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morphe de rang 1 subordonné a ce recouvrement représentant p. La sec-
tion s est représentée par des fonctions s, vérifiant les relations

Sl =glKSK'

Sy

En particulier, les formes différentielles se recollent en une forme u

2ins,
de ¢> (X, Q°"). Le théoréme 1 montre qu’il existe une fonction f de
¢ (X, C) telle que
d’ f = u

et un calcul élémentaire montre que la section exp (—2inf)s de p est
holomorphe et partout non nulle ce qui démontre I’assertion.

PROPOSITION 1. L ’espace vectoriel H' (X, C) s’identifie canoniquement
au conoyau de l’opérateur différentiel

d':0(X) - 0(X,Q".

L’injection canonique de O (X, Q%°) dans ¥~ (X, Qé) définit par pas-
sage au quotient une application linéaire « de H® (X, Q':°) dans H! (X, C).
Cette application est surjective. En effet, toute forme différentielle u de
€ (X, Qé) s’écrit
u = uy + d”f

avec u, de bidegré (1, 0) et f dans € (X, C). Posons
v=u —df.

On peut écrire
u=9v+df.

Si de plus u est fermée, la forme différentielle v est holomorphe ce qui

démontre Iassertion. Il reste & voir que le noyau de « est égal 4 'image de
d'. Cest immédiat.

§ 3. FONCTIONS HOLOMORPHES SUR UNE COURBE HOLOMORPHE NON COMPACTE

Pour tout ensemble 4 de X, on pose

A

A={xeX]| |fx)]< | /|4 pour tout feO0(X)}.

A
On dit que 4 est holomorphiquement convexe s’il est égal a A.
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A ~
LEMME 1. Pour tout ensemble compact K de X, les ensembles K et K
sont égaux ).

Soit x un point de K\K et soit V' la composante connexe (relativement
compacte) de x dans X\K. Il est clair que 0V est contenu dans K et le prin-
cipe du maximum montre que I’on a

1f(x)] < ”fHaV < Hf”K
pour toute fonction holomorphe f sur X. Ceci montre que K~ est contenu

A
dans K. N
Réciproquement, soit x un point de X\K. On vérifie aisément que I’on a

(Ku {x})~ - Ku 1%}

Le lemme 5 de I’appendice 1I et le théoréme de Behnke-Stein montrent que
la fonction qui vaut 0 au voisinage de K et 1 au voisinage de x peut étre

uniformément approchée sur K U {x} par une fonction holomorphe f
sur X. Si ’approximation est bonne, on a

[fllx < [/f]% <1/G) ]

ce qui montre que x n’appartient pas a K.

THEOREME 1 (Runge). Pour tout ensemble compact K de X, les conditions
suivantes sont équivalentes :

(1) L’ensemble K est holomorphiquement convexe.

(2) L’ensemble X\K n’a pas de composante connexe relativement
compacte dans X.

(3) Toute fonction holomorphe au voisinage de K peut étre uniformément
approchée sur K par des fonctions holomorphes sur X.

L’équivalence des deux premiéres conditions résulte du lemme 1. Le
lemme 5 de 'appendice 1I et le théoréme de Behnke-Stein montrent qu’elles
impliquent la troisiéme.

Supposons (3) vérifiée et raisonnons par I’absurde en supposant qu’il
existe une composante connexe ¥ de X\K relativement compacte dans X.
On désigne par x un point de V et par 4 une fonction méromorphe sur X,
holomorphe sur X\{x}, possédant un pdle simple au point x (§ 2, lemme 1)
Cette fonction peut étre uniformément approchée sur K par des fonctions

1) Pour la définition de K, voir ’appendice II.
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holomorphes sur X et puisque dV est contenu dans K, le principe du maxi-
mum montre que / peut étre uniformément approchée sur K U ¥ par des
fonctions holomorphes sur X, ce qui est absurde.

THEOREME 2. (1) Les fonctions holomorphes sur X séparent les points.

(2) Pour tout point x de X, il existe une fonction holomorphe sur X
de rang 1 au point Xx. N

(3) Pour tout ensemble compact K de X, [’ensemble K est compact.

On désigne par x et y des points distincts de X. Il est clair que I'on a

x) ={x)

et la fonction qui vaut O (resp. 1) au point x (resp. y) peut étre uniformément
approchée sur {x, y} par une fonction holomorphe sur X. Sil’approximation
est bonne, elle prend des valeurs distinctes en x et y, ce qui démontre (1).

On désigne par x un point de X et par ¢ une carte de X dont le domaine
contient x. Il existe un voisinage compact K de x dans le domaine de ¢ tel
que X'\K n’ait pas de composante connexe relativement compacte dans X,
La fonction ¢ peut étre uniformément approchée sur K par une fonction
holomorphe f'sur X. Si 'approximation est bonne, la fonction fest de rang 1
au point x (chap. I, § 1, théoréme 1, corollaire 4), ce qui démontre (2).

La derniere assertion résulte immédiatement du lemme 1 (appendice 11,
lemme 2).

Remarque 1.

On appelle variété de Stein toute variété holomorphe Y de dimension
pure n, dénombrable a Iinfini, vérifiant les conditions suivantes:

(1) Les fonctions holomorphes séparent les points de Y.

(2) Pour tout point x de Y, il existe une application holomorphe de Y
dans C" de rang »n au point x.

(3) Pour toute partie compacte K de Y, ’ensemble

A

K ={xeY| |lu(x)| < | ufx pour tout ue0(Y)}

est compact.

Le théoréme 2 montre donc que toute courbe holomorphe ouverte
dénombrable a I'infini est une variété de Stein.

b 2 .
— 1 'Fnceionement mathém t XXT face 2.3.4 _
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