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Appendice I

(1 Sur l'existence de certaines fonctions dérivables

Lemme 1. Il existe une fonction croissante f de ^°° (R, R), nulle sur

]- oo, 0], égale à 1 sur [1, + oo[

Désignons par g la fonction définie sur R par

f g(x) exp(— x~2) si x > 0

i 9 (X) 0 si x < 0

Il est clair que g est indéfiniment dérivable. Il suffit alors de poser

/w (j:„0(O0(i -t)dt)/fir«*? (i-o
Ceci a bien un sens puisque g (t) g (1 — 0 est nul si t < 0 ou si t > 1,

strictement positif si 0 < t < 1.

Lemme 2. Pour tout point k de TJ1 et tout nombre réel s strictement

positif il existe une fonction ocM de ^°° (R", R), à valeurs positives, dont le

support est contenu dans le cube de côté 2s centré au point sk et telle que

£ «m(*) 1

keZ»

pour tout point x de R".

Désignons par / une fonction vérifiant les conditions du lemme 1. On
définit une fonction g de ^°° (R,R) à valeurs positives en posant

g(x)=/(% +1) -/(x).
Le support de g est contenu dans l'intervalle [—1, +1] et l'on a

£ g(x -i) g(x-j0)+ g (x -1)
JeZ

pour tout point x de R, en désignant par j0 la partie entière de x (i.e. le plus
grand entier relatif inférieur ou égal à x). On en déduit que l'on a

£ g(x -j) f(x —7o + i) i.
jeZ
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Il suffit alors de poser

a/c,£ (^1 9 ' * * 5 Xft) ~ 9 fcl ^ • • • Q ^ k^j '

Lemme 3. Pour tout ensemble compact K de R" et tout voisinage U de
K, il existe une fonction a de ^°° (RM, R) à valeurs positives, dont le support
est contenu dans U et égale à 1 sur K.

Munissons R" de la norme

IOi> •••>*„) I max \xj\
l^j^n

Pour tout nombre réel s strictement positif, l'ensemble

Ke { x e R" | il existe y e K tel que | x — y | < e }

est compact. Pour s suffisamment petit, il est contenu dans U. Désignons
par A l'ensemble des points k de Z" pour lesquels le cube de centre sk et de
côté 2s rencontre K et posons

« E aM-
keA

Cette fonction est indéfiniment dérivable à valeurs positives. D'autre part,
on a

supp (a) c= u supp (aM) c: K8
keA

et, pour tout point x de K,

a(x) E E <*k,e(x) 1

keA keZn

ce qui achève la démonstration du lemme.

Lemme 4. Soit r un nombre réel strictement positif et soit C le cube de

côté 2r et de centre l 'origine dans R". Pour tout point a de C, il existe

un dijféomorphisme u de R" sur lui-même tel que

w(0) a et u |r«\c Irmc*

On se ramène aisément au cas où n est égal à 1. On désigne par a une
fonction indéfiniment dérivable sur R dont le support est contenu dans

[0, r] telle que
a (t)dt — a et | a | < 1

(une telle fonction existe en vertu du lemme 3, car | a | est strictement
inférieur à r). Il suffit alors de poser

u (x) x — (a (t) — oc — f)) dt.
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(2) Le théorème des fonctions réciproques

Dans ce numéro, on désigne par k le corps des nombres réels ou le corps
des nombres complexes.

Si k est égal à C, indéfiniment dérivable signifie donc holomorphe

(chap. I, § 1, proposition 1, corollaire 1).

Théorème 1 (Fonctions réciproques). Soient U et V deux ensembles

ouverts de k'1 et soit u une application indéfiniment dérivable de U dans V.

On suppose que la dérivée de u au point £, est bijective. L \application u

est alors un difféomorphisme d'un voisinage de £ sur un voisinage de u (£).

Par des changements linéaires affines de coordonnées, on peut supposer
que ^ et u (£) coïncident avec l'origine et que la dérivée Du (0) est l'identité.
L'application v de U dans k" définie par

V (x) — u (x) — X

est indéfiniment dérivable et a une dérivée nulle à l'origine. Par continuité,
il existe donc un cube C (0, r) relativement compact dans U tel que Du (x)
soit bijective et tel que

I Dv (x) | < ~2 n

pour tout point x de C (0, r) (la norme de Dv (x) est par définition le

maximum des modules des dérivées partielles de v au point x). Le théorème

des accroissements finis montre que l'on a

| V (.x') — v (x") | < - | x' — x" I

et par conséquent

| u (xf) — u (x") | > - | x' — x" I

pour tout couple (x', x") de points de C (0, r). En particulier, la restriction
dewàC (0, r) est injective. Par récurrence sur l'entier k, on définit une

application continue de C ^0, Çj dans C (0, r) en posant

wQ(y) 0 et wk+i(y) y-v(wk(y))-
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i I résulte de ce qui précède que l'on a

I Wk+1 00 - w* 00 I \ v (wk (y)) - V (Wfc.x 00) I

1 r
<

2
I w*O0 - Wfc-iCy) | <

Par conséquent la suite (wk)keN converge uniformément vers une
application continue (holomorphe dans le cas complexe, chap. I, § 1, proposition

1, corollaire 3) w de C ^0, dans C (0, r) et l'on a à la limite

j> - tf(wOO).

