réme des accroissements finis montre que I’on a

”

lv(x) —v(x")] < %lx’ — X

et par conséquent

|x" —x"|

() — ()=

pour tout couple (x’, x") de points de C (0, r). En particulier, la restriction
de u & C(0, r) est injective. Par récurrence sur I’entier k, on définit une

application continue de C (0, §> dans C (0, r) en posant

wo(¥) = 0 et w1 (y) =y —v(Wk(}’))-
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Il résulte de ce qui précéde que I'on a

| Wer 1 () = w, (W) | = I'U(Wk(J’)) _"U(Wk—1(}’))|

1
<‘2*|Wk(}’) — w1 (V] < 5k -

Par conséquent la suite (w,),n converge uniformément vers une appli-
cation continue (holomorphe dans le cas complexe, chap. I, § 1, proposi-

r _
tion 1, corollaire 3) w de C <0, §> dans C (0, r) et 'on a & la limite

w() =y —v(w().
En particulier, ’application w prend ses valeurs dans C (0, r). Posons

Vo= c(o,-;-) et U =CO,nnu (V).

Pour tout point y de V', on a
u(w®) =w® +o(w®) =»,

en particulier, 'application w envoie V' dans U’. D’autre part, puisque u est
injective sur V', on a

w(u(x) = x

pour tout point x de U’. Ceci montre que u est un homéomorphisme de
U’ sur V' et que w est ’homéomorphisme réciproque. 1l reste a voir que w
est indéfiniment dérivable.

Pour tout couple (x', x) de points de U’, on peut écrire

u(x') —u(x) = Du(x)(x'—x) + h(x',x)|x" — x|

ol & ( , x) est une fonction qui tend vers 0 lorsque x’ tend vers x. Pour tout
couple (y, y') de points de V', on a donc

w() —w®) = Du(w®)™ ' (' )
+ Du(w») th(w) W) [ w(G) —w() |
I1 résulte d’autre part des inégalités ci-dessus que 'on a

h(w 0D, w0) _ ) h(wB).w0)
ly' =yl T Iw(p) = w®)

ce qui montre que w est dérivable au point y et que sa dérivée est
Du (w (y))“l. Comme cette derniére application est continue, on voit que w
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est continfiment dérivable, puis, par récurrence, qu’elle est indéfiniment
dérivable.

THEOREME 2 (Théoréme du rang). Soient U et V deux ensembles
ouverts de K" et K™ respectivement et soit u une application indéfiniment
dérivable de U dans V. On suppose que le rang de u est constant égal a p
sur U. Pour tout point & de U, il existe un difféomorphisme ¢ d’un voisi-
nage U’ de [’origine dans K" sur un voisinage de & dans U et un difféo-
morphisme W d’un voisinage de u (&) dans V sur un voisinage V' de
l’origine dans k™ tels que

Wu)(xg, .y %) = (X15...,%,,0,...,0)

pour tout point (x4, ..., x,) de U’.
Par des changements linéaires affines de coordonnées, on peut supposer
que & et u (&) coincident avec 'origine et que la dérivée Du (0) est définie par

Du (0) (xq, ..., x,) = (X1, ...,%,,0,...,0).
Désignons par v P'application de U dans k" définie par

D (X1, oo %) = (g (Xgy ees %), coes Up (Xgy e X5 X g5 vees Xy)

ou uy, ..., u, désignent les fonctions coordonnées de u. La dérivée de v a
Porigine est bijective. Quitte a restreindre U, on peut supposer que v est un
difféomorphisme de U sur un cube C (0, ) de k* (théoréme 1). On désigne
par ¢ le difffomorphisme réciproque. Par construction, on a

WD) (g, ooy X)) = (Xgs eees Xy Wop g (K15 eees X)s wens Wiy (X1, vy X))
avec
WJ = 'UJ ‘u- gb

pour tout entier j compris entre p + 1 et m. Le rang de u étant exactement p,
on voit que les fonctions w,, 4, ..., w,, sont indépendantes des variables
X, 15 -5 X, 11 suffit alors de prendre pour ¥ la restriction 4 un voisinage
convenable de l'origine de ’application définie par

')b(yla srey ym)
= (yla seey ypa yp+1 _wp+1(y1> see yp)a veey ym—wm(y1> o 0y yp)) .
COROLLAIRE 1. Soient U et V deux ensembles ouverts de k" et k™

respectivement et soit u une application indéfiniment dérivable de U dans V.
On suppose que le rang de u est égal @ m en un point ¢. Il existe alors un
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voisinage V' de u (&) dans V, un voisinage W de l’origine dans k"™
et un difféomorphisme ¢ de V' X W surun voisinage de & dans U tels que

u = pry-¢

ou pr, désigne la projection canonique de V' X W sur V'.
On remarque que la dérivée de u demeure surjective au voisinage de €.

COROLLAIRE 2. Soient U et V deux ensembles ouverts de k" et k™
respectivement et soit u une application indéfiniment dérivable de U dans V.
On suppose que le rang de u est égal @ n en un point &. 1l existe alors un
voisinage U’ de & dans U, un voisinage W de [’origine dans k™™ " et
un difféomorphisme ¢ d’un voisinage de u (&) dans V sur U' x W tels que

(}5'1! =1UIXO

ou O désigne [’application constante de W sur l’origine de kK™™".
On remarque que la dérivée de u demeure injective au voisinage de €.

