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Il faut montrer que pour toute section u de 0 (U9 n), tout ensemble

compact K de U et tout nombre réel s strictement positif, il existe une
section v de 0 (X, 7i) telle que

1 V — U I L2>k < S

la semi-norme || \\lz,k étant relative à des métriques hermitiennes sur Q1

et u. On peut supposer que le complémentaire de K n'a pas de composante
connexe relativement compacte dans X et qu'il existe une suite exhaustive

(Kj)JeN de parties compactes de X ayant la même propriété, telle que K
soit égal à K0 (appendice II, lemmes 5 et 6). Posons

w0 Xk0U •

Le lemme 2 montre qu'il existe une section u1 de BK2 (X, n) telle que

Il Ul — U0 ||L2,X0 < ^2 *

Pour tout entier j strictement positif, on construit de la même manière une
section Uj de Bkj + i (X n) telle que

Il UJ - Ui~ 1 II L2,Kj-1 < 27+1
«

Pour tout entier n, la suite (XKnuj)j^n esI une suite Cauchy dans

BKn (X, n). On désigne par vn sa limite. Il est clair que les sections vn se

recollent en une section v de 0 (X, n). Il existe un entier n tel que

G

Il v — Un I L2,K <
2 '

On a alors

Il V ~ U II L2,K < I V W/i I] L2,K + i Un "" U I L2,K < S

ce qui démontre l'assertion.

§ 2. Calcul de quelques groupes de cohomologie

Lemme 1. Pour tout point x de X, il existe une fonction méromorphe h

sur X, holomorphe sur ^\{x} possédant un pôle simple au point x.
Désignons par p un fibré en droites holomorphe sur X et par s une

section holomorphe de p dont le diviseur est 1 • .x. Il résulte du théorème de
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Behnke-Stein qu'il existe une section holomorphe t de p non nulle au point x.

t
11 suffit alors de prendre pour h la fonction - •

5

Remarque 1.

On conserve les notations du lemme 1. La fonction méromorphe h

définit une application holomorphe de X dans P1 de rang 1 au point x,
telle que

h'1(h(x)){x}
Pour tout voisinage U relativement compact de x dans X, il existe un voisinage

ouvert F de x dans U vérifiant les conditions suivantes :

(1) La restriction de A à F est un isomorphisme de F sur un voisinage
ouvert de (0:1) dans P1.

(2) La trace de h_1 (h (F)) sur Ü est égale à F.

En effet, supposons qu'il existe un système fondamental de voisinage
ouverts (Vj)jeN de x dans U et, pour chaque entier j, un point Xj de V}
et un point yj de Ü\Vj tels que

h (xj) h (yj).
On peut toujours supposer que la suite (yj)jeN converge vers un point y
de U et l'on a

h (y) lim h (yy) lim h (.Xj) =(0:1).
j~> ce j-+oo

Ceci montre que l'on a

y lim yj x
oo

ce qui est absurde puisque h est de rang 1 au point x.

Lemme 2. On désigne par U un ensemble ouvert relativement compact de

X. Pour touteforme différentielle u de L2C(U, ß0,1), il existe une fonction f
de Hlc U,C)telle que

d'f u

Pour tout point x de U, il existe une application holomorphe de Idans P1 et un voisinage ouvert F de x dans U vérifiant les conditions de la
remarque 1. Par partition de l'unité, on se ramène aisément au cas où le

support de u est contenu dans F. On définit alors une forme différentielle v
de L2 (P1, ß0,1) en posant

f v(z) (h\y)t (u)(z) si (F)
\ v(z)0 si zeP1\fi(F).
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Comme P1 est de genre 0, il existe une fonction g de H1 (P1, C) telle que

v d'g
11 suffit alors de poser

/ (9'h)\v.

Théorème 1. L'espace vectoriel H1 (X, Cx) est nul.

Désignons par (Kj)jeN une suite exhaustive de parties compactes de X
dont les complémentaires n'ont pas de composante connexe relativement

compacte. Soit u une forme différentielle de Lfoc (X, £20,1). Pour tout entier

j\ on pose

UJ Xkj + !«
Il existe une fonction de H^oc (X, C) telle que

XKj + 1d"fj Uj

(lemme 2). En particulier, la fonction

Xkj + i (fj + i - fj)
appartient à BKj + l(X9Cx) et le théorème de Behnke-Stein montre qu'il
existe une fonction holomorphe gj sur X telle que

\\fj+i ~ fj ~ 9j\^,Kj < ^7 »

la semi-norme étant relative à une métrique hermitienne sur ß1. Pour tout
entier n, la série

Z %Kn (fj+1 —fj —Qj)
j^n

converge vers un élément de BKn (X, Cz) et l'on pose

W„ lKn{fn~9o+ Z -fj-Sj)-
j^n

Il est clair que les fonctions wn se recollent en une fonction w de H*oc (X, C)
et l'on a

dw — u

ce qui démontre l'assertion.

Corollaire. Tout fibré en droites holomorphe p sur X est trivial. En

particulier, l'espace vectoriel H1 (X, p) est nul.

On sait qu'il existe une section indéfiniment dérivable s de p partout non
nulle (chap. 0, § 2, théorème 1, corollaire). Désignons par (un
recouvrement de X par des domaines de cartes de p et par (gKl) un cocycle holo-
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morphe de rang 1 subordonné à ce recouvrement représentant p. La
section s est représentée par des fonctions st vérifiant les relations

$1 9 IK SK •

d's tEn particulier, les formes différentielles se recollent en une forme u
2insl

de ^°° (X, Q0,1). Le théorème 1 montre qu'il existe une fonction / de

^°° (X, C) telle que
d 'f u

et un calcul élémentaire montre que la section exp — 2inf) s de p est

holomorphe et partout non nulle ce qui démontre l'assertion.

Proposition 1. L'espace vectoriel H1 (X, C) s'identifie canoniquement
au conoyau de l'opérateur différentiel

d': (9 (X) -*0(X, Quo).

L'injection canonique de G (X, ß1'0) dans ^°° (X, Q*) définit par
passage au quotient une application linéaire oc de H° (X, Q1,0) dans H1 (X, C).
Cette application est surjective. En effet, toute forme différentielle u de

^°° (X, ß*) s'écrit

u — u^ -f- d f
avec u1 de bidegré (1, 0) et/dans ^°° (X, C). Posons

v =11^ — d'f.
On peut écrire

u v + df.
Si de plus u est fermée, la forme différentielle v est holomorphe ce qui
démontre l'assertion. Il reste à voir que le noyau de oc est égal à l'image de
d\ C'est immédiat.

§ 3. Fonctions holomorphes sur une courbe holomorphe non compacte

Pour tout ensemble A de X, on pose
A

A{xeX|I/O) | < I/||A pour tout

On dit que A est holomorphiquementconvexes'il est égal à A.
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