En particulier, l'application w prend ses valeurs dans C (0, r). Posons

V' c(o,^j et UC(0,r)nu_1(F').

Pour tout point j de E', on a

u(wOO) wOO + (w (y))

en particulier, l'application w envoie V dans U'. D'autre part, puisque u est

injective sur V, on a

w (u (x)) x

pour tout point x de U'. Ceci montre que u est un homéomorphisme de

U' sur V et que w est l'homéomorphisme réciproque. Il reste à voir que w

est indéfiniment dérivable.
Pour tout couple (.x', x) de points de U\ on peut écrire

u (x') — u (x) Du (x) (x' —x) + h (x', x) | x' — x |

où h x) est une fonction qui tend vers 0 lorsque x' tend vers x. Pour tout
couple (y, yf) de points de V\ on a donc

w(y')- w (y) Du(y'-y)
+Du(w(y))~1 h w y'),w (y)) | w OO ~ w (y) I

Il résulte d'autre part des inégalités ci-dessus que l'on a

h(w(y'), w(y))
<

h(w(y'),w()Q)
\y' - yI

^
I wOO - wOO I

ce qui montre que w est dérivable au point y et que sa dérivée est

Du (w (jO)-1. Comme cette dernière application est continue, on voit que w
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est continûment dérivable, puis, par récurrence, qu'elle est indéfiniment

dérivable.

Théorème 2 (Théorème du rang). Soient U et V deux ensembles

ouverts de k" et km respectivement et soit u une application indéfiniment

dérivable de U dans V. On suppose que le rang de u est constant égal à p
sur U. Pour tout point Ç de U, il existe un difféomorphisme (j) d'un voisinage

U' de l'origine dans k" sur un voisinage de £ dans U et un

difféomorphisme \j/ d'un voisinage de u(Ç) dans V sur un voisinage V' de

l'origine dans kw tels que

(i/j'U'(j))(xu ...9xn) (xu ...9xp9 0,..., 0)

pour tout point (xu xn) de U'.
Par des changements linéaires affines de coordonnées, on peut supposer

que ^ et u (£) coïncident avec l'origine et que la dérivée Du (0) est définie par

Du{0)(x1? ...,x„) (xl9 ...,xp9 0,..., 0).

Désignons par v l'application de U dans k" définie par

v(xu («! (xu

où ul9..., um désignent les fonctions coordonnées de u. La dérivée de v à

l'origine est bijective. Quitte à restreindre U, on peut supposer que v est un
difféomorphisme de U sur un cube C (0, r) de kn (théorème 1). On désigne

par (j) le difféomorphisme réciproque. Par construction, on a

(«•<£) (xl5 ...,X„) (xu...,Xp,Wp+iC*!,...,X„), (XU

avec

Wj Vj'U ' (j)

pour tout entierj compris entre p + 1 et m. Le rang de u étant exactement /?,

on voit que les fonctions wp+1?..., wm sont indépendantes des variables

xp+i9..., xn. Il suffit alors de prendre pour iJ/ la restriction à un voisinage
convenable de l'origine de l'application définie par

•AOi, -,ym)
(yir-,yP,yP+t-v>P+i(yi,...,yJ, -,ym-wm(yu ~',yP))-

Corollaire 1. Soient U et V deux ensembles ouverts de k" et km

respectivement et soit u une application indéfiniment dérivable de U dans V.
On suppose que le rang de u est égal à m en un point fi II existe alors un
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voisinage V de u (£) dans V, un voisinage W de l 'origine dans kn m

et un difféomorphisme 0 de V' x W sur un voisinage de Ç dans U tels que

u pr1 - 0

où prx désigne la projection canonique de V' x W sur V.
On remarque que la dérivée de u demeure surjective au voisinage de

Corollaire 2. Soient U et V deux ensembles ouverts de k" et km

respectivement et soit u une application indéfiniment dérivable de U dans V.

On suppose que le rang de u est égal à n en un point £. Il existe alors un

voisinage U' de £ dans U, un voisinage W de l'origine dans km_n et

un difféomorphisme 0 d'un voisinage de u{£) dans V sur U' x W tels que

0 • u 1 v, x 0

où 0 désigne l'application constante de W sur l'origine de km~".
On remarque que la dérivée de u demeure injective au voisinage de £.

