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morphe de rang 1 subordonné à ce recouvrement représentant p. La
section s est représentée par des fonctions st vérifiant les relations

$1 9 IK SK •

d's tEn particulier, les formes différentielles se recollent en une forme u
2insl

de ^°° (X, Q0,1). Le théorème 1 montre qu'il existe une fonction / de

^°° (X, C) telle que
d 'f u

et un calcul élémentaire montre que la section exp — 2inf) s de p est

holomorphe et partout non nulle ce qui démontre l'assertion.

Proposition 1. L'espace vectoriel H1 (X, C) s'identifie canoniquement
au conoyau de l'opérateur différentiel

d': (9 (X) -*0(X, Quo).

L'injection canonique de G (X, ß1'0) dans ^°° (X, Q*) définit par
passage au quotient une application linéaire oc de H° (X, Q1,0) dans H1 (X, C).
Cette application est surjective. En effet, toute forme différentielle u de

^°° (X, ß*) s'écrit

u — u^ -f- d f
avec u1 de bidegré (1, 0) et/dans ^°° (X, C). Posons

v =11^ — d'f.
On peut écrire

u v + df.
Si de plus u est fermée, la forme différentielle v est holomorphe ce qui
démontre l'assertion. Il reste à voir que le noyau de oc est égal à l'image de
d\ C'est immédiat.

§ 3. Fonctions holomorphes sur une courbe holomorphe non compacte

Pour tout ensemble A de X, on pose
A

A{xeX|I/O) | < I/||A pour tout

On dit que A est holomorphiquementconvexes'il est égal à A.
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Lemme 1. Pour tout ensemble compact K de X, les ensembles K et K
sont égaux 1).

Soit x un point de K\K et soit V la composante connexe (relativement
compacte) de x dans X\K. Il est clair que dV est contenu dans K et le principe

du maximum montre que l'on a

i/(*) i < \\f\U<ll/iu
pour toute fonction holomorphe / sur X. Ceci montre que K est contenu

A
dans K.

Réciproquement, soit x un point de X\K. On vérifie aisément que l'on a

(Kvj {x}) K u {x}

Le lemme 5 de l'appendice II et le théorème de Behnke-Stein montrent que
la fonction qui vaut 0 au voisinage de K et 1 au voisinage de x peut être

uniformément approchée sur K u {x} par une fonction holomorphe /
sur X. Si l'approximation est bonne, on a

H/IU« |/||ï < l/(*)l
A

ce qui montre que x n'appartient pas à K.

Théorème 1 (Runge). Pour tout ensemble compact K de X, les conditions

suivantes sont équivalentes :

(1) L 'ensemble K est holomorphiquement convexe.

(2) L'ensemble X\K n'a pas de composante connexe relativement

compacte dans X.

(3) Toute fonction holomorphe au voisinage de K peut être uniformément
approchée sur K par des fonctions holomorphes sur X.

L'équivalence des deux premières conditions résulte du lemme 1. Le

lemme 5 de l'appendice II et le théorème de Behnke-Stein montrent qu'elles

impliquent la troisième.

Supposons (3) vérifiée et raisonnons par l'absurde en supposant qu'il
existe une composante connexe V de X\K relativement compacte dans X.
On désigne par x un point de V et par h une fonction méromorphe sur X,
holomorphe sur X\{x}, possédant un pôle simple au point x (§ 2, lemme 1)

Cette fonction peut être uniformément approchée sur K par des fonctions

*) Pour la définition de K, voir l'appendice II.
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holomorphes sur X et puisque ôV est contenu dans K, le principe du maximum

montre que h peut être uniformément approchée sur K u V par des

fonctions holomorphes sur X, ce qui est absurde.

Théorème 2. (1) Les fonctions holomorphes sur X séparent les points.

(2) Pour tout point x de X, il existe une fonction holomorphe sur X
de rang 1 au point x. A

(3) Pour tout ensemble compact K de X, l 'ensemble K est compact.

On désigne par x et y des points distincts de X. Il est clair que l'on a

{x,y}={x,y}

et la fonction qui vaut 0 (resp. 1) au point x (resp. y) peut être uniformément

approchée sur {x, par une fonction holomorphe sur X. Si l'approximation
est bonne, elle prend des valeurs distinctes en x et y, ce qui démontre (1).

On désigne par x un point de X et par 0 une carte de X dont le domaine
contient x. Il existe un voisinage compact K de x dans le domaine de (j> tel

que X\K n'ait pas de composante connexe relativement compacte dans X.
La fonction </> peut être uniformément approchée sur K par une fonction
holomorphe/sur X. Si l'approximation est bonne, la fonction/est de rang 1

au point x (chap. I, § 1, théorème 1, corollaire 4), ce qui démontre (2).
La dernière assertion résulte immédiatement du lemme 1 (appendice II,

lemme 2).

Remarque L

On appelle variété de Stein toute variété holomorphe Y de dimension

pure n, dénombrable à l'infini, vérifiant les conditions suivantes :

(1) Les fonctions holomorphes séparent les points de Y.

(2) Pour tout point x de 7, il existe une application holomorphe de Y
dans Cn de rang n au point x.

(3) Pour toute partie compacte K de Y, l'ensemble

A

K {xe| | (x) | < u IK pour tout u 6 (9 (Y) }

est compact.
Le théorème 2 montre donc que toute courbe holomorphe ouverte

dénombrable à l'infini est une variété de Stein.
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