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§ 4. FONCTIONS MEROMORPHES SUR UNE COURBE HOLOMORPHE NON COMPACTE

THEOREME 1 (Mittag-Leffler). Toute partie principale d’un fibré en droites
holomorphe sur X provient d’une section méromorphe.

C’est une conséquence immédiate du corollaire du théoréme 1 du para-
graphe 2 (chap. I, § 3, proposition 2).
Remarque 1.

En fait, le théoréme 1 est valable pour tout fibré vectoriel holomorphe
sur X (voir théoréme 3 ci-dessous).

THEOREME 2 (Weierstrass). Tout diviseur de X est le diviseur d’une fonc-
tion méromorphe.

C’est une conséquence immeédiate du corollaire du théoréme 1 du para-
graphe 2 (chap. I, § 3, proposition 3).

COROLLAIRE. Toute fonction méromorphe h sur X est le quotient de deux
fonctions holomorphes ne s’annulant pas simultanément.

Il existe une fonction holomorphe » sur X dont le diviseur est
sup (— (h), 0). La fonction u définie par

u = vh

est holomorphe et ne s’annule pas en méme temps que v, d’ou ’assertion.

PRroOPOSITION 1. Soit A un ensemble fermé discret de X et soit f une
fonction a valeurs complexes définie sur A. 1l existe alors une fonction
holomorphe h sur X prolongeant f.

Désignons par u une fonction holomorphe sur X dont le diviseur est
donné par la formule

() = > 1-x

xed

(théoréme 2) et par v une fonction méromorphe sur X vérifiant les relations
v, —f(x)ulel, sixed
v, €0, si xeX\4

(théoréme 1). 11 suffit alors de poser

h = uv.
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PROPOSITION 2. Désignons par m un fibré vectoriel holomorphe sur X
et par o le fibré quotient de m par un sous-fibré en droites holomorphe p.
Pour toute section holomorphe t de o, il existe une section holomorphe s
de m relevant t.

Par définition méme du fibré quotient (chap. 0, § 2, exemple 3), il existe
un recouvrement ouvert (U,),.; de X et, pour chaque indice 1, une section
holomorphe s, de = sur U, relevant t[U,. La section s,, définie sur U, n U,
par

Ses = S, — Sy

prend ses valeurs dans p. Il existe donc pour chaque indice 1 une section f,
de €~ (U,, p) telle que

Sk1 =f1 _fx

(chap. 0, § 2, lemme 1). Comme s, est holomorphe, les formes différentielles
d" f, se recollent en une forme différentielle u de € (X, p ® Q%1). 1l existe
donc une section f de € (X, p) telle que

d'f =u

(§ 2, théoréme 1, corollaire). Ceci montre que les sections s, — 1, + f|y,
qui se recollent en une section s de © sont holomorphes. Comme elles relévent
t |y, ceci démontre I’assertion.

THEOREME 3. Tout fibré vectoriel holomorphe n sur X est trivial.

On va raisonner par récurrence sur le rang p de . Si p est égal a 1,
'assertion résulte du corollaire du théoréme 1 du paragraphe 2. Supposons p
au moins €gal a 2 et le théoréme démontré pour p — 1.

Nous allons tout d’abord construire une section holomorphe s; de =
partout non nulle. Le théoréme de Behnke-Stein montre qu’il existe une
section holomorphe s de n non identiquement nulle. Pour toute carte @
de m ayant pour domaine un ensemble connexe U, on a

S¢ = (ul, ...,up)

ou uy, ..., u, sont des fonctions holomorphes sur U dont ’'une au moins
n’est pas nulle. On vérifie aisément que le diviseur v défini par

leciz=p
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est indépendant de @ et I’on désigne par f une fonction holomorphe sur X
ayant v pour diviseur (théoréme 2). Il est clair que la section

S
§; = -
f
est holomorphe et partout non nulle.

Désignons par p le fibré en droites holomorphe engendré par s, et par o
le fibré quotient de = par p. Par hypothése de récurrence, il existe des sec-
tions holomorphes 7,, ..., f, de ¢ qui engendrent la fibre en tout point. Ces
sections se relévent en des sections holomorphes s,, ..., s, de © (proposi-
tion 2). Il est clair que sy, ..., 5, engendrent la fibre de 7 en tout point, ce qui
démontre I’assertion.
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