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§ 4. Fonctions méromorphes sur une courbe holomorphe non compacte

Théorème 1 (Mittag-Leffler). Toute partie principale d'un fibré en droites

holomorphe sur X provient d'une section méromorphe.

C'est une conséquence immédiate du corollaire du théorème 1 du
paragraphe 2 (chap. I, § 3, proposition 2).

Remarque 1.

En fait, le théorème 1 est valable pour tout fibré vectoriel holomorphe
sur X (voir théorème 3 ci-dessous).

Théorème 2 (Weierstrass). Tout diviseur de X est le diviseur d'une fonction

méromorphe.

C'est une conséquence immédiate du corollaire du théorème 1 du
paragraphe 2 (chap. I, § 3, proposition 3).

Corollaire. Toute fonction méromorphe h sur X est le quotient de deux

fonctions holomorphes ne s'annulant pas simultanément.

Il existe une fonction holomorphe v sur X dont le diviseur est

sup (- (A), 0). La fonction u définie par

u — vh

est holomorphe et ne s'annule pas en même temps que v, d'où l'assertion.

Proposition 1. Soit A un ensemble fermé discret de X et soit f une

fonction à valeurs complexes définie sur A. Il existe alors une fonction
holomorphe h sur X prolongeant f

Désignons par u une fonction holomorphe sur X dont le diviseur est

donné par la formule
(«) E 1 ' *

xeA

(théorème 2) et par v une fonction méromorphe sur X vérifiant les relations

vx — f{x) u ~1 e d)x si xe A

vx e(Px si x eX\A

(théorème 1). Il suffit alors de poser

h uv
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Proposition 2. Désignons par n un fibré vectoriel holomorphe sur X
et par o le fibré quotient de n par un sous-fibré en droites holomorphe p.

Pour toute section holomorphe t de cr, il existe une section holomorphe s

de n relevant t.

Par définition même du fibré quotient (chap. 0, § 2, exemple 3), il existe

un recouvrement ouvert (Ut)ieI de X et, pour chaque indice z, une section

holomorphe sx de n sur Ut relevant t\uv La section sKl définie sur Ux n UK

par
$Kl

prend ses valeurs dans p. Il existe donc pour chaque indice z une section fx
de ^°° (Uv p) telle que

Ski =fi -fn
(chap. 0, § 2, lemme 1). Comme sKl est holomorphe, les formes différentielles
d" ft se recollent en une forme différentielle u de (X, pt&Q0'1). Il existe

donc une section / de ^°° (X, p) telle que

d'f u

(§2, théorème 1, corollaire). Ceci montre que les sections st — ft + f\v
qui se recollent en une section s de n sont holomorphes. Comme elles relèvent

t\ut, ceci démontre l'assertion.

Théorème 3. Tout fibré vectoriel holomorphe % sur X est trivial.

On va raisonner par récurrence sur le rang p de %. Si p est égal à 1,

l'assertion résulte du corollaire du théorème 1 du paragraphe 2. Supposons p
au moins égal à 2 et le théorème démontré pour p — 1.

Nous allons tout d'abord construire une section holomorphe s1 de n

partout non nulle. Le théorème de Behnke-Stein montre qu'il existe une
section holomorphe s de n non identiquement nulle. Pour toute carte $
de n ayant pour domaine un ensemble connexe U, on a

s0 (ml5

où uu up sont des fonctions holomorphes sur U dont l'une au moins
n'est pas nulle. On vérifie aisément que le diviseur v défini par

v\v inf (m
1



— 304 —

est indépendant de et l'on désigne par / une fonction holomorphe sur X
ayant v pour diviseur (théorème 2). Il est clair que la section

s

est holomorphe et partout non nulle.

Désignons par p le fibré en droites holomorphe engendré par sx et par g
le fibré quotient de n par p. Par hypothèse de récurrence, il existe des

sections holomorphes t29 tp de a qui engendrent la fibre en tout point. Ces

sections se relèvent en des sections holomorphes s2> -, Sp de n (proposition

2). Il est clair que slt sp engendrent la fibre de n en tout point, ce qui
démontre l'assertion.
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