Théorème 3 (Fonctions implicites). Soient U et V deux ensembles

ouverts de k" et km respectivement et soit u une application indéfiniment
dérivable de U x V dans km. On suppose que u envoie le point (£, rj)

sur l'origine et que la dérivée au point rj de l'application partielle u (£, est

bijective. H existe alors un voisinage U' x V' de (£, 77) dans U x V et

une application indéfiniment dérivable v de U' dans V tels que l'ensemble
des zéros de u dans U' x y' coïncide avec le graphe de v.

La dérivée au point (£, fi) de l'application w de U x y dans k" x km

définie par
w (x, y) (x, u (x, y))

est bijective. Quitte à restreindre U x F, on peut supposer que w est un
difféomorphisme sur un voisinage W de (Ç, 0) dans kn x km. On désigne par
0 l'isomorphisme réciproque et l'on pose

u' { x 6 U I (x, 0) E W }

Il suffit alors de prendre pour v (x) la projection de 0 (x, 0) dans V.

(3) Le théorème de Sard

Soient U et V des ensembles ouverts de Rn et Rm respectivement et soit u

une application indéfiniment dérivable de U dans V.
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On dit qu'un point x de U est un point régulier (resp. un point critique)
de u si le rang de l'application Du (x) est égal à m (resp. strictement inférieur
à m). On dit qu'un point y de V est une valeur régulière (resp. une valeur

critique) de u si tous les points de u_1 (y) sont réguliers (resp. s'il existe un

point critique dans u~1 (y)).

Théorème 4 (Sard). L 'ensemble des valeurs critiques de u est de mesure de

Lebesgue nulle.

La démonstration va se faire par récurrence sur n, le résultat étant trivial

pour n nul. On désigne par A0 l'ensemble des points critiques de u et l'on

pose

Aj { x e U | D"u (x) 0 pour tout a e N" tel que | a | < j }

pour tout entier j strictement positif. On a les inclusions

U ZD Aq ZD At ZD ZD Aj ZD Aj+1 ZD

et l'image par u de l'ensemble Aj\Aj+1 est mesurable.

Montrons tout d'abord que u(A0\A1) est de mesure nulle. Soit £ un
point de A 0\A1. Par un changement linéaire de coordonnées, on peut sup-

ôu1
poser que (Ç) est non nul, en désignant par ul9 um les fonctions coor-

dx1
données de u.

L'application g de U dans R" définie par

g(pc i, ...,xn)(mjCxj,

est de rang n au point £. Elle induit donc un isomorphisme d'un voisinage
U' de ^ dans U sur un voisinage W de g (£) dans R" (théorème 1). On désigne

par h l'isomorphisme réciproque. Quitte à remplacer u par u • h et U par
W (on peut recouvrir A0\A1 par une famille dénombrable d'ensembles U'),
on peut supposer que l'on a

%2 ' n ~~ rc^

en désignant par n1 (resp. n2) la projection canonique de R" (resp. Rm)
sur son premier facteur. Dans ces conditions, un point {yu de V
est une valeur critique de u si et seulement si le point ym) est une
valeur critique de l'application partielle u (yu L'assertion résulte alors du
théorème de Fubini ([5], théorème (7.8)) et de l'hypothèse de récurrence.

Supposons j strictement positif et montrons que u{AJ\Aj+1) est de
mesure nulle. Soit £ un point de Aj\AJ+Parun changement linéaire de
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coordonnées, on peut supposer qu'il existe un multi-indice a de longueur j
tel que

ôv
— (£) # 0 avec v D7u
ôx1

L'application g de U dans R" définie par

g (xu(v(xl5

est de rang n au point |. Elle induit donc un isomorphisme d'un voisinage
U' de £ dans £/ sur un voisinage JE de (0, O dans R". Désignons par
h l'isomorphisme réciproque. L'image par g de l'ensemble Aj n U' est

contenue dans l'ensemble

W (OxR) n IL.

On en déduit aisément que les points de u (AjC\U') sont des valeurs critiques
de l'application u • h | w.. L'assertion résulte alors de l'hypothèse de récurrence.

Montrons finalement que l'ensemble u (Aj) est de mesure nulle pour j
n

strictement supérieur à 1, ce qui achèvera la démonstration du théo-
m

rème. Désignons par C un cube fermé de côté r dans U. Il existe une constante

c telle que
| u(x) -W(£)|<c|x-£|i+1

pour tout point £ de C n A j et tout point x de C (théorème des accroissements

finis). Désignons par k un entier naturel et divisons C en kn cubes

r
de côté-. Soit C0 l'un d'eux et soit Ç un point de C0 n Ay Pour tout point

k

x de C0, on a

|x - «I < f •

k
rY+1

On en déduit que u(C0) est contenu dans le cube de côté 2c 1-1 et de

centre u (£) dans Rw. Ceci montre que u (Cc\Aj) est contenu dans une réunion
de cubes dont le volume total est au plus égal à

(2crj+1)m kn"mU+1)

ce qui démontre l'assertion.
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