THEOREME 3 (Fonctions implicites). Soient U et V deux ensembles
ouverts de K" et K™ respectivement et soit u une application indéfiniment
dérivable de U x V dans k™. On suppose que u envoie le point (&, 1)
sur ’origine et que la dérivée au point n de I’application partielle u (&, ) est
bijective. 1l existe alors un voisinage U' X V' de (&,n) dans U X V et
une application indéfiniment dérivable v de U’ dans V' tels que [’ensemble
des zéros de u dans U’ X V' coincide avec le graphe de v.

La dérivée au point (&, ) de I'application w de U X V dans k* X k™
définie par

w(x,y) = (x,u(x,)

est bijective. Quitte a restreindre U X V, on peut supposer que w est un
difféomorphisme sur un voisinage W de (&, 0) dans k* x k™. On désigne par
¢ 'isomorphisme réciproque et ’'on pose

U ={xeU|(x,0)eW}.

Il suffit alors de prendre pour v (x) la projection de ¢ (x, 0) dans V.

(3) Le théoréeme de Sard

Soient U et V" des ensembles ouverts de R" et R™ respectivement et soit u
une application indéfiniment dérivable de U dans V.
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On dit qu’un point x de U est un point régulier (resp. un point critique)
de u sile rang de application Du (x) est égal a m (resp. strictement inférieur
a m). On dit qu’un point y de V est une valeur réguliére (resp. une valeur
critique) de u si tous les points de u~ 1 (p) sont réguliers (resp. s’il existe un
point critique dans u~! (»)). h

THEORBME 4 (Sard). L ‘ensemble des valeurs critiques de u est de mesure de
Lebesgue nulle.

La démonstration va se faire par récurrence sur #, le résultat étant trivial
pour # nul. On désigne par 4, I’ensemble des points critiques de u et I’'on
pose

A= {er]D“u(x) = OpourtoutoceN”telque[al <Jj}

J

pour tout entier j strictement positif. On a les inclusions
UoAy> A o...04; 24,1 D ...

et 'image par u de I'’ensemble 4;\4;,; est mesurable.
Montrons tout d’abord que u (4,\4,) est de mesure nulle. Soit ¢ un

point de 4,\4,. Par un changement linéaire de coordonnées, on peut sup-

ou

1 r e .

poser que Fy (&) est non nul, en désignant par u, ..., u,, les fonctions coor-
X1

données de u.

L’application g de U dans R” définie par

G (X5 ey X)) = (Ug (Xpy eens X)) Xy eeey Xy

est de rang » au point £. Elle induit donc un isomorphisme d’un voisinage
U’ de £ dans U sur un voisinage W de g (£) dans R” (théoréme 1). On désigne
par & I'isomorphisme réciproque. Quitte a remplacer u par u - & et U par
W (on peut recouvrir 4,\4, par une famille dénombrable d’ensembles U’),
on peut supposer que I’'on a

Ty U = T,

en désignant par m; (resp. m,) la projection canonique de R" (resp. R™)
sur son premier facteur. Dans ces conditions, un point (yy, ..., y,) de V
est une valeur critique de u si et seulement si le point (y,, ..., y,,) est une
valeur critique de ’application partielle u (y,, ). L’assertion résulte alors du
théoréme de Fubini ([5], théoréme (7.8)) et de ’hypothése de récurrence.

Supposons j strictement positif et montrons que u (4 Ny q) est de
mesure nulle. Soit ¢ un point de 4,\4;, ;. Par un changement linéaire de
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coordonnées, on peut supposer qu’il existe un multi-indice o de longueur j
tel que

v
— (&) #0 avec v = D%u.
0X4

L’application g de U dans R” définie par

g (x1> '--an) = (7) (xla ---:xn>) X2 ---)xn)

est de rang »n au point £. Elle induit donc un isomorphisme d’un voisinage
U’ de ¢ dans U sur un voisinage W de (0, &,, ..., £,) dans R”". Désignons par
h I'isomorphisme réciproque. L’image par g de P’ensemble 4; N U’ est
contenue dans I’ensemble

W' =(0xR)nW.

On en déduit aisément que les points de u (4 ;A U’) sont des valeurs critiques
de ’application u - / ]W,. L’assertion résulte alors de ’hypothése de récur-
rence.

Montrons finalement que I’ensemble u (4;) est de mesure nulle pour j

. r . Y n . 1 r . 4
strictement supérieur 8 — — 1, ce qui achévera la démonstration du théo-
m

réme. Désignons par C un cube fermé de c¢6té r dans U. 1l existe une cons-
tante c telle que

lu(x) —u(@f<clx =P

pour tout point & de C n 4; et tout point x de C (théoréme des accroisse-
ments finis). Désignons par k£ un entier naturel et divisons C en k" cubes

r .
de Cété’;;' Soit Cy I'un d’eux et soit £ un point de Cy N 4 ;. Pour tout point
x de Cy, on a

% — £ <

.

S~

r jt1
On en déduit que u (C,) est contenu dans le cube de c6té 2c (E) et de

centre u (£) dans R™. Ceci montre que u (CnA4 ;) est contenu dans une réunion
de cubes dont le volume total est au plus égal a

(207‘j+1)m kn——m(j+1)

ce qui démontre ’assertion.
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