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Il faut montrer que pour toute section u de O (U, n), tout ensemble
compact K de U et tout nombre réel ¢ strictement positif, il existe une sec-
tion v de 0 (X, n) telle que

|v —uex<e

la semi-norme || || L2 étant relative & des métriques hermitiennes sur Q'
et 7. On peut supposer que le complémentaire de K n’a pas de composante
connexe relativement compacte dans X et qu’il existe une suite exhaustive
(K;) jen de parties compactes de X ayant la méme propriété, telle que K
soit égal a K, (appendice II, lemmes 5 et 6). Posons

Ug = XK()u +
Le lemme 2 montre qu’il existe une section u; de By, (X, 7) telle que

&
Juy = to | r2.xo < 52

Pour tout entier j strictement positif, on construit de la méme mani€re une
section u; de BKJ. ., (X, ) telle que
€

luy —ujy | L2Kj_1 S 57571 ¢

Pour tout entier n, la suite (xg u;);~., est une suite de Cauchy dans
By, (X, m). On désigne par v, sa limite. Il est clair que les sections v, se
recollent en une section v de O (X, n). Il existe un entier #n tel que

v~ sl < 5

On a alors
lo —ulex <|v—tnf2g + |t —uflex<e

ce qui démontre I’assertion.

§ 2. CALCUL DE QUELQUES GROUPES DE COHOMOLOGIE

LEMME 1. Pour tout point x de X, il existe une fonction méromorphe h
sur X, holomorphe sur X\{x} possédant un péle simple au point x.

Désignons par p un fibré en droites holomorphe sur X et par s une sec-
tion holomorphe de p dont le diviseur est 1 * x. Il résulte du théoréme de
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Behnke-Stein qu’il existe une section holomorphe ¢ de p non nulle au point x.

4
11 suffit alors de prendre pour 4 la fonction - -
S

Remarque 1.

On conserve les notations du lemme 1. La fonction méromorphe /
définit une application holomorphe de X dans P! de rang 1 au point x,
telle que

Rt (h(x) = {x}.

Pour tout voisinage U relativement compact de x dans X, il existe un voisi-
nage ouvert ¥ de x dans U vérifiant les conditions suivantes:

(1) La restriction de 4 a V est un isomorphisme de V sur un voisinage
ouvert de (0:1) dans P

(2) La trace de h™" (2 (V)) sur U est égale a V.

En effet, supposons qu’il existe un systéme fondamental de voisinage
ouverts (V) ;o de x dans U et, pour chaque entier j, un point x; de V;
et un point y; de U\V; tels que

h(x) = h(y).

On peut toujours supposer que la suite (y;);o converge vers un point y
de U et 'on a
h(y) =limh(y;) =limh(x;) = (0:1).
Jj— o Jj= o
Ceci montre que 'on a
y =limy; =x

Jj— oo

ce qui est absurde puisque /4 est de rang 1 au point x.

LEMME 2. On désigne par U un ensemble ouvert relativement compact de
X. Pour toute forme différentielle u de L% (U, Q°Y), il existe une fonction f
de HL_ (U, C) telle que
d'f=u.

Pour tout point x de U, il existe une application holomorphe 4 de X
dans P! et un voisinage ouvert ¥ de x dans U vérifiant les conditions de la
remarque 1. Par partition de 1'unité, on se raméne aisément au cas ou le
support de u est contenu dans V. On définit alors une forme différentielle v
de L? (P!, Q%% en posant

{ v(z) = (hly) W (2) si zeh(V)
v(z) =0 si zePN\R (V).
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Comme P! est de genre 0, il existe une fonction g de H! (P!, C) telle que

v =4dyg.
11 suffit alors de poser

f=@hly.

THEOREME 1. L ‘espace vectoriel H' (X, Cy) est nul.

Désignons par (K;),.x une suite exhaustive de parties compactes de X
dont les complémentaires n’ont pas de composante connexe relativement
compacte. Soit  une forme différentielle de L: (X, Q°1). Pour tout entier
J, on pose

Uj = XK, U-

I1 existe une fonction f; de H, ! (X, C) telle que

loc

XKJ-Hd”fj = U;
(lemme 2). En particulier, la fonction

XKj,Fl(fj+1 _fj)
appartient a BKJ.+1(X, C,) et le théoréme de Behnke-Stein montre qu’il
existe une fonction holomorphe g; sur X telle que
1
? s
la semi-norme étant relative & une métrique hermitienne sur Q. Pour tout
entier »n, la série

| fie1 =i = 5]l 2k, <

z XKn(fj+1 —fj_gj)

J=n
converge vers un élément de By (X, Cyx) et 'on pose

Wo = Xk, (fa=Go— - —Gu-0) + X Ak, (i1 =S =97

J=n

I est clair que les fonctions w, se recollent en une fonction w de H,.. (X, C)
et I'on a

d'w =u
ce qui démontre 1’assertion.

COROLLAIRE. Tout fibré en droites holomorphe p sur X est trivial. En
particulier, I’espace vectoriel H' (X, p) est nul.

On sait qu’il existe une section indéfiniment dérivable s de p partout non
nulle (chap. 0, § 2, théoréme 1, corollaire). Désignons par (U,),.; un recou-
vrement de X par des domaines de cartes de p et par (g,,) un cocycle holo-
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morphe de rang 1 subordonné a ce recouvrement représentant p. La sec-
tion s est représentée par des fonctions s, vérifiant les relations

Sl =glKSK'

Sy

En particulier, les formes différentielles se recollent en une forme u

2ins,
de ¢> (X, Q°"). Le théoréme 1 montre qu’il existe une fonction f de
¢ (X, C) telle que
d’ f = u

et un calcul élémentaire montre que la section exp (—2inf)s de p est
holomorphe et partout non nulle ce qui démontre I’assertion.

PROPOSITION 1. L ’espace vectoriel H' (X, C) s’identifie canoniquement
au conoyau de l’opérateur différentiel

d':0(X) - 0(X,Q".

L’injection canonique de O (X, Q%°) dans ¥~ (X, Qé) définit par pas-
sage au quotient une application linéaire « de H® (X, Q':°) dans H! (X, C).
Cette application est surjective. En effet, toute forme différentielle u de
€ (X, Qé) s’écrit
u = uy + d”f

avec u, de bidegré (1, 0) et f dans € (X, C). Posons
v=u —df.

On peut écrire
u=9v+df.

Si de plus u est fermée, la forme différentielle v est holomorphe ce qui

démontre Iassertion. Il reste & voir que le noyau de « est égal 4 'image de
d'. Cest immédiat.

§ 3. FONCTIONS HOLOMORPHES SUR UNE COURBE HOLOMORPHE NON COMPACTE

Pour tout ensemble 4 de X, on pose

A

A={xeX]| |fx)]< | /|4 pour tout feO0(X)}.

A
On dit que 4 est holomorphiquement convexe s’il est égal a A.
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